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1 Introduction

In recent years, a number of researchers have devoted considerable attention to the problem of

testing for a unit root in a time series whose innovations display unstable volatility. It is now known

that the asymptotic properties of unit root test statistics under unstable volatility may differ from

the properties that obtain under homoskedasticity. Thus, if unstable volatility is not properly taken

into account, spurious inference about the presence or absence of a unit root may result.

Hamori and Tokihisa (1997) appear to be the first to observe that a simple level shift in innova-

tion variance partway through a sample invalidates the usual unit root asymptotics. Subsequently,

Kim et. al. (2002) showed that ignoring the effect of a volatility shift could result in tests with

asymptotic rejection rates of as high as 40% under the null hypothesis of a unit root, using a nominal

size of 5%. Cavaliere (2004b) studied the properties of unit root tests under a more flexible model

of volatility that could incorporate smooth changes in variance as well as multiple level shifts, while

Boswijk (2001) studied the case of near-integrated stochastic volatility. Related work by Dahl and

Levine (2006), Phillips and Xu (2006) and Xu and Phillips (2008) has considered the impact of

unstable volatility in stationary autoregressions.

The main contribution of this paper is the development of a new approach to unit root testing

that is robust to the presence of heteroskedasticity of quite general form. The basic idea is to scale

the increments of a time series using a nonparametric estimate of their variance, rendering them

approximately homoskedastic. Standard unit root tests may then be applied to the rescaled data.

We show that, under suitable conditions including the absence of a deterministic trend component,

the null asymptotic properties of tests constructed in this fashion are the same as one would expect

under homoskedasticity. Moreover, applying this approach in a homoskedastic context leads to no

loss of local power.

Several other methods of testing for a unit root in the presence of unstable volatility have been

proposed in recent years. Cavaliere and Taylor (2007ab, 2008ab) and Boswijk (2005) have proposed

a total of four testing procedures. We review those approaches here, and compare them to each

other and to our own approach using small sample simulations.
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The paper is organized as follows. Section 2 introduces the heteroskedastic unit root model,

and in Section 3 we review the existing literature on unit root testing under unstable volatility. A

new approach to unit root testing under unstable volatility is developed in Section 4. We report

our small sample simulation results in Section 5, and conclude in Section 6. Proofs of lemmas and

theorems are collected in Appendix A, and tables in Appendix B.

2 The Heteroskedastic Model

The econometric model we consider is very similar to that of Cavaliere (2004b), Boswijk (2005),

and Cavaliere and Taylor (2007ab, 2008ab), although some of our technical conditions differ. Let

{εt : t ∈ N} be a stationary sequence of random variables with zero mean and unit variance, and

define the triangular array of random variables {yt,n : 1 ≤ t ≤ n, n ∈ N} by

yt,n = zt + xt,n t = 0, . . . , n

xt,n = φnxt−1,n + ω
(

t
n

)
εt t = 1, . . . , n

x0,n = Op(1).

zt is a deterministic process of some form; cases of leading interest include zt = 0, zt = α, and

zt = α + βt. yt,n is thus the sum of a deterministic process zt and an autoregressive process xt,n.

The variance of the innovations of xt,n is governed by the function ω : [0, 1] → R+.

Our focus in this paper is on the sequence of autoregressive coefficients φn. In general we will

set φn = exp(−c/n), where c ≥ 0. When c = 0, yt,n is a unit root process, while when c > 0, yt,n

is a near-unit root process. We seek to construct a test of the unit root hypothesis that is well

behaved when ω is nonconstant.

The volatility function ω is assumed to satisfy the following condition.

Assumption 2.1 ω is twice continuously differentiable, and strictly positive.

Assumption 2.1 is stronger than the comparable assumptions imposed by Cavaliere and Taylor

(2007ab, 2008ab), who allow ω to be discontinuous, and by Boswijk (2005), who assumes continuity
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but not differentiability. Our need for stronger smoothness conditions on ω stems from our use of a

kernel estimator for ω in the construction of our heteroskedasticity-robust unit root tests in Section

4 below. Assumption 2.1 is such that uniformly consistent estimation of ω is possible, and such

that the derivative of our estimator is also well behaved. Nevertheless, the assumption of continuity

is not critical for our tests to be well behaved, as will be clear from the small sample simulations

reported in Section 5.

An implicit assumption on ω is that it is nonstochastic. Cavaliere and Taylor (2007a, 2008ab)

share this assumption, while Boswijk (2005) and Cavaliere and Taylor (2007b) allow ω to be stochas-

tic. Allowing ω to be stochastic in this paper would seem to be of rather limited benefit, as our

assumption that ω is twice continuously differentiable rules out the majority of stochastic processes

used to model volatility in practice. Nevertheless, in the small sample simulations reported in Sec-

tion 5, we will see that the performance of the heteroskedasticity-robust tests introduced in this

paper seems comparable to the performance of existing heteroskedasticity-robust tests when ω is

the exponential of a Brownian motion or Ornstein-Uhlenbeck process.

The sequence of innovations {εt} is assumed to satisfy the following condition.

Assumption 2.2 There exists p > 4 such that E |ε0|p <∞, and such that the α-mixing coefficients

of {εt} satisfy
∑∞

j=1 α
2(1/r−1/p)
j < ∞ for some r ∈ [2p/(p − 2), 4]. The long-run variance λ2 =∑∞

j=−∞E (εtεt+j) satisfies λ2 > 0.

Assumption 2.2 allows for very general forms of serial dependence in εt, but rules out processes that

are strongly dependent or very fat tailed. The role of the quantity r will become clear in Assumption

4.4 below. Cavaliere and Taylor (2007ab, 2008ab) make comparable assumptions in the framework

of linear processes, while Boswijk (2005) assumes the innovations εt to be independent of one

another. Note that the mixing condition in Assumption 2.2 implies that λ2 <∞.

3 Unit Root Testing under Heteroskedasticity

In this section we survey the existing literature on unit root testing in the context of the

heteroskedastic model described in the previous section. We begin with the fundamental results of
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Cavaliere (2004b) concerning the effect of heteroskedasticity on the behavior of standard unit root

tests. Next, we discuss a class of tests proposed by Cavaliere and Taylor (2008a), which achieve

standard unit root asymptotics by applying a nonparametrically estimated time-transformation to

the data prior to testing. Finally, we discuss several unit root tests that use simulated critical values

to adjust for the effect of heteroskedasticity - these are the tests of Boswijk (2005) and Cavaliere

and Taylor (2007ab, 2008b). The relative merits of all these tests, and of the new tests we shall

propose in Section 4, will be studied in the small sample simulations in Section 5.

3.1 Standard Tests

The properties of unit root tests when applied to the model described in Section 2 were studied

in detail by Cavaliere (2004b). Suppose we impose the unit root hypothesis by setting φn = 1.

Cavaliere showed, under conditions somewhat more general than Assumptions 2.1 and 2.2 above,

that

Sn(·) :=
1√
n

[n·]∑
t=1

ω

(
t

n

)
εt ⇒ λBω(·) (3.1)

as n→∞, where

Bω(r) :=
∫ r

0

ω(s)dB(s),

and B is a standard Brownian motion. The symbol “⇒” denotes weak convergence in the usual

sense. This is Lemma 1 of Cavaliere (2004b). Lemma 3 of Cavaliere is relevant to the more general

case where φn = exp(−c/n) with c ≥ 0; in this case, we have

Sc
n(·) :=

1√
n

[n·]∑
t=1

exp
(
−c [n·]− t

n

)
ω

(
t

n

)
εt ⇒ λJc

ω(·) (3.2)

as n→∞, where

Jc
ω(r) :=

∫ r

0

exp(−c(r − s))ω(s)dB(s) =
∫ r

0

exp(−c(r − s))dBω(s).
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(3.1) and (3.2) generalize the well-known results in Phillips (1987ab), which obtain when ω is

constant.

Using (3.1) and (3.2), it is relatively straightforward to see how the asymptotic behavior of

standard unit root test statistics is affected when ω is nonconstant. Suppose we set zt = 0, and

let Zn denote the coefficient-based test statistic proposed by Phillips (1987a) to test the unit root

hypothesis in the absence of deterministic components. In this case, it can be shown under suitable

technical conditions that

Zn →d

1
2

(
Jc

ω(1)2 − Jc
ω(0)2 − 1

)∫ 1

0
Jc

ω(r)2dr
(3.3)

=
1
2

(
Jc

ω(1)2 − 1
)∫ 1

0
Jc

ω(r)2dr

as n → ∞. This is part of Theorems 1 and 3 in Cavaliere (2004b). When φn = 1, the limiting

distribution in (3.3) in general differs from the Dickey-Fuller distribution that obtains when ω

is constant, and so the actual size of tests based on this statistic may differ from the nominal

size if the usual Dickey-Fuller critical values are used. Analogues to (3.3) can be demonstrated

for various other unit root tests; see Cavaliere (2004b) and Cavaliere and Taylor (2007a). The

general principle is that the Ornstein-Uhlenbeck process Jc appearing in the limiting distribution

of standard test statistics is replaced by the scaled process Jc
ω. When our model for yt includes

deterministic components, the limiting distribution of test statistics that allow for deterministic

components is typically obtained by replacing Jc
ω with the residual from a Hilbert projection of Jc

ω

onto the space spanned by those components. The projection may be orthogonal, as in Phillips

and Perron (1988), or non-orthogonal, as in Schmidt and Phillips (1992), Phillips and Lee (1996)

or Elliott et al. (1996); see also the discussion in Phillips and Xiao (1998), Theorem 2 in Cavaliere

(2004b), and Theorem 1 in Cavaliere and Taylor (2008b). As an example, the limiting distribution

of a Phillips-Perron coefficient-based test statistic using demeaned data is given by replacing Jc
ω(·)

with Jc
ω(·)−

∫ 1

0
Jc

ω(r)dr in (3.3).

Our discussion in this subsection has focused mostly on results due to Cavaliere (2004b). Earlier
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work on this subject includes Hamori and Tokihisa (1997), Kim et al. (2002), and Cavaliere (2004a).

These authors considered the more restrictive case where ω is constant except at a single point of

discontinuity. The results in Cavaliere (2004b) allow ω to be a strictly positive cadlag process

exhibiting a finite number of points of discontinuity, and satisfying a uniform first-order Lipschitz

condition between the discontinuities. This condition is evidently more general than our Assumption

2.1. Other related work includes Boswijk (2001), who studied the behavior of unit root tests when

ω is a near-integrated stochastic process.

3.2 Time-Transformed Tests

In view of the results described in the previous subsection, it would clearly be of interest to

develop new unit root tests whose null asymptotic behavior is unaffected when ω is allowed to be

nonconstant. A class of tests with this property was proposed recently by Cavaliere and Taylor

(2008a). The tests operate by applying a nonparametrically estimated time-transformation to the

data, prior to the application of standard unit root tests. The motivation for this approach derives

from Lemma 2 in Cavaliere (2004b), which states that Bω(·) is distributionally equivalent to B(η(·)),

where

η(r) :=

∫ r

0
ω(s)2ds∫ 1

0
ω(s)2ds

.

Note that η is proportional to the quadratic variation of Bω.

The construction of the time-transformed test statistics proceeds in the following manner. Let

us assume for simplicity that zt = 0, so that there are no deterministic components in the model.

One begins by forming the following nonparametric estimate of η:

η̂n(r) :=
∑[nr]

t=1 (∆xt,n)2 − (nr − [nr])
(
∆x[nr]+1,n

)2∑n
t=1 (∆xt,n)2

,

where ∆xt,n := xt,n − xt−1,n. Minor modifications to this estimator are possible; see Cavaliere

and Taylor (2008a) for details. Assuming that η̂n is strictly increasing, it has a unique inverse,

which we denote by ĝn, and we let g denote the inverse of η. One next forms the time-transformed

series x†t,n := x[ĝn(t/n)n],n, t = 0, . . . , n. Finally, a standard unit root test is applied directly to
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x†t,n. Cavaliere and Taylor (2008a) consider the application of the so called “M unit root tests”

originally proposed by Perron and Ng (1996), Stock (1999) and Ng and Perron (2001), but it is clear

that a much broader range of tests could be applied in this fashion. In general, the null limiting

distribution of the test statistics will be the same as one would expect when ω is constant.

A heuristic explanation for the effectiveness of the time-transformation method runs as follows.

Define S†n(·) := n−1/2x†[n·],n. When φn = 1, we have S†n(·) = Sn (ĝn([n·]/n)). Now, Sn(·) ⇒ λBω(·)

by (3.1), and it is shown by Cavaliere and Taylor (2008a) that, under suitable technical conditions,

ĝn is uniformly consistent for g. Thus, S†n(·) ⇒ λBω(g(·)). Since Bω(·) is distributionally equivalent

toB(η(·)), we now have S†n(·) ⇒ λB(η(g(·))) = λB(·), and so the time-transformed unit root process

x†t,n satisfies a functional central limit theorem of the usual form.

It is possible to adapt the time-transformation method so that it can be applied when our model

contains deterministic components; refer to Cavaliere and Taylor (2008a) for details. When zt = α,

so that only a constant term is included, the time-transformation method continues to yield test

statistics with null limiting distributions that are invariant to ω. Unfortunately, if zt includes a

time trend, the null limiting distributions are no longer pivotal and depend on ω. This property is

shared by the new class of unit root tests we shall introduce in Section 4. Suitable critical values for

the new tests and for the time transformed tests when zt includes a time trend may still be achieved

by simulation conditional on ĝn (in the case of the time-transformed tests) or on a nonparametric

estimate of ω (in the case of the tests proposed here).

3.3 Tests Using Simulated Critical Values

The motivation for the time-transformation method discussed in the previous subsection was

to construct test statistics that achieve standard unit root asymptotics under the null hypothesis,

even when ω is nonconstant. An alternative approach is to construct critical values that may be

used validly with unit root test statistics whose null limiting distributions are not invariant to ω.

This approach is used by Boswijk (2005) and by Cavaliere and Taylor (2007ab, 2008b).

Cavaliere and Taylor (2007a) propose to use the estimated time deformation η̂n to simulate valid

critical values for standard unit root tests. In particular, they consider the M tests mentioned in
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the previous subsection, but it is clear that their approach can be applied to a broader range of

test statistics. For instance, in view of (3.3), critical values for the Phillips (1987a) coefficient-based

test statistic in the absence of deterministic components can be extracted from the quantiles of the

random variable
1
2

(
B(1)2 − 1

)∫ 1

0
B(η̂n(r))2dr

,

which can be simulated conditional on η̂n = η by drawing realizations of B. In view of the uniform

consistency of η̂n and the distributional equivalence of Bω(·) and B(η(·)) (note also that η̂n(1) = 1),

critical values obtained in this fashion lead to tests based on standard statistics that are of the

correct asymptotic size in the presence of nonconstant ω.

Cavaliere and Taylor (2007b, 2008b) consider an alternative approach to simulation involving

the wild bootstrap. Again, their focus is on obtaining critical values for the M tests, but the

approach is more broadly applicable. In the case of the Phillips (1987a) coefficient-based test

absent deterministic components, one begins by forming a bootstrap sample of the form

xb
t,n =

t∑
s=1

ût,nv
b
t

for t = 1, . . . , n, where ût,n are the residuals from a regression of xt,n on xt−1,n, and vb
t are an

independent sequence of standard normal random variables. The initial bootstrap observation xb
0,n

may be set equal to zero. One then computes the bootstrap test statistic Zb
n according to

Zb
n = n

(∑n
t=1 x

b
t−1,nx

b
t,n∑n

t=1

(
xb

t−1,n

)2 − 1

)
.

Note that there is no need to include a correction term for serial dependence in the bootstrap statis-

tic, as the increments in the bootstrap sample are uncorrelated by construction. Asymptotically

valid critical values for the test statistic Zn may be extracted from the quantiles of Zb
n, computed

by drawing a suitably large number of bootstrap samples.

Boswijk (2005) proposes to test the unit root hypothesis using a new statistic based on the

principle of maximum likelihood estimation. When the innovations are assumed to be Gaussian,
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the statistic is formed from a feasible generalized least squares (GLS) estimator of φn. In the

absence of deterministic components, and assuming independence of the innovations εt, Boswijk’s

estimator for φn is given by

φ̂B
n =

∑n
t=1 ω̃n

(
t
n

)−2
xt−1,nxt,n∑n

t=1 ω̃n

(
t
n

)−2
x2

t−1,n

.

Here, ω̃n(t/n) is a nonparametric estimate of ω(t/n) constructed from a one-sided kernel-weighted

average of the squared increments ∆x2
s,n, s = 0, . . . , t− 1. Alternatively, estimation may be based

on the squared residuals from a least squares regression of xt,n on xt−1,n. Drawing on results due to

Hansen (1995), Boswijk shows that, under suitable technical conditions, ω̃n is uniformly consistent,

and the feasible GLS estimator is adaptive in the sense that it achieves the same asymptotic

distribution as the true GLS estimator. That is, we have

n
(
φ̂B

n − 1
)
⇒
∫ 1

0
V c

ω (r)dB(r)∫ 1

0
V c

ω (r)2dr
− c, (3.4)

where

V c
ω (r) =

∫ r

0

exp(−c(r − s))
ω(s)
ω(r)

dB(s).

When c = 0, so that φn = 1, the limiting distribution in (3.4) depends on ω. Asymptotically valid

critical values for testing φn = 1 can be obtained by simulating the limiting distribution in (3.4)

conditional on ω̃n = ω and c = 0.

Finally, we note that Kim et. al. (2002) also proposed a method of testing for a unit root in the

presence of heteroskedasticity, which involved simulating critical values conditional on an estimate

of ω. Their approach required ω to be constant aside from a single point of discontinuity. We

confine our discussion here to tests that are applicable when ω is allowed to vary in a more flexible

manner.
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4 A New Class of Heteroskedasticity-Robust Tests

In this section we propose a new approach to constructing unit root tests that are robust to the

presence of heteroskedasticity. Our approach is similar in spirit to the time-transformation tests of

Cavaliere and Taylor (2008a), in that we seek to transform the data in such a way that the null

limiting distributions of standard unit root test statistics are the same as would be obtained under

homoskedasticity. Rather than apply a time-transformation to the data, we will seek to rescale the

increments of xt,n in such a way that they become approximately homoskedastic.

4.1 Construction of the Tests

We shall assume in this section that zt = α, so that our model potentially contains an intercept,

but no trend term. The extension to deterministic time trends will be considered in Subsection 4.3.

Let ut,n := ω(t/n)εt, and suppose we have a series of estimated residuals ût,n satisfying

sup
1≤t≤n

|ût,n − ut,n| = Op(n−1/2) (4.1)

when φn = exp(−c/n), c ≥ 0. Estimated residuals satisfying (4.1) are rather easy to obtain. One

convenient possibility is to set ût,n = yt,n − yt−1,n. Another is to let ût,n be the residuals from a

regression of yt,n on yt−1,n and a constant. Both choices can easily be shown to satisfy (4.1) using

(3.2).

We can obtain a nonparametric estimate of ω by applying the Nadaraya-Watson estimator to

the squares of our estimated residuals ût,n. For r ∈ [0, 1], define

ω̂n (r) =

∑n
t=1 k

(
t/n−r

hn

)
û2

t,n∑n
t=1 k

(
t/n−r

hn

)
1/2

. (4.2)

Here, k : R → R is a kernel function and hn is a suitably chosen bandwidth. We impose the

following condition on k.

Assumption 4.1 k is continuously differentiable and satisfies
∫
k (x)dx > 0,

∫
|xk (x)|dx < ∞,
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and
∫
|xk′ (x)|dx <∞. The Fourier transform of k, denoted ψ, satisfies

∫
|xψ (x)|dx <∞.

Assumption 4.1 is satisfied by, for instance, the Gaussian kernel. Note that we do not require k

to be one-sided, as does Boswijk (2005). The bandwidth hn is assumed to satisfy the following

condition.

Assumption 4.2 hn → 0 and nh4
n →∞ as n→∞.

Assumption 4.2 is quite strong, and forces the bandwidth hn to shrink at a rate slower than n−1/4.

We use this condition to ensure that the derivative of ω̂n is well behaved. Results pertaining to the

asymptotic behavior of the derivatives of nonparametric function estimates typically require fairly

stringent bandwidth conditions; see e.g. Andrews (1995). In applications, hn could be chosen by

cross-validation (Wong, 1983), or by modified cross-validation (Chu and Marron, 1991) in the case

of serially dependent innovations. Visual inspection of ω̂n for various choices of hn may also be a

pragmatic way to proceed in practice.

The estimated function ω̂n can be used to construct a modified version of yt,n that has approx-

imately homoskedastic differences. Define

y∗t,n =
t∑

s=1

ys,n − ys−1,n

ω̂n

(
s
n

) , t = 1, . . . , n

y∗0,n = 0.

We propose to test for a unit root by applying a standard unit root test to the rescaled series y∗t,n.

For instance, we could apply a Phillips-Perron coefficient-based test to y∗t,n. Our test statistic would

then be

Z∗
n = n

(
φ̂∗n − 1

)
−

1
2

(
λ̂∗2n − σ̂∗2n

)
1

n2

∑n
t=1 y

∗2
t−1,n

, (4.3)

where φ̂∗n is the estimated slope coefficient in a least squares regression of y∗t,n on y∗t−1,n and a
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constant, ε̂t,n are the residuals from that regression, and

σ̂∗2n =
1
n

n∑
t=1

ε̂2t,n,

λ̂∗2n =
n−1∑

j=−n+1

κ

(
j

mn

) 1
n

n∑
t=|j|+1

ε̂t,nε̂t−|j|,n

 .

Here, κ : R → R is another kernel function, and mn is another bandwidth parameter. We introduce

two further technical conditions.

Assumption 4.3 κ is symmetric and satisfies |κ| ≤ 1 and κ(0) = 1, and is continuous at zero and

almost everywhere else. Further, there exists a nonincreasing function l : R → R such that |κ| ≤ |l|

and
∫∞
−∞ |xl(x)|dx <∞.

Assumption 4.4 mn →∞ as n→∞, and mn = o(n1/2−1/r).

Assumptions 4.3 and 4.4 are essentially equivalent to Assumption K of Cavaliere (2004b), taken

from de Jong (2000), who uses the conditions to demonstrate the consistency of long run variance

estimators. Note that the quantity r must be chosen to satisfy Assumption 2.2 above. In practical

applications, the choices of κ and mn could be guided by the discussion in Andrews (1991).

4.2 Asymptotic Properties

In this subsection we discuss the asymptotic properties of unit root test statistics constructed

from the rescaled series y∗t,n. We will show that tests based on y∗t,n will in general achieve standard

null asymptotics; that is, the asymptotics that would obtain if the statistics were computed using a

directly observed, homoskedastic unit root process. Assumptions 2.1, 2.2, 4.1, 4.2, 4.3 and 4.4 are

maintained throughout.

Let us first consider the behavior of our nonparametric volatility estimator ω̂n. Our first pre-

liminary result states that ω̂n is a uniformly consistent estimator of ω.

Lemma 4.1 ω̂n satisfies

sup
r∈[0,1]

|ω̂n (r)− ω (r)| = op (1) .
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The proof of Lemma 4.1, and of all other results in this subsection and the sequel, may be found in

Appendix A. The proof of Lemma 4.1 uses mostly standard techniques, as in e.g. Pagan and Ullah

(1999). Continuity of ω is critical to obtaining uniform consistency.

We next consider the asymptotic behavior of ω̂′n, the derivative of ω̂n. Things here are compli-

cated by the fact that ω̂′n(r) is not consistent for ω′(r) at the endpoints r = 0 and r = 1. (We define

ω′(0) and ω′(1) as the one-sided limits of ω′(r) at r = 0 and r = 1 respectively.) Our next result

concerns the behavior of ω̂′n over a subinterval that is trimmed away from the endpoints r = 0 and

r = 1, but with the amount of trimming vanishing asymptotically.

Lemma 4.2 Let τn be a sequence of small positive numbers satisfying τn → 0 and h−1
n τn → ∞.

Then ω̂′n satisfies

sup
r∈[τn,1−τn]

|ω̂′n (r)− ω′ (r)| = op (1) .

In terms of the uniform behavior of ω̂′n over [0, 1], the best we can do is the following.

Lemma 4.3 ω̂′n satisfies

sup
r∈[0,1]

|ω̂′n (r)− ω′ (r)| = Op (1) .

With Lemmas 4.1-4.3 in hand, we are in a position to develop our asymptotic theory for statistics

based on y∗t,n. For c ≥ 0, define the stochastic process ξc
ω(r), r ∈ [0, 1], by

ξc
ω (r) := B (r)− c

∫ r

0

ω (s)−1
Jc

ω(s)ds. (4.4)

When c = 0, we obviously have ξc
ω = B, a standard Brownian motion. When ω is constant, we

have the following somewhat less obvious result.

Theorem 4.1 When ω is constant, ξc
ω(r) = Jc(r) :=

∫ r

0
exp(−c(r − s))dB(s).
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Theorem 4.1 states that, under homoskedasticity, our process ξc
ω reduces to the Ornstein-Uhlenbeck

process Jc. It is proved using the Fubini-Tonelli theorem and the well-known representation Jc(r) =

B(r)− c
∫ r

0
exp(−c(r − s))B(s)ds, a consequence of Ito’s lemma.

Our main result is as follows.

Theorem 4.2 As n→∞, we have σ̂∗n →p 1, λ̂∗n →p λ, and n−1/2y∗[nr],n ⇒ λξc
ω(r).

Theorem 4.2 establishes consistency of the estimators σ̂∗n and λ̂∗n, and provides a version of the

functional central limit theorem for y∗t,n. It is sufficient to establish the asymptotic behavior of a

variety of unit root test statistics when applied to y∗t,n. For instance, it follows easily from Theorem

4.2 and the continuous mapping theorem that the rescaled Phillips-Perron test statistic Z∗
n defined

in (4.3) satisfies

Z∗
n →d

1
2

(
ξ̃c
ω(1)2 − ξ̃c

ω(0)2 − 1
)

∫ 1

0
ξ̃c
ω(r)2dr

, (4.5)

where ξ̃c
ω is the demeaned process given by

ξ̃c
ω(r) := ξc

ω(r)−
∫ 1

0

ξc
ω(s)ds.

Since ξc
ω = B when c = 0, (4.5) implies that Z∗

n achieves the usual Dickey-Fuller asymptotics

when the null hypothesis of a unit root is true. Furthermore, Theorem 4.1 implies that, when ω is

constant, the process ξ̃c
ω(r) in (4.5) may be replaced with J̃c(r) := Jc(r)−

∫ 1

0
Jc(s)ds, a demeaned

Ornstein-Uhlenbeck process. This yields an important property of Z∗
n: no local power is lost by

applying the Phillips-Perron test to y∗t,n instead of to yt,n when ω is in fact constant. The other

heteroskedasticity-robust tests described in Section 3 also share this property.

When ω is not constant, and c > 0, the limiting distribution of Z∗
n will in general be different

to that of the unmodified Phillips-Perron test statistic. The relative local powers of the two tests

will depend on the form of ω. Some small sample evidence on local power under various choices of

ω will be reported in the following section.

The proof of Theorem 4.2 draws on Lemmas 4.1-4.3, which require strict smoothness conditions

on ω to be true. In fact, under some additional technical conditions, it is possible to show that
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Theorem 4.2 continues to hold when ω and ω′ are subject to a finite number of discontinuities. The

trick here is to modify Lemmas 4.1 and 4.2 so that the supremum over r is taken over a smaller set

An ⊂ [0, 1] that is “trimmed” away from the discontinuities in ω and ω′. By allowing the trimming

to vanish at a suitable rate, one can show that Theorem 4.2 continues to hold. A proof along these

lines is substantially more complicated than the proof under our more strict smoothness conditions,

in rather uninteresting ways, so we do not pursue it here. The small sample simulations reported in

the following section provide ample evidence that the testing procedure proposed here is effective

when ω is discontinuous.

4.3 Extension to Deterministic Time Trends

In this subsection we discuss the construction of unit root test statistics based on rescaled data

when zt = α+βt, so that our model for yt,n includes both a constant term and a linear time trend.

Insofar as the estimation of ω and ω′ is concerned, the presence of a trend raises no new challenges.

Estimated residuals ût,n satisfying (4.1) are easy to obtain. For instance, adopting the approach

to detrending taken by Schmidt and Phillips (1992), which is shown by Phillips and Lee (1996) to

be asymptotically efficient when c = 0, we may set ût,n = yt,n − yt−1,n − n−1(yn,n − y0,n). ω̂n can

then be constructed using ût,n as before, and Lemmas 4.1-4.3 follow in the same way. The rescaled

data y∗t,n are constructed according to

y∗t,n =
t∑

s=1

ys,n − ys−1,n − 1
n (yn,n − y0,n)

ω̂n

(
s
n

) , t = 1, . . . , n (4.6)

y∗0,n = 0.

The following result provides an analogue to Theorem 4.2 for the case of trending data.

Theorem 4.3 As n→∞, σ̂∗n →p 1, λ̂∗n →p λ, and n−1/2y∗[nr],n ⇒ λξc
ω(r)− λJc

ω(1)
∫ r

0
ω(s)−1ds.

Unfortunately, Theorem 4.3 makes it clear that we cannot expect unit root test statistics computed

using y∗t,n to achieve standard Dickey-Fuller null asymptotics when we include a trend term in our
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model. Specifically, when c = 0, we have

1√
n
y∗[nr],n ⇒ λB(r)− λBω(1)

∫ r

0

ω(s)−1ds,

so that the partial sums of y∗t,n do not behave like those of a homoskedastic unit root process in

general. The exception is when ω is constant, in which case n−1/2y∗[nr],n converges weakly to a

Brownian bridge scaled by λ, and standard null asymptotics may be applied. In this respect, our

testing procedure is similar to the time-transformation procedure of Cavaliere and Taylor (2008a),

which yields null asymptotics that are invariant to ω when the model includes only a constant, but

dependent upon ω when the model includes a trend. In principle, we could still construct valid

tests for a unit root using y∗t,n by simulating critical values conditional on our estimated volatility

function ω̂n, but the motivation for our procedure seems somewhat weak in this case.

Theorem 4.3 is specific to the method of detrending employed in our construction of y∗t,n; that

is, the method used by Schmidt and Phillips (1992). Analogous results that apply under different

methods of detrending are easy to establish. In slightly loose terms, if we replace the term n−1(yn,n−

y0,n) in (4.6) with some other slope estimator β̂n, then Theorem 4.3 continues to hold, with the

limiting distribution of n−1/2(β̂n−β) replacing Jc
ω(1). We thus continue to fail to achieve standard

null asymptotics under heteroskedasticity.

5 Small Sample Simulations

In this section, we report the results of a Monte-Carlo simulation used to evaluate the finite

sample properties of our proposed testing procedure, and of the procedures discussed in Section 3.

All computations were carried out using Ox version 5.00, using 10,000 experimental replications. We

make a number of special assumptions: (a) the sample size n is set equal to 100; (b) the innovations

εt are taken to be i.i.d. standard normal random variables; (c) there are no deterministic terms in

the data generating process; (d) all test statistics are based directly on an estimator of φn, allowing

for a constant deterministic term, with no correction for serial dependence; (e) all simulated critical
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values are based on 1000 replications; (f) size calculations are based on a nominal size of 5%, and

power calculations correspond to φn = 1−7/n = 0.93. We confine ourselves to the i.i.d. framework

so as to isolate the effect of heteroskedasticity on the tests, independent of the effect of serial

dependence. Moreover, Boswijk (2005) does not discuss the extension of his test to data exhibiting

serial dependence of general form.

The tests employed in the study are as follows.

DF : The Dickey-Fuller coefficient statistic based on OLS regression of yt,n on yt−1,n and a constant,

compared to the standard asymptotic critical value (i.e., -14.1).

CT : The Dickey-Fuller coefficient statistic based on OLS regression of yt,n on yt−1,n and a constant,

compared to a critical value simulated conditional on the estimated time-transformation η̂n,

as in Cavaliere and Taylor (2007a).

BS : The Dickey-Fuller coefficient statistic based on OLS regression of yt,n on yt−1,n and a constant,

compared to a wild bootstrap critical value, as in Cavaliere and Taylor (2007b, 2008b).

TT : The Dickey-Fuller coefficient statistic based on OLS regression of y†t,n on y†t−1,n and a constant,

compared to the standard asymptotic critical value, as in Cavaliere and Taylor (2008a).

RSh: The Dickey-Fuller coefficient statistic based on OLS regression of y∗t,n on y∗t−1,n and a con-

stant, compared to the standard asymptotic critical value, as described in Section 4.

MLh: The Boswijk coefficient statistic n(φ̂B
n − 1) based on FGLS regression of yt,n on yt−1,n and

a constant, compared to critical values simulated conditional on ω̂n, as in Boswijk (2005).

The subscript h in the RSh and MLh tests refers to the bandwidth used to estimate ω. We

have made one important change to the Boswijk (2005) test: the estimator of ω used to implement

Boswijk’s test is the same as that used to implement the test proposed here - that is, ω̂n defined

above in (4.2). In Boswijk (2005), the suggested estimator is based on a one-sided kernel, whereas

ω̂n as defined in Section 4 is in general based on a two-sided kernel. We do this to facilitate

comparison between the two tests RSh and MLh, and to avoid giving the Boswijk test an unfair
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disadvantage in the form of a less accurate estimate of ω. We use a Gaussian kernel to estimate

ω, and allow the bandwidth h to take the values 0.05, 0.1, 0.2 and 0.4. Unfortunately, automatic

bandwidth selection by cross-validation is computationally infeasible in a simulation of this size. In

(4.2), we set ût,n = yt,n − yt−1,n.

We consider twenty different choices of ω in our simulations. The first nineteen of these are taken

from the simulation reported in Cavaliere and Taylor (2007a), while the last is taken from Boswijk

(2005). Table 1 displays the various choices of ω. (All tables are collected in Appendix B.) Model

1 is homoskedastic; models 2-5 feature a single variance break; models 6-9 feature two variance

breaks; models 10-11 feature a trend in variance; models 12-17 are exponential Brownian motions

or Ornstein-Uhlenbeck processes; and models 18-19 are GARCH(1,1) models. Finally, Model 20 is

an exponential Ornstein-Uhlenbeck process considered by Boswijk (2005), denoted σ3 in his study.

This process is of particular interest, as Boswijk argues that the rescaled test proposed here has

extremely low power when volatility is of this form. Note that, out of all twenty models, only the

homoskedastic model and the two models of trending variance satisfy Assumption 2.1.

Size calculations under a nominal size of 5% are reported in Table 2. There are a few things to

observe here. First, the rejection rates of the DF test are at times well in excess of the nominal 5%

level, exceeding 10% in models 4, 8, 12 and 20, and reaching 25% in model 15. This finding is in

line with numerous earlier studies in the literature. The TT test is substantially undersized, with a

rejection rate below 4% in all twenty models, and below 3% in nine out of twenty models. Rejection

rates for the CT and BS tests are generally close to 5%. The CT test performs particularly well,

achieving a rejection rate between 5% and 6% in all twenty models, while the BS test is mildly

oversized in model 15, with a rejection rate of 8.9%. Rejection rates for the RSh and MLh tests

are, as one would expect, dependent on the bandwidth parameter h. When h is equal to 0.05, the

tests tend to be mildly undersized, with the rejection rate for both tests falling below 4% in five of

the twenty models. When h is equal to 0.1, the rejection rates for both tests are close to the 5%

mark, although there is again some mild overrejection in model 15. When h is equal to 0.2, the size

control of both tests deteriorates somewhat, with rejection rates exceeding 15% in model 15. When

h = 0.4 we observe the most serious size distortion: the RS .4 and ML.4 tests achieve rejection
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rates of 10% or greater in three and five models respectively, and the rejection rate for both tests

exceeds 20% in model 15. This is precisely what we would expect, since substantial oversmoothing

in the estimation of ω causes ω̂n to become approximately flat, so that the behavior of the RSh

and MLh tests approximates that of the DF test.

Size-adjusted power calculations are reported in Table 3. Since the DF , CT and BS tests

are all based on the same test statistic, the three columns are identical. The first thing to note is

that all tests achieve approximately the same size-adjusted power in model 1, the homoskedastic

model. This reflects the fact that the heteroskedasticity robust tests achieve the same local power

as the DF test under homoskedasticity, as discussed in Section 4. The TT test fares rather poorly

in general, achieving the lowest size-adjusted power in eight of the twenty models, or in twelve

of the twenty models if we exclude the RSh and MLh tests when h 6= 0.1. Its performance is

particularly bad in models 2, 3, 6, 7 and 11, and is even worse in view of the substantial undersizing

exhibited in Table 2. The low power of the TT test should not be surprising given the nature of its

construction: the time-transformation operates by sampling observations more frequently in times

of high volatility, and less frequently in times of low volatility. This leads to a kind of “reverse

GLS” effect, and consequently low power.

The size-adjusted powers of the DF/CT/BS test and the RS .1 and ML.1 tests tend to be

fairly close. The ML.1 test achieves the highest or equal highest size-adjusted power in twelve of

the twenty models, while the RS .1 test achieves the highest or equal highest size adjusted power

in eight of the models. The DF/CT/BS test achieves the highest size-adjusted power in only

one model. However, the CT and BS tests have the advantage of not requiring the selection of a

bandwidth parameter. Table 3 shows that the size-adjusted power of the RSh test can be reduced

somewhat if h is chosen too small.

Some broad conclusions to be drawn from these results are as follows: (a) the DF test should

be avoided in situations of potentially unstable volatility, due to its tendency to overreject when

the null is true; (b) the TT test does relatively poorly compared to the other tests in terms of

finite sample power, and is undersized in finite samples; (c) the empirical size of the CT and BS

tests is close to the nominal size; (d) the empirical size of the RSh and BSh tests is close to the
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nominal size if h is chosen suitably, but the tests may overreject if h is too large; (e) the RSh and

MLh tests may enjoy a mild size-adjusted power advantage over the CT and BS tests, but this is

balanced by the fact that no bandwidth selection is required to implement the CT and BS tests.

Although only 3 of the 20 volatility models satisfy Assumption 2.1, the results in Tables 2-4

indicate that the rescaled unit root test we have proposed in this paper tends to perform well under

much broader conditions. In particular, discontinuities in ω do not seem to present a problem.

Perhaps most surprising is the performance of our test in model 20, and in the other models

of integrated or near-integrated stochastic volatility. Boswijk (2005) presents simulation evidence

indicating that, if ω were known and used in place of ω̂n to construct our rescaled test statistic, then

the local power of our test under model 20 stays approximately constant at 5% as c increases. Yet in

the simulation reported here, our test achieves power in excess of 20% with only 100 observations,

provided that h is 0.1 or greater. A possible explanation for this apparent contradiction is that

our test is not adaptive when ω is nondifferentiable. It would seem that this failure of adaptivity

actually leads to an increase in power in certain circumstances - perhaps by smoothing away the

nondifferentiability of ω. This conjecture is supported by the fact that the size-adjusted power of

our test in model 20 drops markedly when h is equal to 0.05.

6 Conclusion

In this paper we have proposed an approach to unit root testing that works effectively in the

presence of unstable volatility. Finite sample simulations indicate that our test performs quite well

relative to existing tests of this sort. Moreover, when working with a model without a deterministic

trend, our tests are convenient in that they require the usual critical values that apply under

homoskedasticity.
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A Mathematical Appendix

Proof of Lemma 4.1 Begin by writing

ω̂n (r)2 = νn (r) + ηn (r) ,

where

νn (r) =

∑n
t=1 k

(
t−nr
nhn

)
ω
(

t
n

)2
ε2t∑n

t=1 k
(

t−nr
nhn

) ,

ηn (r) =

∑n
t=1 k

(
t−nr
nhn

) (
û2

t,n − u2
t,n

)
∑n

t=1 k
(

t−nr
nhn

) .

It suffices for us to verify the following three statements:

E sup
r∈[0,1]

|νn (r)− Eνn (r)| = O

(
1√
nhn

)
(A.1)

sup
r∈[0,1]

∣∣∣Eνn (r)− ω (r)2
∣∣∣ = O(hn) (A.2)

sup
r∈[0,1]

|ηn (r)| = Op

(
1√
nhn

)
. (A.3)

(A.1) can be demonstrated using Fourier methods, as in the proof of uniform consistency of

Nadaraya-Watson estimators under mixing conditions (see e.g. Pagan and Ullah, 1999, pp. 36-

39, 44-47). (A.2) can be proved using simple arguments relating to the approximation of integrals

by discrete sums, and a mean value expansion. To see that (A.3) holds, observe that

ηn (r) = −
1

nhn

∑n
t=1 k

(
t−nr
nhn

)
(ût,n + ut,n) (ût,n − ut,n)

1
nhn

∑n
t=1 k

(
t−nr
nhn

) . (A.4)
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We need only show that the numerator in (A.4) is uniformly Op

(
1√
nhn

)
. Boundedness of k and

(4.1) yield

sup
r∈[0,1]

∣∣∣∣∣ 1
nhn

n∑
t=1

k

(
t− nr

nhn

)
(ût,n + ut,n) (ût,n − ut,n)

∣∣∣∣∣ = Op

(
1√
nhn

)
· 1
n

n∑
t=1

|ût,n + ut,n|

= Op

(
1√
nhn

)
· 1
n

n∑
t=1

|εt|+Op

(
1
nhn

)
.

A law of large numbers for mixing sequences ensures that 1
n

∑n
t=1 |εt| = Op(1). It follows that the

numerator in (A.1) is uniformly Op

(
1√
nhn

)
. �

Proof of Lemma 4.2 Observe that

ω̂′n (r)− ω′ (r) =
d
dr ω̂n (r)2

2ω̂n
−

d
drω (r)2

2ω

=
ω (r)

(
d
dr ω̂n (r)2 − d

drω (r)2
)
− d

drω (r)2 (ω̂n (r)− ω (r))

2ω̂n (r)ω (r)
.

In view of Lemma 4.1, it suffices for us to show that supr∈[τn,1−τn]

∣∣∣ d
dr ω̂n (r)2 − d

drω (r)2
∣∣∣ = op(1).

This will be true under the following three conditions:

E sup
r∈[0,1]

|ν′n (r)− Eν′n (r)| = O

(
1√
nh2

n

)
(A.5)

sup
r∈[τ,1−τ ]

∣∣∣∣Eν′n (r)− d
dr
ω (r)2

∣∣∣∣ = o(1) (A.6)

sup
r∈[0,1]

|η′n (r)| = Op

(
1√
nh2

n

)
. (A.7)

(A.5) and (A.7) can be proved using minor variations on the arguments used to prove (A.1) and

(A.3) respectively. It remains to prove (A.6). Begin by writing

Eν′n(r) =
Eνn (r) 1

nh2
n

∑n
t=1 k

′
(

t−nr
nhn

)
− 1

nh2
n

∑n
t=1 k

′
(

t−nr
nhn

)
ω
(

t
n

)2
1

nhn

∑n
t=1 k

(
t−nr
nhn

) . (A.8)
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Using (A.2) and simple arguments relating to the approximation of integrals by discrete sums, it

can be shown that the first term in the numerator of (A.8) satisfies

sup
r∈[τn,1−τn]

∣∣∣∣∣Eνn (r)
1
nh2

n

n∑
t=1

k′
(
t− nr

nhn

)
− ω (r)2

1
hn

(
k

(
1− r

hn

)
− k

(
−r
hn

))∣∣∣∣∣
= O

(
sup

r∈[τn,1−τn]

∣∣∣∣k(1− r

hn

)∣∣∣∣+ sup
r∈[τn,1−τn]

∣∣∣∣k(−rhn

)∣∣∣∣
)

+ o (1) . (A.9)

Integration by parts and the mean value theorem can be used to show that the second term in the

numerator of (A.8) satisfies

sup
r∈[τn,1−τn]

∣∣∣∣∣ 1
nh2

n

n∑
t=1

k′
(
t− nr

nhn

)
ω

(
t

n

)2

−
(

d
dr
ωn (r)2

)
1
nhn

n∑
t=1

k

(
t− nr

nhn

)
− 1
hn

(
k

(
1− r

hn

)
ω(1)2 − k

(
−r
hn

)
ω(0)2

)∣∣∣∣ = o(1).

(A.10)

Combining (A.8), (A.9) and (A.10), and applying the mean value theorem, we obtain

sup
r∈[τn,1−τn]

∣∣∣∣Eν′n (r)− d
dr
ω (r)2

∣∣∣∣
= O

(
sup

r∈[τn,1−τn]

∣∣∣∣k(1− r

hn

)
ω(r)2 − ω(1)2

hn
− k

(
−r
hn

)
ω(r)2 − ω(0)2

hn

∣∣∣∣
)

+O

(
sup

r∈[τn,1−τn]

∣∣∣∣k(1− r

hn

)∣∣∣∣
)

+O

(
sup

r∈[τn,1−τn]

∣∣∣∣k(−rhn

)∣∣∣∣
)

+ o(1)

= O

(
sup

r∈[τn,1−τn]

∣∣∣∣1− r

hn
k

(
1− r

hn

)∣∣∣∣
)

+O

(
sup

r∈[τn,1−τn]

∣∣∣∣−rhn
k

(
−r
hn

)∣∣∣∣
)

+O

(
sup

r∈[τn,1−τn]

∣∣∣∣k(1− r

hn

)∣∣∣∣
)

+O

(
sup

r∈[τn,1−τn]

∣∣∣∣k(−rhn

)∣∣∣∣
)

+ o(1).

Since xk(x) → 0 as |x| → ∞, this proves (A.6). �

Proof of Lemma 4.3 In view of (A.5) and (A.7), we need only show that

supr∈[0,1]

∣∣∣Eν′n (r)− d
drω (r)2

∣∣∣ = O(1). This may be proved in the same way as (A.6), except
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we observe that supr∈[0,1]
r

hn
k
(

r
hn

)
= O(1) and supr∈[0,1] k

(
r

hn

)
= O(1). �

Proof of Theorem 4.1 It suffices for us to show that

−c
∫ r

0

Jc(s)ds = Jc(r)−B(r).

Begin by using the representation Jc(r) = B(r)− c
∫ r

0
exp(−c(r − s))B(s)ds to write

−c
∫ r

0

Jc(s)ds = −c
∫ r

0

B(s)ds+ c2
∫ r

0

(∫ s

0

exp(−c(s− u))B(u)du
)

ds.

Applying the Fubini-Tonelli theorem, we have

−c
∫ r

0

Jc(s)ds = −c
∫ r

0

B(s)ds+ c2
∫ r

0

(∫ r

u

exp(−c(s− u))ds
)
B(u)du

= −c
∫ r

0

exp(−c(r − u))B(u)du.

Another application of Jc(r) = B(r)− c
∫ r

0
exp(−c(r − s))B(s)ds completes the proof. �

Proof of Theorem 4.2 We first prove n−1/2y∗[nr],n ⇒ λξc
ω(r). Using summation by parts, it

can be shown that

n−1/2y∗[nr],n =
1√
n

[nr]∑
t=1

ω̂n

(
t

n

)−1

(xt,n − xt−1,n)

=
ω
(

[nr]
n

)
ω̂n

(
[nr]
n

)
 1√

n

[nr]∑
t=1

εt

+
[nr]∑
t=1

(
ω
(

t
n

)
ω̂n

(
t
n

) − ω
(

t−1
n

)
ω̂n

(
t−1
n

))( 1√
n

t−1∑
s=1

εs

)

+
(
exp

(
− c
n

)
− 1
) [nr]∑

t=1

ω̂n

(
t

n

)−1 (
n−1/2xt−1,n

)
. (A.11)
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Using (3.2), Lemma 4.1, the continuous mapping theorem, and the approximation exp
(
− c

n

)
=

1− c
n +O

(
1

n2

)
, we have

(
exp

(
− c
n

)
− 1
) [nr]∑

t=1

ω̂n

(
t

n

)−1 (
n−1/2xt−1,n

)
⇒ −cλ

∫ r

0

ω (s)−1
Jc

ω(s)ds.

Lemma 4.1 and an FCLT for mixing sequences imply that

ω
(

[nr]
n

)
ω̂n

(
[nr]
n

)
 1√

n

[nr]∑
t=1

εt

⇒ λB (r) .

It remains to show that the second term on the right-hand side of (A.11) is uniformly op(1). Using

the mean value theorem, we have

sup
r∈[0,1]

∣∣∣∣∣∣
[nr]∑
t=1

(
ω
(

t
n

)
ω̂n

(
t
n

) − ω
(

t−1
n

)
ω̂n

(
t−1
n

))( 1√
n

t−1∑
s=1

εs

)∣∣∣∣∣∣
≤

n∑
t=1

∣∣∣∣∣ ω
(

t
n

)
ω̂n

(
t
n

) − ω
(

t−1
n

)
ω̂n

(
t−1
n

) ∣∣∣∣∣
∣∣∣∣∣ 1√
n

t−1∑
s=1

εs

∣∣∣∣∣
≤ Bn (τ)Cn (1, n) +Bn (0)Cn (1, [nτn] + 1) +Bn (0)Cn ([n (1− τn)] + 1, n) , (A.12)

where

Bn (a) = sup
r∈[a,1−a]

∣∣∣∣∣ω′ (r) ω̂n (r)− ω̂′n (r)ω (r)
ω̂n (r)2

∣∣∣∣∣ ,
Cn (a, b) =

1
n

b∑
t=a

∣∣∣∣∣ 1√
n

t−1∑
s=1

εs

∣∣∣∣∣ ,
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and where τn is chosen as in the statement of Lemma 4.2. An FCLT for mixing sequences and the

continuous mapping theorem imply that

Cn (1, n) = Op (1)

Cn (1, [nτn] + 1) = op (1)

Cn ([n (1− τn)] + 1, n) = op (1) .

From Lemma 4.1, Lemma 4.2 and Lemma 4.3, we have

Bn (0) = Op (1)

Bn (τn) = op (1) .

It follows from (A.12) that

sup
r∈[0,1]

∣∣∣∣∣∣
[nr]∑
t=1

(
ω
(

t
n

)
ω̂n

(
t
n

) − ω
(

t−1
n

)
ω̂n

(
t−1
n

))( 1√
n

t−1∑
s=1

εs

)∣∣∣∣∣∣ = op (1) .

This proves n−1/2y∗[nr],n ⇒ λξc
ω(r). σ̂∗n →p 1 can be proved easily using (3.2), Lemma 4.1 above,

and a LLN for mixing sequences. λ̂∗n →p λ can be proved in a relatively straightforward fashion by

using Lemma 4.1 and the fact that n−1/2y∗[nr],n ⇒ λξc
ω(r) to show that

λ̂∗2n =
n−1∑

j=−n+1

κ

(
j

mn

) 1
n

n∑
t=|j|+1

εt,nεt−|j|,n

+ op(1),

and then appealing to Theorem 2 of de Jong (2000). �

Proof of Theorem 4.3 In view of Theorem 4.2, it suffices for us to show that

1√
n

[nr]∑
t=1

1
n (yn,n − y0,n)− β

ω̂n

(
t
n

) ⇒ λJc
ω(1)

∫ r

0

ω(s)−1ds.
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It is easy to see that

1√
n

[nr]∑
t=1

1
n (yn,n − y0,n)− β

ω̂n

(
t
n

) =
1√
n

[nr]∑
t=1

1
n (xn,n − x0,n)

ω̂n

(
t
n

)
=

(
1√
n
xn,n +Op

(
1√
n

))
1
n

[nr]∑
t=1

ω̂n

(
t

n

)−1

.

Our desired result now follows from (3.2), the continuous mapping theorem, and Lemma 4.1. �
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B Tables

Table 1: Models of heteroskedasticity considered in Tables 2-3

Model Volatility Function

1 ω (r) = 1

2 ω (r) = 1 {r < 0.2}+ 3 {r ≥ 0.2}

3 ω (r) = 1 {r < 0.8}+ 3 {r ≥ 0.8}

4 ω (r) = 1 {r < 0.2}+ 1
3 {r ≥ 0.2}

5 ω (r) = 1 {r < 0.8}+ 1
3 {r ≥ 0.8}

6 ω (r) = 1 {r < 0.1}+ 3 (0.1 ≤ r < 0.9) + 1 {r ≥ 0.9}

7 ω (r) = 1 {r < 0.4}+ 3 {0.4 ≤ r < 0.6}+ 1 {r ≥ 0.6}

8 ω (r) = 1 {r < 0.1}+ 1
3 {0.1 ≤ r < 0.9}+ 1 {r ≥ 0.9}

9 ω (r) = 1 {r < 0.4}+ 1
3 {0.4 ≤ r < 0.6}+ 1 {r ≥ 0.6}

10 ω (r) = 1− 2
3r

11 ω (r) = 1 + 2r

12 ω (r) = exp (2B (r))

13 ω (r) = exp
(
2J10 (r)

)
14 ω (r) = exp

(
2J20 (r)

)
15 ω (r) = exp (4.5B (r))

16 ω (r) = exp
(
4.5J10 (r)

)
17 ω (r) = exp

(
4.5J20 (r)

)
18 ω (t/n)2 = 0.5 + 0.1ω ((t− 1) /n)2 ε2t−1 + 0.4ω ((t− 1) /n)2, ω (1/n) = 1

19 ω (t/n)2 = 0.1 + 0.1ω ((t− 1) /n)2 ε2t−1 + 0.8ω ((t− 1) /n)2, ω (1/n) = 1

20 ω (r) = exp
(
5J10 (r)

)
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Table 2: Size

Model DF CT BS TT RS .05 RS .1 RS .2 RS .4 ML.05 ML.1 ML.2 ML.4

1 4.6 5.4 5.3 3.2 4.0 4.1 4.3 4.5 4.2 4.7 5.0 5.1

2 4.1 5.8 5.5 3.2 4.0 4.1 4.0 4.0 4.6 4.8 4.5 4.5

3 8.3 5.7 5.8 2.7 3.8 4.4 5.3 6.5 4.4 5.1 6.1 7.3

4 14.7 5.2 6.4 2.7 3.9 4.6 5.7 9.0 3.9 4.6 6.4 10.3

5 5.4 5.4 5.6 3.1 3.9 4.2 4.8 5.1 4.5 5.0 5.5 5.7

6 3.5 5.6 5.4 3.1 3.4 3.3 3.4 3.5 4.0 3.8 3.9 4.0

7 6.9 5.9 5.8 2.4 4.1 4.8 5.9 6.7 4.5 5.2 6.6 7.5

8 15.1 5.2 6.6 3.1 4.2 5.5 8.1 12.5 4.5 6.3 9.5 14.2

9 5.6 5.4 5.4 3.2 4.1 4.5 5.0 5.3 4.1 4.9 5.7 6.2

10 7.0 5.2 5.5 3.2 4.0 4.3 4.8 5.5 4.3 4.9 5.5 6.4

11 4.5 5.7 5.5 3.5 3.9 3.8 3.9 4.1 4.3 4.6 4.7 4.7

12 13.1 5.5 6.2 2.6 4.5 5.2 7.5 10.3 4.4 5.6 8.2 11.5

13 6.0 5.7 5.8 2.9 4.1 4.6 5.1 5.6 4.3 5.1 5.7 6.3

14 5.2 5.7 5.5 3.0 4.2 4.3 4.6 4.9 4.3 5.0 5.4 5.8

15 25.0 5.7 8.9 2.8 4.9 8.6 16.8 22.3 3.5 7.6 16.6 23.1

16 9.7 5.8 6.1 2.0 4.6 5.2 7.0 8.4 3.5 5.2 7.5 9.4

17 7.0 5.6 5.6 2.1 4.3 4.7 5.5 6.5 3.6 4.8 6.0 7.2

18 4.8 5.4 5.4 3.3 4.1 4.2 4.4 4.7 4.3 4.9 5.2 5.4

19 5.3 5.7 5.7 3.5 4.2 4.5 4.8 5.2 4.6 5.2 5.6 5.8

20 10.5 5.6 6.2 1.7 4.5 5.6 7.2 9.0 3.4 5.3 8.1 10.0
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Table 3: Size-adjusted power

Model DF CT BS TT RS .05 RS .1 RS .2 RS .4 ML.05 ML.1 ML.2 ML.4

1 28.3 28.3 28.3 28.5 27.9 28.8 28.9 28.5 28.8 28.5 28.6 28.4

2 32.0 32.0 32.0 23.1 32.8 32.9 32.7 32.7 34.5 35.0 33.4 32.8

3 25.2 25.2 25.2 14.5 27.1 27.3 27.0 26.7 27.9 27.4 26.9 26.7

4 15.3 15.3 15.3 15.6 14.6 15.9 17.2 16.5 18.0 18.0 17.9 16.5

5 26.2 26.2 26.2 26.4 25.2 27.6 27.3 26.8 26.8 26.8 26.8 26.5

6 35.2 35.2 35.2 25.4 35.6 37.2 36.4 35.4 41.1 38.7 37.2 35.8

7 27.7 27.7 27.7 16.9 23.0 27.8 30.3 28.2 33.5 33.4 30.9 28.2

8 14.8 14.8 14.8 16.1 14.3 15.2 14.8 14.8 15.4 15.5 15.5 14.7

9 25.4 25.4 25.4 25.0 20.7 23.8 24.4 25.5 25.8 25.3 24.7 25.4

10 22.9 22.9 22.9 24.5 22.9 23.0 22.7 23.2 23.2 22.9 22.6 23.0

11 30.0 30.0 30.0 21.3 31.5 33.1 32.8 31.2 32.9 32.8 32.6 31.5

12 14.1 14.1 14.1 16.1 18.5 20.1 18.6 16.5 19.4 18.1 17.1 16.1

13 25.5 25.5 25.5 22.9 23.3 26.0 26.3 25.8 27.0 26.3 26.3 25.6

14 26.9 26.9 26.9 25.9 25.4 27.0 27.4 27.4 27.4 27.0 27.3 27.4

15 6.5 6.5 6.5 11.0 9.1 10.5 8.2 7.3 9.2 8.8 7.1 7.3

16 21.3 21.3 21.3 19.8 14.6 21.1 23.1 23.0 29.3 24.7 23.4 23.0

17 25.0 25.0 25.0 24.3 19.3 24.6 25.6 25.4 30.1 26.9 26.4 25.5

18 28.0 28.0 28.0 26.7 27.2 28.3 28.2 27.9 28.8 27.8 28.2 28.0

19 26.5 26.5 26.5 24.5 26.6 26.9 26.9 26.3 27.0 27.0 26.5 26.4

20 20.3 20.3 20.3 20.1 12.9 20.3 21.6 21.8 29.3 24.3 22.6 21.7
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