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1 Introduction

Financial volatility is loosely speaking the standard deviation of asset returns. It has been known

for a long time that volatility changes through time. Both ex-post and ex-ante volatility measures

are in common use. The most well known ex-post measure is realised volatility, while ex-ante

measures include those generated by ARCH type models and option based numbers such as implied

volatility and the VIX. Reviews of this literature include, amongst others, Andersen, Bollerslev,

and Diebold (2008), Barndorff-Nielsen and Shephard (2007), Taylor (2005) and Engle (2008).

In this article we provide a brief review of part of the literature on this topic, focusing on

high frequency ex-post measures of volatility and models of volatility driven by Lévy processes.

Throughout our discussion we think about a vector of efficient prices

Yt = Y0 +

∫ t

0
µudu +

∫ t

0
σudWu, t ≥ 0, (1)

where Wt is Brownian motion and µt, σt are spot drift and volatility, all adapted to Ft — the

continuous time record of the past Yt. For simplicity of exposition we will ignore jumps in the price

process.

∗Prepared for the “Encyclopedia of Quantitative Finance” (editor Rama Cont), John Wiley & Sons.
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2 Ex-post measures

Ito’s lemma implies

Var

{(
Yt − Y0 −

∫ t

0
µudu

)
|F0

}
= E

{∫ t

0
σuσ′

udu|F0

}

= E {[Y, Y ]t|F0} ,

linking together ex-ante variance forecasts with ex-ante forecasts of the quadratic variation [Y, Y ]

of Y . But we can use high frequency data to estimate the [Y, Y ]t process, allowing us to project this

quantity into the future without an explicit model for the spot volatility matrix σt. This method

of constructing forecasts of volatility through QV was developed by Andersen, Bollerslev, Diebold,

and Labys (2001).

There is an active literature on estimating the [Y, Y ]t process. Most of it looks at estimating

discrete increments of it over specified times periods, such as a day, IVi = [Y, Y ]i − [Y, Y ]i−1. The

most familiar estimator is the realised variance, for the i-th day, which is

RVi =
∑

i−1<tj≤i

(
Ytj − Ytj−1

) (
Ytj − Ytj−1

)′
, (2)

where the tj are times at which data is available — which could represent the times of trades,

quotes (or a subset of such trades and quotes) or fixed intervals of time such as every 2 minutes.

In the univariate case the square root of RV is the realised volatility (Rvol). Many option contracts

are directly written on Rvol and RV, but usually this is where volatility is measured over the month

and daily returns are used in (2).

The econometric theory associated with RV uses an in-fill asymptotic analysis, imagining tj −
tj−1 ↓ 0. This is somewhat problematic as (1) ignores market microstructure effects which bite in

the limit. However, for the moment ignore this. Then RVi
p→ IVi by the definition of QV. The

central limit theory extension of this, in the univariate case, is

V̂
−1/2
i

√
n (RVi − IVi)

d→ N(0, 1),

and was developed by Barndorff-Nielsen and Shephard (2002) (who suggested a variety of V̂i quan-

tities). See also Jacod (1994) and Mykland and Zhang (2006). Figure 1 illustrates this (together

with results from another estimator discussed below), showing 95% confidence intervals using 20

minute returns for General Electric, based on trades made on the stock exchange in November

2004.

Zhou (1998) was the first to formally study the properties of RV type statistics in the presence

of market microstructure noise — which causes returns to be autocorrelated in time. Here we think

of noise as U = X − Y where X is the observed trade or quote process and Y continues to be the

underlying efficient price. Modern research has developed three methods for being robust to noise:
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Figure 1: Daily estimates of ex-post variability: realised variance and realised kernel, together with
95% confidence intervals.

preaveraging (Jacod, Li, Mykland, Podolskij, and Vetter (2007)), multiscale (Zhang, Mykland, and

Aı̈t-Sahalia (2005) and Zhang (2006)) and realised kernels (Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2008a) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008b)).

We will focus on realised kernels, which generalise realised variance to

K(X) =

H∑

h=−H

k
(

h
H+1

)
γh, γh =

n∑

j=|h|+1

rjrj−|h|

where {rj} are high frequency data and k is a Parzen weight function

k(x) =






1 − 6x2 + 6x3, 0 ≤ x ≤ 1/2,
2(1 − x)3, 1/2 ≤ x ≤ 1,
0, x > 1.

This is like a HAC estimator, which is popular in econometrics, but there is no scaling by sample size.

It is (i) robust to irregularly spaced data, (ii) endogenous noise, (iii) autocorrelation in the noise.

A key feature of realised kernels is the choice of the bandwidth H. The value which approximately

minimises the asymptotic MSE of the estimator is H = 0.97ξ4/5n3/5, ξ2 = Var(X −Y )/IV . Figure

1 illustrates the use of this method, which shows the improvement from using the high frequency

data. More details on how to implement this method are given in Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2009). The multivariate implementation is discussed in Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008b).

These high frequency data based volatility measures can be combined to make volatility fore-

casts in a variety of ways. Andersen, Bollerslev, Diebold, and Labys (2001) Andersen, Bollerslev,
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Diebold, and Labys (2003) and Andersen, Bollerslev, Diebold, and Ebens (2001) have pioneered

the use of simple linear time series methods. An alternative is to use lagged RV measures as an

explanatory variable in the volatility dynamics of an ARCH model (e.g. Engle and Gallo (2006)).

The latter approach is followed in the multivariate case by Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2008b).

3 Pure jump based volatility models

There is now quite a lot of evidence that there are jumps in the volatility process (Todorov and

Tauchen (2008)) and that jumps play a key role in generating statistical leverage effects (Barndorff-

Nielsen, Kinnebrouck, and Shephard (2009)). A paper which is a distinct break from the traditional

diffusion based stochastic volatility models associated with Hull and White (1987), is Barndorff-

Nielsen and Shephard (2001). In their simplest model they wrote the univariate spot variance as

an OU type process

dσ2
t = −λσ2

t dt + dZλt, λ > 0,

where Z is a subordinator. Recall a subordinator is a Lévy process with non-negative increments,

which means σ2
t has no Brownian component at all. In the literature models of these type are called

BNS models. They have the feature that if Var(Z1) < ∞ then Corr(σ2
t , σ

2
t+s) = exp(−λs).

A main advantage of this OU process is that

σ2
t = e−λtσ2

0 +

∫ t

0
e−λ(t−s)dZλs

and

∫ t

0
σ2

udu = λ−1(1 − e−λt)σ2
0 + λ−1

∫ t

0

{
1 − e−λ(t−s)

}
dZλs.

This makes them easy to analyse and simulate from.

More sophisticated dynamics can be achieved by adding together independent OU processes,

each with a different decay parameter λ. Such superposition processes can be extended to the case

of an infinite number of components, as analysed by Barndorff-Nielsen (2001).

A different route is to generate ARMA type dynamics. Such processes have been advocated

by Brockwell (2001), Brockwell and Marquardt (2005) and Todorov and Tauchen (2006).

The OU process has been extended to the multivariate case by Barndorff-Nielsen and Stelzer

(2007) and Pigorsch and Stelzer (2007). They set up an OU process for the positive semi-definite

covariance matrix Σt = σtσ
′
t and analysed the properties of the resulting implied multivariate return

process.

These BNS models have been used extensively in applications. Derivative pricing based on this

type of model was first discussed by Nicolato and Venardos (2003). Subsequent research includes
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Benth (2004). Benth, Groth, and Kufakunesu (2007) study the pricing of the variance and volatility

swaps based on the BNS model. Minimal martingale measures for BNS models are analysed by

Benth and Meyer-Brandis (2006) and Hubalek and Sgarra (2007). Benth, Groth, and Wallin (2007)

study the calculation of Greeks for BNS type models.

Benth, Karlsen, and Reikvam (2003) and Delong and Kluppelberg (2007) have used BNS models

to provide analytic solutions to the portfolio allocation problem.

These models and variants based off them have been used as models of the prices traded in

energy markets where extreme movements are quite common. References include Benth, Kallsen,

and Meyer-Brandis (2007) and Kluppelberg, Meyer-Brandis, and Schmidt (2008).
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