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Abstract

The size of adverse selection and moral hazard effects in health insurance markets
has important policy implications. For example, if adverse selection effects are small
while moral hazard effects are large, conventional remedies for inefficiencies created
by adverse selection (e.g., mandatory insurance enrolment) may lead to substantial
increases in health care spending. Unfortunately, there is no consensus on the mag-
nitudes of adverse selection vs. moral hazard. This paper sheds new light on this
important topic by studying the US Medigap (supplemental) health insurance market.
While both adverse selection and moral hazard effects of Medigap have been studied
separately, this is the first paper to estimate both in an unified econometric framework.

We develop an econometric model of insurance demand and health care expenditure,
where adverse selection is measured by sensitivity of insurance demand to expected
expenditure. The model allows for correlation between unobserved determinants of
expenditure and insurance demand, and for heterogeneity in the size of moral hazard
effects. Inference relies on an MCMC algorithm with data augmentation. Our results
suggest there is adverse selection into Medigap, but the effect is small. A one standard
deviation increase in expenditure risk raises the probability of insurance purchase by
0.037. In contrast, our estimate of the moral hazard effect is much larger. On average,
Medigap coverage increases health care expenditure by 32%.
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1 Introduction

This paper studies adverse selection and moral hazard in the US Medigap health insurance

market. Medigap is a collection of supplementary insurance plans sold by private companies

to cover gaps in Medicare, the primary social insurance program providing health insurance

coverage to senior citizens. While both the adverse selection and moral hazard effects of

Medigap have been studied separately, this is the first paper to estimate both the selection

and moral hazard effects of Medigap in an unified econometric framework.

One of the advantages of the Medigap market for studying adverse selection (a propensity

of individuals with higher risk to purchase more coverage) is that it is relatively easy to

identify what information about health expenditure risk is private to individuals. Because

insurers can only price Medigap policies based on age, gender, state of residence and smoking

status, expenditure risk due to other factors, including health status, can be considered

private information of individuals for the purposes of the analysis.

The existence of private information is central to the analysis of insurance markets.

Rothschild and Stiglitz (1976) show that if individuals have private information about their

risk type, the competitive equilibrium (if it exists) is not efficient: adverse selection drives up

premiums, so low-risk individuals remain underinsured. This suggests there may be scope for

government intervention in insurance markets (e.g. mandatory social insurance financed by

taxation). But the functioning of insurance markets can also be distorted by moral hazard,

which is another type of informational asymmetry (Arrow (1963), Pauly (1968)). Moral

hazard arises if ex-post risk of insured individuals is higher than the ex-ante risk. This

occurs if insurance decreases incentives to avoid risky outcomes (or increases health care

utilization conditional on health outcomes), by lowering health care costs to the insured.

Both adverse selection and moral hazard manifest themselves in a positive relationship

between ex-post realization of risk and insurance coverage (Chiappori and Salanie (2000)).
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But from a policy point of view the distinction between the two is very important. The same

policies that can deal with adverse selection (e.g. mandatory enrolment) can lead to greatly

increased aggregate health care costs if the moral hazard effect is strong.

Unfortunately, it is very challenging to isolate adverse selection and moral hazard empir-

ically. While there are a large number of studies that examine these two effects in isolation,

only a few attempt to address selection and moral hazard in the health insurance context in

a unifying framework. Cutler and Zeckhauser (2000) review the literature that focuses on

selection in health insurance markets and conclude that most studies find evidence in favour

of adverse selection. These studies frequently utilize data from employers who offer different

insurance plans to their employees, and examine risks across plans with different generosity.

There is also empirical evidence that points to the importance of moral hazard. For example,

Manning et al. (1987) use data from the RAND Health Insurance Experiment and find that

individuals who were randomly given more generous plans had higher health care expendi-

ture. Chiappori et al. (1998) document that an exogenous change in the generosity of health

insurance coverage in France had an effect on some categories of health care expenditure. A

large number of studies estimate substantial moral hazard effects of insurance on utilization

of health care by employing parametric multiple equation models with exclusion restrictions

(e.g., Munkin and Trivedi (2008, 2010), Deb et al. (2006)).

Only a couple of papers have estimated selection and moral hazard effects within a

single structural model of health insurance choice and demand for health care. Cardon

and Hendel (2001) was the first paper to adopt this approach. Using data from National

Medical Expenditure survey, they find evidence of little adverse selection but of substantial

moral hazard. But to estimate their model they rely on the restrictive assumption that

the insurance choice set faced by an individual is exogenous. They also assume that the

health shocks are lognormal. In contrast, recent papers by Bajari et al. (2011a,b) develop

a semiparametric method for inference in a structural model of health insurance and health
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expenditure choice. They find evidence of substantial moral hazard and adverse selection

in the HRS and in the insurance claims data from a large self-insured employer. However,

while Bajari et al. (2011a,b) are flexible with respect to the distribution of expenditure risk,

their framework is restrictive in that it does not allow for heterogeneity in risk preferences,

or correlation of risk preferences with expenditure risk. Such features have been found to

be important for explaining data regularities in several insurance markets (e.g., Fang et

al. (2008), Finkelstein and McGarry (2006)). An extensive review of empirical studies of

selection and moral hazard effects in other insurance markets is given in Cohen and Siegelman

(2010).

We now consider prior work on the Medigap market in particular. The difficulty of dis-

entangling selection and moral hazard effects empirically may be why existing studies of the

Medigap market do not agree on their magnitudes. For example, Wolfe and Goddeeris (1991)

find evidence of adverse selection and moral hazard in their 1977-1979 sample of Retirement

History Survey respondents. In particular, they find that a one standard deviation health

expenditure shock (i.e. the expenditure residual left after controlling for self-assessed health,

disability, wealth and demographics) increases the probability of supplemental insurance by

3.3 percentage points in the first year, and by a further 7.8 percentage points in the following

year. They also find that the moral hazard effect of supplemental insurance is a 37% increase

in expenditure on hospital and physician services. Ettner (1997) also finds both adverse se-

lection and moral hazard using the 1991 Medicare Current Beneficiary Survey (MCBS). In

particular, she finds that total Medicare reimbursements of seniors who purchased Medigap

plans independently were about 500 dollars higher than of those who received Medigap cover-

age through an employer. Assuming the former is a more selected group, this implies adverse

selection. She also reported moral hazard effects of 10% and 28% of average total Medicare

reimbursements for plans with lower and higher generosity of coverage, respectively. On the

other hand, Hurd and McGarry (1997) find that the higher health care use by individuals
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with supplemental insurance in their 1993-1994 Asset and Health Dynamic Survey sample

is mostly due to moral hazard, not adverse selection. Importantly, these studies only test

for the presence of the adverse selection, rather than attempting to fully quantify it’s effect.

Recently, Fang, Keane and Silverman (2008) (FKS) document advantageous selection

into Medigap insurance. That is, seniors who purchase Medigap are (on average) in better

health than those who have only Medicare. This finding contradicts the predictions of classic

asymmetric information models of insurance markets (e.g. Rothschild and Stiglitz (1976)).

These models predict that when individuals have private information about their risk type,

the riskier types should be more likely to purchase insurance. But advantageous selection

can arise if people are heterogeneous on dimensions other than risk type, and there exist

unobservables that are positively correlated with both health and demand for insurance.

Potential sources of advantageous selection (henceforth “SAS” variables for short) proposed

by FKS include risk tolerance, income, education, the variance of health care expenditure,

the interaction of risk tolerance and the variance of expenditure, financial planning horizon,

longevity expectations and cognitive ability.

To test if these SAS variables explain advantageous selection, FKS first estimate an insur-

ance demand equation that includes only pricing variables and expenditure risk. This yields

the puzzling negative coefficient on expenditure. They then include the SAS variables, and

test if the expenditure coefficient turns positive. To carry out such an analysis, one would

ideally need a dataset which simultaneously contains information on health expenditure,

insurance status and SAS variables for all respondents. However, as FKS point out, such

a dataset does not exist. Instead, the following two datasets are available: the Medicare

Current Beneficiary Survey (MCBS) which has information on health care expenditure and

Medigap insurance status, but no information on risk tolerance or other SAS variables; and

the Health and Retirement Study (HRS), which has information on a number of potential

SAS variables as well as Medigap insurance status, but no information on health care ex-
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penditure. Both datasets have detailed demographic and health status characteristics. The

empirical strategy of FKS is to first estimate the relationship between expenditure and de-

mographic and health status characteristics using the MCBS. They then use the estimated

relationship to predict expected health care expenditure in the Medicare only state for HRS

respondents. This is their measure of health expenditure risk (in the absence of supplemen-

tal coverage). FKS then investigate how the relationship between Medigap insurance status

and expenditure risk changes as potential sources of advantageous selection are added to the

model.

FKS find that as more SAS variables are added to the insurance demand model, the

relationship between Medigap status and expenditure risk turns from negative to positive.

Thus, among individuals who are similar in terms of the SAS variables, it is indeed the less

healthy who are more likely to buy Medigap insurance. This is just as classical asymmetric

information models predict. Cognitive ability and income are found to be the most important

SAS variables. Interestingly, risk tolerance was not very important - it affected demand but

was not correlated with expenditure risk.1

The main limitation of FKS’s analysis of adverse selection is they did not account for

possibly non-random (conditional on observables) selection into insurance when estimating

the prediction model for expenditure risk. To obtain the prediction equation for health

expenditure, FKS estimate the following model by OLS using the MCBS:

Ei = Hiβ + γIi + εi, (1)

where Ei is expenditure, Hi is a vector of health measures and demographic characteristics,

1FKS propose three channels through which cognitive ability can affect demand for insurance: individuals
with higher cognitive ability (i) may better understand the rules of Medicare and the costs and benefits of
purchasing supplemental insurance; (ii) may have lower search costs; (iii) may be more aware of future health
care expenditure risks. FKS also provide a brief discussion of informational policy interventions that might
increase insurance coverage of high risk individuals in each of the three cases.
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Ii is an indicator for Medigap coverage, and γ is the moral hazard effect of Medigap. Then,

for HRS respondents, they predict total expected expenditure in the Medicare only state as

follows:

Êi = Hiβ̂.

They use Êi as their measure of expenditure risk, and estimate the model for health insurance

status in the HRS as:

Ii = α0Êi + Piα2 + SASiα3 + ηi. (2)

Here Pi is a vector of variables that affect the price of Medigap insurance.2 The degree of

selection is captured by the sensitivity of insurance demand to expenditure risk, conditional

on other variables (i.e. α0 in equation 2).3 However if εi is correlated with the insurance

indicator Ii, then Êi is an inconsistent estimate of expected total health expenditure in the

Medicare only state, γ̂ is an inconsistent estimate of the moral hazard effect, and estimates

of α are inconsistent as well.

For example, if Ii and εi are negatively correlated (i.e. individuals with better unobserved

health are more likely to buy insurance), the regression (1) will underestimate γ, and Êi will

overestimate the expected health care expenditure (in the Medicare only state) for individuals

who actually have Medigap supplemental insurance. This will cause FKS to overstate the

degree of advantageous selection (α0 in model (2)), and to exaggerate the ability of the

proposed SAS variables to explain the advantageous selection in the Medigap market.4

2Equation (2) can be interpreted as an insurance demand equation, in which Êi is a measure of person’s
risk level. As Medicare only covers about 45% of costs, viewing expected total expenditure in the Medicare
only state (of which one would have to cover 55% on average with supplementary insurance) as a measure of
expenditure risk seems plausible. The implicit assumption here is that people can’t predict if they are likely
to need treatment that has a lower or higher coverage rate by Medicare.

3Note that in Medigap there may exist both selection on unobservables and selection on observables,
because there are observables that insurance companies cannot legally price on (e.g., health status charac-
teristics, race, etc.).

4Suppose there are individuals of low and high risk types, whose expenditure risk is equal to 1 and
5 thousand dollars, respectively. Also suppose that there is advantageous selection, i.e. each additional
thousand dollars in risk decreases probability of supplemental insurance coverage by α. A random sample
from this population is available, in which the proportions of uninsured and insured individuals are p0 and
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Unlike FKS, in this project we address the possibility of non-random selection into Medi-

gap by explicitly modelling correlation between Ii and εi within a comprehensive model of

demand for health insurance and health care expenditure. Our model for insurance demand

and health care expenditure is a simultaneous equations model given by (1) and (2), where

the parameters of interest (the selection and moral hazard effects) are identified via cross-

equation exclusion restrictions. The key restrictions, apparent in (1) and (2), are (i) that

the health status variables affect demand for insurance only through their effect on expen-

diture risk (not directly), and (ii) that selected demographic and behavioural characteristics

(income, education, risk aversion, cognitive ability, financial planning horizon and longevity

expectations) affect insurance demand but not expenditure risk (conditional on health sta-

tus). That is, the SAS variables do not affect expenditure (conditional of health) except

indirectly through their effect on insurance.

The first assumption appears plausible, as it is not clear why insurance demand would

depend on health status measures per se, once one has conditioned on total expenditure

risk. The second assumption, that SAS variables do not enter (1), also appears plausible

given the very extensive set of health status controls we include in Hi, but perhaps calls

for further discussion. Although there is limited empirical evidence about the relationship

between health care expenditure and the behavioral SAS variables (conditional on health

status), what evidence there is seems consistent with our assumptions. FKS found no sig-

nificant relationship between risk aversion and expenditure risk. Similarly, a recent paper

by Fang et al. (2010) shows that in a large sample of HRS respondents the cross-sectional

correlation between the total Medicare expenditure and cognitive ability largely vanishes

when an extensive set of health status measures (similar to the ones utilized in this paper)

p1 respectively. If expenditure risk is correctly measured then the relationship between risk and probability
of supplemental insurance coverage can be estimated as p1−p0

E1−E0
= p1−p0

−4 , which should be close to α if the
sample size is large and expenditure risk is independent of other determinants of insurance status. However,
if expenditure risk of the insured is incorrectly estimated to be equal to 2 thousand dollars (overstated),
then the estimate of α will be equal to p1−p0

−3 , which will overstate the magnitude of advantageous selection.

7



are controlled for.5

As for income and education, our own analysis of the MCBS subsample suggests that

these variables have little explanatory power for expenditure, conditional on other demo-

graphic and health controls. For example, when education and income are included in the

expenditure equation which already contains Hi and Ii, the improvement in the R-squared,

although statistically significant, is very modest (from 0.1649 to 0.1666). The effect of ed-

ucation is not statistically different from zero, and the effect of income is very small: e.g.,

an increase in income from the 10th to 90th percentile increases expenditure by $281, which

amounts to only a 3% increase from the sample mean level.6 Hence, excluding income and

education from the expenditure equation seems reasonable.7

In contrast to FKS, we combine information from the MCBS and HRS using multiple data

imputation. To this end, we specify an auxiliary prediction model for SAS variables missing

from the MCBS, conditional on exogenous variables common in the two datasets.8 To deal

with health expenditure data missing from the HRS, we use the expenditure distribution

implicit in the joint model for insurance and expenditure. To capture the complex shape of

5A priori, it is tempting to think that higher cognitive ability people, who know more about medical
conditions, will be more likely to seek treatment. But this is not at all clear. For example, if one understands
that one can’t really treat most viruses and that viruses usually just go away eventually, then one is less
likely to waste time going to the doctor for virus-like symptoms. Similarly, the nature of the relationship
between the expenditure and risk tolerance (conditional on health) is not at all clear ex ante. On the one
hand, a more risk averse individual is probably more likely to seek treatment for a given health accident, but
on the other, she may also know that treatments have risks, and may therefore want to avoid over-treatment.
The results of FKS imply that these two effects roughly cancel.

6It is worth emphasizing, that the unconditional correlation between income and expenditure risk is large,
but conditional on health it largely vanishes. That is, higher income people are healthier, and so tend to
have lower expenditure. But they do not appear to demand more health care conditional on health.

7Also, as our model is cross-sectional, our specification implicitly assumes that the health status variables
(H) are exogenously given, and are not affected by health insurance status over time. That is, we assume
that having insurance does not lead to a lower rate of investment in health, which causes health status to
deteriorate over time. Under this dynamic scenario, we will underestimate the moral hazard effect (at least
in the long run). However, Khwaja (2001) shows that in a dynamic model health insurance has two opposite
effects. There is the ex-ante moral hazard effect, but there is also the ”Mickey Mantle” effect: because
insurance increases life expectancy, an individual has a greater incentive to invest in health. Khwaja finds
that the two effects roughly cancel, so insurance has little effect on how health status evolves over time.

8We treat SAS variables as exogenous, so the model for insurance demand and expenditure is conditional
on these variables. The auxiliary model for SAS variables is needed only for imputation of missing data.
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the distribution of realized expenditure, which is positive and extremely skewed to the right,

we employ a smooth mixture of Tobits (generalizing the smoothly mixing regressions (SMR)

framework of Geweke and Keane (2007)). In the estimation we merge the two datasets,

assume that the relevant variables are missing from the HRS and MCBS completely at

random, and estimate the model using a MCMC algorithm with multiple imputations of the

missing variables.9

Our approach to merging the two datasets can be described as “data fusion” - the com-

bination of data from distinct datasets, which can have some variables in common as well

as variables present in only one of the datasets. Rubin (1986) emphasized that the problem

of data fusion can be cast as the problem of missing data, which, in turn, can be dealt with

using Bayesian methods for multiple imputations from the posterior distribution of missing

variables, conditional on common variables, as discussed in Gelman et al. (1995). This is

the approach we adopt in this paper. Data fusion methods are often used in marketing to

combine data from different surveys, such as product purchase and media exposure (e.g.

Gilula et al. (2006)). Currently, there are few if any examples of data fusion in applied work

in economics.

Our findings regarding selection confirm the main results of FKS - we find that income

and cognitive ability are the most important factors explaining why higher-risk individuals

are less likely to buy insurance. Both high income and high cognitive ability people tend to

be (i) healthier and (ii) to demand more insurance conditional on health. But in addition to

the SAS variables used in FKS, we also consider race and marital status as potential sources

of adverse/advantageous selection. These variables can affect both tastes for insurance and

health care expenditure, but cannot be legally used to price Medigap policies. We find that

9We will show below that the missing expenditure data (but not the missing SAS variables) can be
integrated out analytically without complicating the MCMC algorithm for simulation from the posterior
distribution of the parameters of the model. Therefore, we only have to perform multiple imputations of the
SAS variables missing from the MCBS subset.
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race is an important source of adverse selection: blacks and hispanics have both lower demand

for Medigap insurance and lower health care expenditure. Overall, we find that, conditional

on income, education, risk attitudes, cognitive ability, financial planning horizon, longevity

expectations, race and marital status, there is adverse selection into Medigap insurance, but

the effect is not very strong: a one standard deviation increase in expenditure risk in the

Medicare only state increases the probability of buying insurance by only 3.7 percentage

points (which is a 7.4% increase from the sample mean of Medigap coverage of 50%).

But we go beyond FKS in that our model allows estimation of the sample distribution

of the effect of Medigap insurance on health care expenditure (i.e., the moral hazard effect).

We find that, on average, an individual with Medigap insurance spends about $2,119 (32%)

more on health care than his/her counterpart who does not have Medigap. The magnitude

of this moral hazard effect is comparable to that found in the RAND Health Insurance

Experiment. For example, Manning et al. (1987) find that decreasing the co-insurance rate

from 25% to 0 increased total health care expenditure by 23%. The effect of adopting one

of many typical Medigap insurance plans that cover co-pays is at least as big as this drop

in the co-insurance rate,10 and we see that it has a somewhat larger effect on expenditure.

The moral hazard effect of Medigap varies with individual characteristics. In particular, it

is lower for healthier individuals as well as for blacks and Hispanics, and it is largest in the

New England region and smallest in the Pacific Coast region.

This paper is organized as follows. Section 2 describes the datasets used in the analysis;

section 3 presents a model of the demand for Medigap insurance and health care expenditure

and discusses an MCMC algorithm developed for Bayesian inference in this model; section

4 discusses the empirical results; section 5 concludes.

10For example, the average out of pocket expenses of individuals with Medigap coverage is about 1.8
thousand dollars (Kaiser Family Foundation 2005), which corresponds to about 23% of total health care
expenditure in our data. This implies that on average adopting a Medigap policy decreases co-insurance by
32 percentage points, from 55% (co-insurance with Medicare only) to 23%.
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2 Data: HRS and MCBS

While Medicare is the primary health insurance program for most seniors in the USA, on

average it only covers about 45% of health care costs of beneficiaries. Medicare consists of

two plans: plan A provides hospital insurance coverage, while plan B provides insurance

for some physician services, outpatient services, home health services and durable medical

equipment. Most beneficiaries are enrolled in both plans A and B. To cover the large gaps

in Medicare, private companies offer Medigap insurance plans - private policies which cover

some of the co-pays and deductibles associated with Medicare as well as expenses not covered

by Medicare.11 The Medigap market is heavily regulated - only 10 standardized Medigap

plans are offered, and insurers can only price policies based on age, gender, smoking status

and state of residence. They cannot use medical underwriting during six months after an

individual is both at least 65 years old and is enrolled in Medicare plan B. Other institutional

details of the Medigap market can be found in FKS. Medigap insurance status in our analysis

is defined as equal to one if an individual purchases any additional private policy secondary

to Medicare.

Our analysis uses data from the Medicare Current Beneficiary Survey (MCBS, years 2000

and 2001) and the Health and Retirement Study (HRS, year 2002). The MCBS contains

comprehensive information about respondents’ health care costs and usage, as well as detailed

information about their health, demographic and socioeconomic characteristics. The HRS

contains detailed information about health, demographic and socioeconomic characteristics

as well as measures of risk attitudes, financial planning horizon, longevity expectations and

11For example, the basic Medigap plan A only covers Medicare parts A and B co-insurance costs, 365
additional hospital days during life time and blood products. In contrast, the most popular Medigap plan
F, which is purchased by 37% of individuals with Medigap, additionally covers all Medicare plans A and
B deductibles, part B balance billing, skilled nursing facility co-insurance and foreign travel emergency
expenses. However, this plan does not cover the costs of preventative, home recovery or hospice care not
covered by Medicare (Kaiser Family Foundation 2005). During the period of our study Medicare did not
cover prescription drugs, and several Medigap plans offered partial prescription drugs coverage.
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cognitive ability. The data used in the analysis includes only individuals covered by basic

Medicare. Descriptive statistics for selected variables are presented in Table 2. We use

the same MCBS sample as FKS, and the same HRS sub-sample used by FKS to obtain

column (3) of Table 6 in their paper.12 This is the sub-sample in which all individuals have

non-missing information about all potential SAS variables, including risk aversion, financial

planning horizon, cognitive ability and longevity expectations.

Our measure of risk attitude is the risk tolerance parameter estimated by Kimball et al.

(2008) for all HRS respondents using their choices over several hypothetical income gambles.

The variables which measure cognitive ability (one of the important SAS variables) in FKS

include the Telephone Interview for Cognitive Status score, the word recall ability score, the

numeracy score and the subtraction score. To decrease the number of auxiliary variables in

our model we extract a common factor from these variable and use it as a scalar measure

of cognitive ability in our analysis. We also use factor analysis do reduce the number of

health status variables. Both datasets contain 76 health status measures which are detailed

in the Data Appendix of FKS. These characteristics include self-reported health, smoking

status, long-term health conditions (diabetes, arthritis, heart disease, etc.) and difficulties

and help received for Instrumental Activities of Daily Living (IADLs). We use factor analysis

to reduce these 76 variables to ten factors that best explain expenditure.13

The results of regressions of expenditure on different sets of health status characteristics

12FKS used three samples from the HRS in their analysis: (i) the full sample of 9973 observations, all of
which have information on health, demographics and socioeconomic variables, but can have missing data on
risk tolerance and other SAS variables; (ii) the subsample of 3467 observations which have information on
risk-tolerance but not other SAS variables; (iii) the subsample of 1695 observations with information on all
potential SAS variables. In our analysis we use the third HRS subsample.

13We first factor-analyze these 76 variables to extract 38 factors (using data in both the HRS (full sample)
and MCBS samples) and then regress the health care expenditure in the MCBS on demographic character-
istics and these 38 factors to select factors which are significant predictors of expenditure. We identify 16
such factors. We then select 10 factors out of these 16 such that the chosen 10 factors produce the highest
possible adjusted regression R-squared (among all possible 10 factor subsets of the 16 factors). The factors
that are selected are # 2, 3, 7, 8, 10, 11, 17, 20, 22 and 23 (not factors 1-10). Thus, the factors that explain
the most covariance of the health indicators are not the same as the ones that explain most of the variance
in expenditure.
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Table 1: OLS results of total medical expenditure on Medigap coverage, demographic and
health status characteristics in the MCBS

Variable A. Without Health
Controls

B. With Direct
Health Controls

C. With Health
Factor Controls

Medigap 979.4*** 1951.2*** 1948.2***
(291.0) (255.6) (257.8)

Female -933.6*** -834.7*** -734.3***
(304.9) (290.7) (282.3)

Age-65 501.5*** 408.0*** 437.3***
(125.8) (115.1) (116.5)

(Age-65)
2

-23.3** -28.8*** -31.0***
(9.8) (9.1) (9.2)

(Age-65)
3

0.43** 0.50** 0.51***
(0.21) (0.20) (0.20)

Black 1212.9* 579.8 770.4
(639.3) (550.3) (596.2)

Hispanic -576.7 -843.8* -622.2
(511.7) (431.6) (467.4)

Married -779.9*** -325.2 -213.5
(299.0) (268.7) (275.3)

Health factor 2 4565.0***
(252.4)

Health factor 3 -2544.6***
(226.4)

Health factor 7 2049.0***
(241.5)

Health factor 8 711.7***
(213.1)

Health factor 10 -2047.0***
(535.5)

Health factor 11 -961.6***
(207.8)

Health factor 17 1176.3
(931.4)

Health factor 20 -1339.2***
(363.7)

Health factor 22 2144.6***
(382.4)

Health factor 23 1254.7***
(414.1)

Health status dummy No Yes No
Region dummy Yes Yes Yes
Year dummy Yes Yes Yes
Observations 14128 14128 14128
Adjusted R2 .017 .21 .18

Note: “Total medical expenditure” includes all expenditure, both covered and out-of-
pocket. The regressions are weighted by cross-section sample weights. Robust standard
errors clustered at the individual level are in parentheses. Statistical significance is in-
dicated by ∗ (10 percent), ∗∗ (5 percent) and ∗∗∗ (1 percent).
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Table 2: Descriptive Statistics

MCBS HRS

Variable All Medigap No Medigap All Medigap No Medigap

Medigap 0.50 1.00 0 0.43 1.00 0
Female 0.59 0.60 0.58 0.56 0.58 0.55
Age 76.57 77.02 76.11 68.70 68.67 68.72

(7.50) (7.29) (7.69) (3.10) (2.98) (3.20)
Black 0.10 0.04 0.17 0.14 0.06 0.20
Hispanic 0.08 0.03 0.12 0.07 0.02 0.11
Married 0.48 0.54 0.43 0.66 0.71 0.63
Education: Less than high school 0.36 0.27 0.45 0.28 0.22 0.33
Education: High School 0.27 0.31 0.24 0.38 0.41 0.35
Education: Some college 0.21 0.24 0.18 0.18 0.18 0.17
Education: College 0.08 0.10 0.06 0.08 0.08 0.08
Health factor 2 (Unhealthy) 0.04 -0.06 0.13 -0.32 -0.37 -0.28

(1.01) (0.89) (1.10) (0.51) (0.43) (0.56)
Health factor 3 (Healthy) -0.12 -0.09 -0.15 0.17 0.23 0.13

(-0.93) (0.97) (0.86) (0.72) (0.70) (0.74)
Cognition 0.46 0.54 0.40

(0.31) (0.25) (0.33)
Risk tolerance 0.234 0.228 0.236
(estimate from Kimball et al. (2008)) (0.142) (0.138) (0.146)
Financial planning horizon 4.46 4.83 4.18
(years) (4.05) (4.12) (3.98)
Praliv75 67.32 69.57 65.59
(subjective probability to live to 75 or more) (28.33) (25.91) (29.96)
Total medical expenditure∗ 8,085 8,559 7,605

(14,599) (14,301) (14,881)
Number of observations 14128 7113 7015 1671 726 945

Note: “Total medical expenditure” includes all expenditure, both covered and out-of-pocket.
Standard deviations are in parenthesis.
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are presented in Table 1. Note that demographics explain only 1.7% of the variance of

expenditure, but the inclusion of the 76 health measures increases this to 21%. When the 76

health status characteristics are replaced by our ten health factors, the adjusted regression

R-squared drops from 0.21 to 0.18. This appears to be a reasonable price for reducing the

number of covariates by 66. Health factors 2 and 3 turn out to be the most quantitatively

important for predicting expenditure. Health factor 2 loads heavily on deterioration in

health as well as difficulties and help with IADLs, and so is an unhealthy factor. It increases

expenditures by about $4,500 per one standard deviation. Health factor 3 loads positively

on good and improving self-reported health and negatively on difficulties with IADLs and

thus is a healthy factor. It decreases expenditure by $2500 per one standard deviation.

Table 2 shows descriptive statistics for the HRS and the MCBS sub-samples. It can be

seen that individuals in the HRS subsample are younger and healthier (have lower sample

averages of unhealthy factor 2 and higher sample averages of healthy factor 3) than those

in the MCBS subsample. The HRS data is used in our analysis as a source of information

about behavioral SAS variables, such as risk tolerance, cognition, longevity expectations

and financial planning horizon. From the HRS data we estimate the distribution of these

SAS variables, conditional on exogenous characteristics common in the two datasets, and

use it to impute the missing SAS variables in the MCBS sub-sample. The fact that the two

subsamples have different characteristics does not create a problem for our analysis, provided

the distribution of the SAS variables conditional on the exogenous characteristics used for

imputation (including age and health) is the same in both subsamples.

Tables 1 and 2 suggest the presence of both advantageous selection and moral hazard.

Table 2 shows that individuals with Medigap coverage are on average healthier than those

without Medigap in both the HRS and the MCBS data (i.e. individuals with Medigap have

lower values of unhealthy factor 2 and higher values of healthy factor 3 in both subsamples),

while Table 1 shows that individuals with Medigap coverage spend more on health care
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than those without Medigap, both with and without conditioning on observed health status

measures.14 The Medigap coefficient increases when we add health status controls, stressing

the positive correlation between health and Medigap coverage already evident in Table 2.

We will investigate the magnitudes of the selection and moral hazard (or incentive) effects

in the subsequent sections.

3 The Model

This section presents a model for the joint determination of insurance status and health care

expenditure, in which we account for endogeneity of insurance by allowing the unobservable

determinants of insurance status and expenditure to be correlated. But before developing the

full model we first need to select a specification for the distribution of medical expenditure. It

is well-known that econometric modelling of health care expenditures is challenging because

of the properties of their empirical distribution. In particular, health care expenditures are

non-negative, highly skewed to the right and have a point mass at zero. The histogram in

Figure 1 shows that the empirical distribution of total health care expenditure of Medicare

beneficiaries in our MCBS sample exhibits all these characteristics. The sample skewness

is about 5.1 and the distribution has a long right tail. The proportion of observations with

zero expenditure is about 0.025.

The literature on modelling health care expenditure has mainly focused on the problem of

modelling it’s conditional expectation in the presence of skewness and a mass of zero outcomes

(e.g., Manning (1998); Mullahy (1998); Blough et al. (1999); Manning and Mullahy (2001);

14This is different from Table 2 of FKS, in which the Medigap coefficient changes from negative to positive
as health controls are added to the insurance equation. The reason for the discrepancy is that FKS use
different subsamples for regressions with and without health controls. In particular, the regression without
health controls uses 15,945 observations, while the regression with health controls uses 14,129 observations
(for which health status information is available) out of these 15,945. Table 1 in our paper uses the FKS
sample of 14,129 observations to obtain the results with and without health controls. Hence, the 1,816
observations not used by FKS in the second regression have higher expenditure and lower Medigap coverage
than the general Medicare population.
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Figure 1: Histogram of total health care expenditure
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Buntin and Zaslavsky (2004); Gilleskie and Mroz (2004); Manning et al. (2005)). The

problem of modelling the entire conditional distribution of health care expenditure is less

frequently addressed. When the context requires a probability model for expenditure, the

preferred approach is a two-part model where the positive outcomes (the second part) are

modelled using the log-normal distribution (e.g. Deb et al. (2006)). But because we are

interested in the effect of the level of expenditure risk on Medigap insurance status, we prefer

to model the level of expenditure rather than it’s logarithm.

After trying several specifications of the distribution of expenditure, we decided to adopt

a discrete mixture of Tobits in which the probability of a mixture component depends on an

individual’s observed characteristics. Because this model is a generalization of the Smoothly

Mixing Regressions (SMR) framework of Geweke and Keane (2007) to the case of a Tobit-

type limited dependent variable, we call it SMTobit (for Smooth Mixture of Tobits). With
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the appropriate number of mixture components, this specification can capture both skewness

and non-negativity of the expenditure distribution, and provides a very good fit to various

aspects of the conditional distribution of total health care expenditure in our MCBS sample,

including conditional (on covariates) mean, variance, quantiles and probability of an extreme

outcome. In section 4 we will discuss how the number of components was selected and

examine the fit of the model to the distribution of expenditure.

In the next section we present the full specification of the model for insurance status and

expenditure, where the insurance equation includes all potential sources of advantageous

selection. We first present the model abstracting from the fact that not all variables of

interest are available in both datasets and then discuss our approach to dealing with variables

missing from the HRS or MCBS.

3.1 Complete data

We assume there are m types of individuals (types are indexed by j, j = 1, . . . ,m). A

person’s type is private information, i.e. individuals know their type, but from the point of

view of the researcher these types are latent: given an individual’s observable characteristics

(i.e. demographics and health status) only her probability of belonging to type j can be

inferred. Types differ in mean expenditure, in the effects of exogenous characteristics and

insurance status on health care expenditure, as well as in the variance of expenditure.

Let I∗i denote the utility that individual i derives from health insurance and let E∗i denote

her total expected health care expenditure if she remains without Medigap. As discussed

in section 1, we assume that E∗i is the expenditure risk relevant when individual i decides

whether to purchase Medigap insurance, so henceforth we will refer to E∗i as “expenditure

risk”. Both I∗i and E∗i are known to the individual but are unobserved by the econometrician,

so they enter the model as latent variables.

Let Ii denote a binary variable which is equal to one if individual i has health insurance,
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and is equal to zero otherwise, and assume that Ii = 0 if I∗i < 0 and Ii = 1 if I∗i >= 0. Also,

let Êi denote notional health care expenditure of individual i (as in “notional demand”,

which can be negative). We assume that Êi is determined as follows:

Êi|j = E∗i |j + γjIi + ηi|j (3)

where γj denotes type-specific effect of health insurance on the notional health care expen-

diture (i.e. the price or moral hazard effect), and ηi|j is the forecast error of individual i.

Given the individual’s type j, the forecast error ηi|j is normally distributed with zero mean

and variance σ2
j :

ηi|j ∼ N(0, σ2
j )

The term σ2
j denotes the variance of actual expenditure around the expected expenditure risk

(conditional on the insurance status) of an individual of type j. Thus σ2
j can be interpreted

as the variance of the health care expenditure forecast error (i.e. ηi is a surprise health shock

to individual i).

The realized expenditure Ei|j is given by:

Ei|j = max{0, Êi|j}. (4)

Hence, conditional on type j the model for the realized expenditure Ei is a Tobit. This

specification ensures that the model does not predict negative expenditure for some indi-

viduals. Because in our data only 2.5% of observations have zero expenditure, the notional

expenditure Ê is equal to the realized expenditure E for 97.5% of the sample.
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The model for the latent vector [I∗i , E
∗
i ]
′, conditional on type j, is specified as follows:

I∗i |j = α0E
∗
i |j + α1σ

2
j + α2σ

2
j · c1i +α′3xii +α′4ci + ε1i (5)

E∗i |j = β′jxei + ε2i, (6)

where the vector of disturbances ε12i = [ε1i, ε2i]
′ is independent of ηi and follows a bivariate

normal distribution:

ε12i|j ∼ BV N

0,

 σ11 σ12

σ12 σ22


 for all types j = 1, . . . ,m.

The expenditure risk E∗i consists of a part which depends on observable health status and

demographics (β′jxei) and a part which depends on unobservable characteristics (ε2i). The

disturbances ε1i and ε2i capture the heterogeneity in tastes for insurance and in health status,

respectively, that are known to an individual, but not to the econometrician. We allow for

ε1i and ε2i to be correlated with covariance given by σ12.

In equations (5) and (6), ci includes variables present in the HRS only (risk tolerance

c1i, financial planning horizon, cognition and longevity expectation), xii includes insurance

pricing variables (age, gender, location of residence) as well as income, education, ethnicity

and marital status, and xei includes demographic characteristics (age, gender, location of

residence, marital status, race and ethnicity) and the ten health factors discussed in section

2. The variables xii and xei are present in both datasets.

There is heterogeneity in the effect of observable health status and demographic charac-

teristics on expenditure risk because the βj differ across different types of individuals. This

is the smooth mixture of Tobits (SMTobit) described in the previous section. This specifi-

cation allows for different marginal effects of covariates on expenditure for individuals with

different health status (both observable and unobservable). As we will show in Section 4, a
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model with 5 latent types (j = 1, ..., 5) provides a very good fit to the data.

The parameter α0 measures the effect of expenditure risk E∗i on insurance demand when

influences of other determinants of insurance status (including unobservables ε1i) are held

constant. A negative α0 indicates advantageous selection, while a positive value indicates

adverse selection. We also introduce the variance of the forecast error σ2
j and its interaction

with risk tolerance into the insurance equation to capture that demand for insurance depends

not only on expected expenditure but also on the variance of expenditure.

The model in equations (3)-(6) can be viewed as a simultaneous equations model where

the parameters of interest (i.e., the selection and moral hazard effects) are identified via

cross-equation exclusion restrictions. The restriction which allows us identify the selection

effect α0 is that the health status variables affect demand for insurance only through their

effect on expenditure risk (not directly). If the health status variables were included in the

insurance equation, we would not be able to isolate the effect of the expenditure risk α0 from

the independent effect of health status variables on insurance demand.

To identify the moral hazard effect we impose the restriction that selected demographic

and behavioral characteristics (income, education, risk aversion, cognitive ability, financial

planning horizon and longevity expectations) affect insurance demand but not expenditure

risk (conditional on a rich set of health measures). Thus, these variables induce exogenous

variation in the insurance choice conditional on expenditure risk E∗i .
15 This permits us to

15Our approach to modelling health care expenditure and Medigap insurance status is related to that of
Munkin and Trivedi (2010) (MT), who study the effect of supplemental drug insurance on drug expendi-
tures. MT also used a discrete mixture model with covariate-dependent type probabilities to model drug
expenditures, and they allow for correlation between unobservable determinants of drug expenditure and
supplemental drug insurance status. However, our paper is quite different from theirs in a number of ways:
(i) most obviously, we study a different market (i.e., Medigap supplemental insurance vs. drug coverage); (ii)
MT only use the MCBS, while we merge the MCBS with the HRS in order to study effects of SAS variables,
thus extending the application of MCMC methods to a rather novel selection/data fusion exercise; (iii) as
MT note (see their conclusion), the expenditure distribution that they assume could be improved upon,
and we do this by using the SMTobit specification, which turned out to be a very substantial improvement
(see Keane and Stavrunova (2010)); (iv) we use a richer set of instruments for insurance status (not just
price shifters but also the SAS variables); and (v) we use a much richer set of health status variables in the
expenditure equation (this is made feasible by our factor analysis procedure). More importantly, MT only
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account for endogeneity of insurance choice when estimating the parameters of the model.

This, in turn, allows us to consistently estimate the moral hazard effect γj and the correlation

between ε1i and ε2i.

To impute the missing ci = [c1i, ..., c4i]
′ in the MCBS data (i.e. the 4 SAS variables)

we specify an auxiliary model for ci conditional on the exogenous variables common in the

MCBS and HRS datasets. We assume the following relationship between cki and these

exogenous variables:

cki|j = xc′iλk + ε3ki, (7)

where k = 1, . . . , 4. Here xci denotes the vector of exogenous variables common in the two

datasets, such as demographics, income, health status and education.16 The disturbances

[ε31i, . . . , ε34i]
′ ≡ ε3i follow a multivariate normal distribution for all types j = 1, . . . ,m:

ε3i|j ∼ N(0, Vc).

The disturbances ε3i are independent of ε12i and ηi|j. Hence,

ci|j = XCiΛ + ε3i, (8)

measure selection on unobservables, but what one needs to know for policy purposes also includes selection
on observables that cannot (legally) be used for pricing insurance policies (i.e., health status), and which
therefore should be treated as consumers’ private information for this purpose. In contrast to MT, we esti-
mate selection on both unobservables and observables that cannot be used for pricing Medigap policies. We
find that selection on ”observable private information” is much more important.

16The vector xci includes most of the variables in xii and xei. The exception is that the second and third
powers of age and interactions of age with gender and of marital status with gender as well as time trend
are included in xei but not in xci to reduce the number of parameters to be estimated. See Table A-2.
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where

XCi =



xc′i 0 0 0

0′ xc′i 0 0

0′ 0′ xc′i 0

0′ 0′ 0′ xc′i


,

and Λ = [λ′1, ...,λ
′
4]′. Thus, the disturbances of the structural system of equations (3)-

(8), conditional on type j, follow a multivariate normal distribution with zero mean and

variance-covariance matrix given by:



σ11 σ12 0 0

σ12 σ22 0 0

0 0 σ2
j 0

0′ 0′ 0′ Vc


.

While type j is latent, we assume that the probability of being type j depends on an

individual’s exogenous characteristics by way of a multinomial probit model, as in Geweke

and Keane (2007):

W̃ij = δ′jxwi + ζij j = 1, . . . ,m− 1

W̃im = ζim. (9)

The W̃ij are latent propensities of being type j, and xwi is a vector of individual character-

istics including demographics and health status.17 The ζij are independent standard normal

random variables. An individual i is of type j iff W̃ij ≥ W̃il ∀ l = 1, ...,m. The probability

17In our empirical specification xwi is almost identical to xei, with the exception that the second and
third powers of age and interactions of age with gender and of marital status with gender are included in
xei but not in xwi to reduce the number of parameters to be estimated. See Table A-2.
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of type j is given by:

P (typei = j|xwi, δ1, ..., δm) =
∫ ∞
−∞

φ(y − δ′jxwi)
m∏
l 6=j

Φ(y − δ′lxwi)dy, (10)

where Φ(.) denotes standard normal cdf, φ(.) denotes standard normal pdf and δm = 0.

This restriction resolves the well-known identification issue in multinomial choice models

which stems from the fact that only differences in alternative-specific utilities affect the

actual choice. That is, if no restrictions were placed on δj, the probability of being type j

would not change if all δj were replaced by δj + ∆. To achieve identification, one of the

alternative-specific vectors of coefficients is often normalized to zero, as we do here.

3.2 Combining data from the MCBS and the HRS

To estimate the model in section 3.1, a dataset containing information on Ii, Ei, ci and

the exogenous health status and demographic characteristics (which we denote by xi : xi ⊇

{xii,xei,xci,xwi}) for all observations is required. Unfortunately, such a dataset is not avail-

able. But instead the following two datasets are available: the MCBS, which has information

on Ii, Ei and xi but does not have information on ci, and the HRS, which has information

on Ii, ci and xi but does not have information on Ei. Our strategy is to combine informa-

tion from the two datasets by assuming (i) that the joint distribution of I∗i , E
∗
i , Êi, Ei, Ii, ci

conditional on xi and the parameters θ,

θ = [α0, α1, α2,α
′
3,α

′
4,β

′
1, ...,β

′
m, σ

2
1, ...σ

2
m, γ1, ..., γm, δ

′
1, ..., δ

′
m, σ12, σ22, Vc,Λ

′],

is the same in the MCBS and HRS datasets, and is as specified in section 3.1, and (ii) that ci

and Ei are missing from the MCBS and the HRS respectively completely at random (using

the definition of Gelman et al. (1995)).
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Let Co denote the collection of ci’s that are observed, and Cm denote the collection of

ci’s that are missing. Similarly, let Eo denote the collection of Ei’s that are observed, and

Em denote the collection of Ei’s that are missing. Thus, ci ∈ Cm iff i ∈MCBS, and ci ∈ Co

iff i ∈ HRS. Similarly, Ei ∈ Em iff i ∈ HRS, and Ei ∈ Eo iff i ∈ MCBS. The assumption

that the data are missing completely at random implies that the missing data mechanism

is independent of Ii, Ei, ci,xi. Hence, there is no need to specify an auxiliary missing data

process that is separate from the structural model in (3) - (10). Assuming that the HRS and

the MCBS are non-overlapping random samples from the same population, the estimation

can be carried out by stacking the variables from the two datasets and imputing missing

variables using the assumed data generating process in (3) - (10).

Let Si denote a survey indicator so that Si = 1 if i ∈ MCBS and Si = 0 if i ∈ HRS, and

let NM and NH denote number of observations in the MCBS and HRS respectively. Let

N = NM +NH denote the number of observations in the combined dataset. The probability

density function of the observables I, Eo and Co conditional on exogenous variables X,

survey indicators S ≡ [S1, ..., SN ] and parameters θ consists of two parts, corresponding to

the MCBS and HRS subsets. To obtain the expression of this probability density we (i)

substitute equations (6) and (8) into equation (5); and (ii) substitute (6) into (3). This gives

us, conditional on type j, a system of equations for I∗i , E∗i , Êi, ci, in which the vector of

disturbances has a multivariate normal distribution. At this point we can integrate out E∗i

(because it is a latent variable which is never observed by the econometrician), which leaves

us with the multivariate normal distribution of I∗i , Êi and ci. We also have to integrate out

cmi from the MCBS subsample because these variables are not available in the MCBS. So, in

the MCBS subset we are left with the following reduced-form model, conditional on type j:

I∗i |j = α0β
′
jxei + α1σ

2
j + α2σ

2
jxc′iλ1 +α′3xii +α′4XCiΛ + ξ1i (11)

Êi|j = β′jxei + γjIi + ξ2i (12)
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Ii|j = ι(I∗i > 0|j) (13)

Ei|j = max{0, Êi|j}, (14)

where ι(.) is an indicator function,

ξ1i = ε1i + α0ε2i + α2σ
2
j ε31i +α′4ε3i

and

ξ2i = ε2i + ηi.

The reduced-form errors ξ1i and ξ2i have a bivariate normal distribution:

ξ1i

ξ2i

|j ∼ N

 0

0
,

 σ11 + 2α0σ12 + α2
0σ22 +α′4Vcα4 + α2

2σ
4
j · v11

c + 2α2σ
2
j

∑4
l=1 ·α4l · v1l

c σ12 + α0σ22

σ12 + α0σ22 σ22 + σ2
j


 ,

where vlkc denotes the lkth element of Vc.

Let µ1 ≡ α0β
′
jxei + α1σ

2
j + α2σ

2
jxc′iλ1 + α′3xii + α′4XCiΛ and sξ denote the standard

deviation of ξ1i. The joint probability density of Ei and Ii, conditional on type j, in the

MCBS subsample is that of a Tobit model (for Ei) with an endogenous binary explanatory

variable (Ii). Its derivation is given in Wooldridge (ex.16.6):

p(Ei, Ii|xi, j,θ, Si = 1) =

Ii ·
∫ ∞
−µ1

g(Ei|β′jxei + γj +
σ12 + α0σ22

s2
ξ

ξ1i, σ22 + σ2
j −

(σ12 + α0σ22)2

s2
ξ

) · 1

sξ
φ(
ξ1i

sξ
)dξ1i

+ (1− Ii) ·
∫ −µ1
−∞

g(Ei|β′jxei +
σ12 + α0σ22

s2
ξ

ξ1i, σ22 + σ2
j −

(σ12 + α0σ22)2

s2
ξ

) · 1

sξ
φ(
ξ1i

sξ
)dξ1i,

where

g(E|µ, σ2) =

(
1

σ
φ

(
(E − µ)

σ

))ι(E>0) (
1− Φ

(
µ

σ

))ι(E=0)

. (15)
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In the HRS subset ci is available, but Ei is not. Hence, we have to integrate out Êi and

Ei. After the integration we are left with the following reduced-form model for the HRS

subset, conditional on type j:

I∗i |j = α0β
′
jxei + α1σ

2
j + α2σ

2
j · c1i +α′3xii +α′4ci + ξ2i (16)

ci|j = XCiΛ + ε3i (17)

Ii|j = ι(I∗i > 0|j) (18)

where ξ2i is normal with zero mean, variance sξ2 ≡ σ11 + 2α0σ12 + α2
0σ22 and is independent

of ε3i.

The joint probability density of Ii and ci in the HRS subset, conditional on type j, is

given by the product of the likelihood of a probit model for Ii and a multivariate normal

probability density function for ci:

p(Ii, ci|xi, j,θ, Si = 0) = Φ

α0β
′
jxei + α1σ

2
j + α2σ

2
j · c1i +α′3xii +α′4ci√

σ11 + 2α0σ12 + α2
0σ22

Ii
1− Φ

α0β
′
jxei + α1σ

2
j + α2σ

2
j · c1i +α′3xii +α′4ci√

σ11 + 2α0σ12 + α2
0σ22

1−Ii

· (2π)−
Kc
2 |Vc|−

1
2 exp(−(ci −XCiΛ)′V −1

c (ci −XCiΛ)/2).

To obtain the probability density of the observables unconditional on type j we have

to marginalize over the types by multiplying type-specific densities of observables by the

type probabilities in (10) and summing the resulting products over the types. The proba-

bility density function of observables Eo,I, Co conditional on exogenous variables X, survey

indicators S ≡ [S1, ..., SN ] and parameters θ is given by:

p(Eo, I,Co|S,X,θ) =
N∏
i=1

(
m∑
j=1

(
∫ ∞
−∞

φ(y − δ′jxwi)
m∏
l 6=j

Φ(y − δ′lxwi)dy
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· p(Ei, Ii|xi, j,θ, Si = 1)Si=1 · p(Ii, ci|xi, j,θ, Si = 0)Si=0)), (19)

where δm = 0. It is easy to see that σ11 is not identified separately from α0, α1, α2, α3, α4

and σ12 in the sense that if we multiply σ
1/2
11 and all these parameters by a constant, the joint

density will not change. Identification in such cases is usually achieved by the normalization

σ11 = 1. But for the purposes of posterior simulation it is more convenient to normalize the

variance of ε1i|ε2i, i.e. to set σ11 − σ2
12

σ22
= 1, which implies the restriction σ11 = 1 +

σ2
12

σ22
.

3.3 Posterior Simulation Algorithm

Bayesian inference in this model can be simplified by data augmentation. In particular, both

the MCBS and the HRS subsamples are augmented by the latent vectors I∗ = [I∗1 , ..., I
∗
N ]′;

the MCBS data are also augmented by the missing values cmi , i = 1, ..., NM and by notional

expenditure Ê = [Ê1, ..., ÊNM ]′. The notional expenditure Êi differs from actual expenditure

Ei only for observations with Ei = 0. Data augmentation which introduces artificial values

of the dependent variable for observations with truncated outcomes is a standard approach

to Bayesian inference in the Tobit model by way of the Gibbs sampler (due to Chib (1992)).

The fact that the ci is missing from the MCBS subsample complicates simulation from the

posterior distribution of parameters. In particular, after cmi is integrated out of the MCBS

subsample, the usual normal and Wishart prior distributions for α4 and Vc, respectively, are

no longer conjugate to the probability density function of observables of the MCBS subset

(as is clear from the expression for the variance of the reduced-form error ξ1i in equation

(11)). There are no other known distributions which would serve as conjugate priors for α4

and Vc. Hence, the conditional (on other parameters) posterior distributions of the Gibbs

sampler blocks involving α4 and Vc would be of unknown form and would need to be sampled

using a Metropolis-Hastings step. This involves a challenging task of choosing the proposal

distribution for multidimensional vectors of parameters. For this reason in the estimation
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we perform multiple imputations of cmi rather than integrating it our analytically.

But we analytically integrate out Em
i and Êi in the HRS subsample, as well as E∗i in

both HRS and MCBS subsamples. Integrating out E∗i (rather then augmenting data density

with the latent E∗i ) destroys conjugacy of the data density to the normal and gamma priors

for σ12, σ2 and σ2
j . However, because these parameters are scalars, the proposal densities in

the Metropolis-Hastings steps for these parameters are easier to choose. Both the HRS and

MCBS are also augmented by latent type indicators s = [s1, ..., sN ]′, so that si = j if i’s type

is j, and by latent type propensities W = [W̃
′
1, ...,W̃

′
N ], where W̃i = [W̃i1, ..., W̃im]′.

Let I = [I1, ..., IN ]′ and Eo = [Eo
1 , ..., E

o
NM ]′. Then the augmented data density conditional

on X,S and θ can be written as follows:

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X,θ)

=
N∏
i

[
p(I∗i |cmi ,xi, si = j,θ) · p(Ii|I∗i , cmi ,xi, si = j,θ) · p(Êi|I∗i , Ii, cmi ,xi, si = j,θ)

· p(Eo
i |Êi, I∗i , Ii, cmi ,xi, si = j,θ) · p(cmi |xi, si = j,θ)

]Si
· [p(I∗i |coi ,xi, si = j,θ) · p(Ii|I∗i , coi ,xi, si = j,θ) · p(coi |xi, si = j,θ)]1−Si

· p(si = j|W̃i,θ) · p(W̃i|xi,θ). (20)

The first two lines of (20) are for the MCBS observations, the third line is for the HRS ob-

servations, and the last line which involves type probabilities, is relevant for all observations.

After substitution of expressions for the probability distributions corresponding to the

model specified in (3) - (10) the expression in (20) becomes:

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X,θ) =
∏
i

[
1√

2π(1 +
σ2
12

σ22
+ 2α0σ12 + α2

0σ22 − (σ12+α0σ22)2

σ22+σ2
si

)

· exp(−
(I∗i − α0β

′
si

xei − α1σ
2
si
− α2σ

2
si
cm1i −α′3xii −α′4cmi − σ12+α0σ22

σ22+σ2
si

(Êi − β′sixei − γsiIi))2

2(1 +
σ2
12

σ22
+ 2α0σ12 + α2

0σ22 − (σ12+α0σ22)2

σ22+σ2
si

)
)
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· (2π)−4/2|Vc|−1/2 exp(−(cmi −XCiΛ)′V −1
c (cmi −XCiΛ)/2)

· 1√
2π(σ22 + σ2

si
)

exp(−
(Êi − β′sixei − γsiIi)2

2(σ22 + σ2
si

)
) · (ι(Eo

i = Êi) · ι(Êi ≥ 0) + ι(Eo
i = 0) · ι(Êi < 0))]Si

· [
1√

2π(1 +
σ2
12

σ22
+ 2α0σ12 + α2

0σ22)

exp(−
(I∗i − α0β

′
si

xei − α1σ
2
si
− α2σ

2
si
co1i −α′3xii −α′4coi )2

2(1 +
σ2
12

σ22
+ 2α0σ12 + α2

0σ22)
) (21)

· (2π)−4/2|Vc|−1/2 exp(−(co1i −XCiΛ)′V −1
c (co1i −XCiΛ)/2)]1−Si

· (ι(I∗i ≥ 0) · ι(Ii = 1) + ι(I∗i < 0) · ι(Ii = 0)) ·

 m∑
j=1

m∏
k=1

ι(W̃ik ∈ (−∞, W̃ij])


· (

1√
2π

)m · exp(−
N∑
i=1

(W̃ 2
im/2)) · exp(−

m−1∑
j=1

(w̃j −XWδj)
′(w̃j −XWδj)/2),

where XW = [xw1, ...,xwN ]′ and w̃j = [W̃1j, ..., W̃Nj]
′ for j = 1, ...,m.

For the purposes of Bayesian inference it is convenient to split the parameter vector θ

into the following blocks:

1. α0

2. α ≡ [α1, α2,α
′
3,α

′
4]′

3. βj for j = 1, ...,m

4. γj for j = 1, ...,m

5. hj ≡ 1
σ2
j
, j = 1, ...,m.

6 Λ ≡ [λ
′

1, ...,λ
′

4]′,

7. Hc ≡ V −1
c ;

8. h22 ≡ σ−1
22 ;

9. σ12

10. δj, j = 1, ...,m− 1;
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Where possible, we specify natural conjugate prior distributions for these parameters blocks,

and specify that in the prior these blocks are independent, i.e

p(θ) = p(α0)p(α)
m∏
j=1

p(βj)
m∏
j=1

p(γj)
m∏
j=1

p(hj)
4∏

k=1

p(λk)p(σ12)p(h22)p(Hc)
m−1∏
j=1

p(δj). (22)

We specify the hyperparameters of these prior distributions so as to allow a substantial

prior uncertainty about the parameter values. These prior distributions are discussed in

detail in Appendix A-1.

Let data denote the collection 〈I,Eo,Co,X,S〉. Then the joint posterior distribution of

the parameters and the latent and missing data p(θ, I∗, Ê,Cm,W, s|data) is proportional

to the product of (21) and (22). To simulate from this posterior distribution we construct

a Gibbs sampling algorithm with Metropolis within Gibbs steps which cycles between the

conditional posterior distributions of blocks of parameters and vectors of latent and missing

variables I∗, Ê,Cm,W, s. The details of the algorithm are given in Appendix A-2.

4 Results

The exact specification of the equations of the model in terms of the demographic and health

status characteristics included in each equation is given in Appendix A-3. In particular,

in Table A-2 we show our exclusion restrictions in tabular form. As for the expenditure

distribution, we have specified m = 5. In a companion paper (Keane and Stavrunova (2011))

we discuss the SMTobit model in detail and show that a 6 component mixture provides the

best fit to the expenditure distribution in the MCBS sample used in this paper, while a model

with 5 components fares only slightly worse.18 The number of components in this study is a

compromise between model fit and the mixing properties of the posterior simulator. We use

18To compare models with different numbers of components we use the modified cross-validated log-scoring
rule developed in Geweke and Keane (2007), which is less computationally demanding than the comparison
based on marginal likelihoods, which is a standard approach to model selection in Bayesian statistics.
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m=5 because the posterior simulator exhibited slow convergence when m = 6 was specified.

In order to investigate sources of advantageous selection we have estimated five alternative

models by progressively adding more potential SAS variables to the insurance equation.

This sequential procedure is similar to FKS. In the first specification the insurance equation

contains only expenditure risk and insurance pricing variables. The second model adds

income and education. The third model adds cognitive ability, financial planning horizon and

longevity expectations. The fourth model adds risk tolerance, the variance of the expenditure

forecast error and an interaction between risk tolerance and variance. Finally, the fifth model

adds ethnicity, marital status and an interaction of gender with age. We also estimated the

fifth specification with the covariance between the unobservable determinants of Medigap

status and expenditure, σ12, set to zero, to asses the bias in the selection and moral hazard

effects from not accounting for correlation between the unobservables.

Due to the presence of latent variables and mixture components, the output of the pos-

terior simulator exhibits a high degree of autocorrelation. To allow the simulator to explore

the parameter space adequately, the algorithm was allowed to run for an extended period

of time. We have obtained 1,200,000 draws from the posterior distribution, discarded the

first 200,000 draws as a burn-in and used every 1000th of the remaining 1,000,000 draws

for analysis. In the fifth model the autocorrelation in these 1,000 draws ranges from 0 (for

parameters of the cm distribution and the coefficients of the exogenous covariates in the

insurance equation) to 0.11, 0.28 and 0.65 (for α0, σ2, σ12) and to 0.81 (for parameters of

the expenditure distribution for the type with the lowest probability). The serial correlation

coefficients for the parameters σ2
j are between 0.04 and 0.16, while those for γj are between

0.26 and 0.02. Thus, the serial correlation is low for the parameters that are most important

for our analysis (i.e. the insurance equation parameters and γj). The relative numerical

efficiency ranges from 0.08 (for the parameters with the highest autocorrelation) to 1.6. All

parameters pass the formal test of convergence suggested in Geweke (1992).
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4.1 Model Fit

The fit of the model which includes all potential SAS variables to selected characteristics

of the distribution of the Medigap insurance coverage rate and health care expenditure,

conditional on observable characteristics xi, is examined in Figure 2. To produce Figure

2 we simulated artificial samples of Ei and Ii, conditional on xi, for 1000 draws from the

posterior distribution of parameters. In particular, for each θk drawn from the posterior

distribution we simulate artificial data for each i = 1, ..., N as follows:

1. Latent types ski ∼ p(si|xwi, δ
k
1, ..., δ

k
m) using (9);

2. Missing SAS variables in the MCBS subsample cmki ∼ p(cmi |XCi,Λk, V k
c ) using (8);

3. Latent data [I∗ki , E
∗k
i ]′ ∼ p(I∗i , E

∗
i |xii, Si · cmki + (1 − Si) · coi ,xei, s

k
i ,β

k
ski
, σk12, σ

k
22, σ

2k
ski

)

using (5) and (6). Set Iki = ι(I∗ki > 0).

4. Notional expenditure Êk
i ∼ p(Êk

i |E∗ki , Iki , ski , γkski , σ
2k
ski

) using (3). Set Ek
i = Êk

i · ι(Êk
i >

0).

Panels (a) and (b) of Figure 2 plot the predicted expected expenditure and probability

of insurance coverage against actual expenditure and insurance coverage. In particular, to

plot panel (a), we split the MCBS subsample into ten groups by deciles of average predicted

expenditure over draws k, that is Ei ≡ 10−3∑103

k=1(Ek
i ). Observations in the first group

have average predicted expenditure (Ei) that is less than the 10th percentile of the sample

distribution of Ei, observations in the second group have average predicted expenditure

between 10th and 20th percentiles, and so on. We do this to identify individuals, whose

exogenous characteristics xi are likely to result in high or low expenditure.

Then for each decile subsample g, g = 1, ..., 10, and for each draw k, we compute average

predicted expenditure AEk
g ≡ N−1

g

∑
i∈g(E

k
i ), where Ng is the number of observations in

subsample g. In panel (a) we plot the average of AEk
g over k against the averages of actual
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expenditure of individuals falling into decile subsample g (red dots). For each g, we also plot

the 5th and 95th percentiles of the series AEk
g to show the uncertainty about the predictions

due to the posterior distribution of parameters (blue dots).

Panel (b) proceeds analogously to show the fit of the model to the probability of Medigap

coverage. In particular, we group the whole sample by the deciles of I i ≡ 10−3∑103

k=1 I
k
i and

plot the subsample averages of actual Ii against the averages and 5th and 95th percentiles

(over k) of AIkg ≡ N−1
g

∑
i∈g(I

k
i ).

Panels (a) and (b) of Figure 2 indicate a good fit to both insurance coverage and expen-

diture because the relationships between the predicted and actual variables are close to the

45 degree line, and the actual values are almost always contained within the 5th and 95th

percentiles of the predictions.

In panel (c) of Figure 2 we compare the actual and predicted relationships between

expenditure and insurance coverage for individuals in the MCBS subsample. We split the

MCBS data into 10 expenditure groups (the same groups used to construct panel (a)) and

for each group compute and plot the average expenditure and the average probability of

Medigap coverage (solid red line). We then use blue and black dots to plot AEk
g and AIkg

(computed for the same expenditure decile groups) for 20 random k. The figure suggests that

the model fits the bivariate relationship between insurance and expenditure well, because the

predictive distribution of this relationship is very close to the actual relationship. Note that

the probability of Medigap coverage is rising with expenditure at low levels of expenditure,

but falling with expenditure at higher levels of expenditure.

Finally, in panel (d) we show the fit of the model to the variance of expenditure. To

construct panel (d) we use the same expenditure subsamples as for panel (a), and plot the

variance of the actual expenditure against the variance of predicted expenditure within these

subsamples. We are interested in the fit to the variance of expenditure because the fourth and

fifth specifications of the model include the variance of expenditure as well as the interaction
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of the variance with risk tolerance among the SAS variables. Panel (d) suggests that the fit

of the model to the variance of expenditure is also quite good.

Figure 3 plots kernel density estimates of actual expenditure (red) as well as of the

distribution of predicted expenditure (Ek
i ) for individuals in the MCBS subsample (black).

Panel (a) of the figure shows the density plot for the entire support of the expenditure

distribution. The expenditure distribution has an extremely long right tail, and the smooth

mixture of Tobits does a good job in capturing this complex shape - i.e. in panel (a) the

predicted and actual data density practically overlap. Panels (b) and (c) present density

plots for the [0 20,000] and [20,000 100,000] intervals of the support of the expenditure

distribution (these intervals together contain more than 99% of the sample distribution of

expenditure). The fit is very good even for these more narrowly defined intervals.

We decided to order the different mixture components by levels of the health expenditure

forecast error variance (i.e., with mixture component one having the lowest variance, while

component 5 has the highest).19 We order by variance because this parameter turned out to

be able to separate the components of the mixture quite well. Munkin and Trivedi (2010) also

19A well-known feature of mixture models is that the parameters of mixture components are not identified
with respect to permutations of component labels without further restrictions (e.g. a particular ordering of
component-specific means and/or variances). For example, the value of the likelihood function of a mixture of
two components will not change if component 1 is relabeled as component 2, and component 2 is relabeled as
component 1. As a result, the likelihood function and the posterior distribution of parameters is multimodal
with m! modes corresponding to m! permutations of the m component labels. This creates complications
for posterior simulation via the Gibbs sampler, because the simulator can get stuck in one of the posterior
modes and not fully explore the entire posterior distribution (Celeux et al. (2000)). One solution to this
problem is random permutation of component labels after each iteration of the Gibbs sampler, as proposed
by Fruhwirth-Schnatter (2001). Another solution, proposed by Geweke (2006), is to use the permutation-
augmented simulator. In the case of permutation-invariant functions of interest, this simulator amounts to
running the usual Gibbs sampler without the random permutation step and using the resulting output for
inference. For permutation-sensitive functions of interest it amounts to reordering of the output from the
usual Gibbs sampler according to inequality constraints, which identify the component labels, and using
the reordered output for inference. In this paper we use the approach of Geweke (2006). We run the
Gibbs sampling algorithm with the Metropolis-Hastings step as described in Appendix A-2 (i.e. without
the random permutation step). We then use the resulting output directly for inference about permutation-
invariant functions of interest, such as marginal effects of covariates on the expected expenditure, the moral
hazard effect and the variance of the forecast error. For inference about permutation-sensitive functions of
interest (e.g. the moral hazard effects for different health types j) we use the output reordered according to
the inequality restrictions on σ2

j .
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found that mixture components were most easily separated by variance in their application

of a discrete mixture model to drug expenditure of Medicare beneficiaries. Alternatively, we

could have ordered the types by other parameters which differ substantially across the types,

e.g. the type-specific coefficients of health factor 2 in the expected expenditure equation.

Ordering by variance has the advantage that it renders our types easily interpretable, due

to the fact that, for many types of health care expenditures, the conditional (on covariates)

means and variances tend to be positively related (Deb et al., 2010).

Table 3 reports some type-specific parameters and functions of interest. Note that, as

expected, the ranking of types by expenditure risk corresponds closely to that by variance.

In fact, there is a perfect rank correlation. There is also a close relationship between health

status and the size of the moral hazard effect. Types 1 and 2 are the healthiest and to-

gether make up about 71% of the sample.20 These two types have lowest expenditure risks

E(E∗i |typei = j,data)21 and the smallest moral hazard effects of Medigap insurance γj.

Type 5, which makes up about 3% of the sample, is the most unhealthy type, and also has

the highest expenditure risk and the largest moral hazard effect.22

In the next two sub-sections we discuss, in turn, the adverse (or advantageous) selection

and moral hazard effects implied by the model.

20The posterior mean of the type probability p(typei = j|data) was computed as the average of ι(ski = j)

over i and k, while the 5th and 95th percentiles are those of the series 1
N

∑N
i=1 ι(s

k
i = j) for k = 1, ...103.

These computations approximate the posterior mean and percentiles (over the posterior of parameters) of
1
N

∑N
i=1 P (typei = j|xwi, δ1, ..., δm)

21The posterior mean of the expenditure risk E(E∗i |typei = j,data) is computed as the average of E∗ki
over i and k such that ι(ski = j). The 5th and 95th percentiles are those of the series of E∗ki averaged over
i such that ι(ski = j) for k = 1, ...103. These computations approximate the posterior mean and percentiles

(over the posterior of parameters) of 1
N

∑N
i=1 xeiβj · P (typei = j|xwi, δ1, ..., δm)

22Analogously, Munkin and Trivedi (2010) find that the size of the moral hazard effect is higher for
the high-expenditure latent type than for the low-expenditure type in their study of supplemental drug
insurance. Of course, since Medigap plans may cover other aspects of costs besides drugs (e.g., co-pays), it
is not necessarily the case that these patterns would be the same in both markets.
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Table 3: Type-specific characteristics: posterior means and 5th and 95th percentiles

Variable Type 1 Type 2 Type 3 Type 4 Type 5

Std. deviation of ηi,
√
σ2
j , 0.71 1.8 4.4 10.9 33.7

thousand dollars (0.68, 0.75) (1.7, 1.9) (4.1, 4.7) (10.1, 11.8) (31.5, 36.1)

E(E∗|typei = j,data), 0.58 2.86 9.0 22.9 54.5
thousand dollars (0.51, 0.64) (2.67, 3.005) (8.3, 9.7) (21.3, 24.7) (49.2, 59.7)

Moral hazard effect γj , 1.25 2.00 2.15 3.37 10.2
thousand dollars (1.14, 1.37) (1.8, 2.2) (1.5, 2.8) (1.5, 5.3) (2.7, 17.8)

P (typei = j|data) 0.394 0.315 0.166 0.094 .031
(0.38, 0.41) (0.30, 0.33) (0.15, 0.18) (0.08, 0.10) (0.027, 0.036)

4.2 The Adverse (Advantageous) Selection Effect

One key focus of this paper is the relationship between expenditure risk and Medigap in-

surance status, conditional on pricing variables and potential SAS variables. Figure 4 shows

how this relationship changes as we progressively add potential SAS variables to the insur-

ance equation. This figure plots the distribution of the marginal effects of a one standard

deviation increase in E∗i (11.6 thousand dollars)23 on the probability of having Medigap

insurance, Φ(
α0E∗i +α′1Pi+α′2SASi√

σ11
), where Pi denotes pricing variables, and SASi denotes

potential sources of advantageous selection. This probability can be derived from (5).24

Overall, the results in Figure 4 are consistent with the findings of FKS, both qualitatively

and quantitatively. Panel (a) of the figure corresponds to the benchmark model with no

SAS variables. In panel (a) the relationship is negative, suggesting that an increase in

expenditure risk by 11.6 thousand dollars decreases the probability of Medigap coverage on

average by 0.03. This negative relationship suggests advantageous selection. Adding income

and education (panel (b)) weakens the relationship between risk and insurance to almost

23This is the standard deviation of N · 103 simulated values E∗ki .
24We evaluate the marginal effects for all individuals i = 1, ..., N and for 1000 draws from the posterior

distribution of parameters, replacing E∗i and the unobserved components of SASi (σ2
si and cmi ) with E∗ki ,

σ2k
sk
i

and cmki simulated as discussed in the previous section. Figure 4 plots the histograms of the resulting

N · 103 marginal effects and indicates sample averages and standard deviations of these effects.
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zero. Adding cognitive ability, financial planning horizon and longevity expectations (panel

(c)) changes the sign of the relationship - it becomes positive, but the effect is small: a one

standard deviation in E∗i increases probability of Medigap coverage on average by 0.016.

Adding risk tolerance, variance of the forecast error and the interaction of the risk tolerance

with the variance (panel d) further increases the marginal effect to 0.055. Thus, our SAS

variables can explain “advantageous selection” - once we condition on them, we find adverse

selection as predicted by theory.

In addition to health measures, health insurance pricing variables and Medigap status

Ii, our expenditure equation also includes some demographic variables (race, marital status

and interactions of gender with age and marital status). These variables are included in

the expenditure equation to improve model’s predictive performance, but FKS excluded

them from the baseline insurance equation because it is not legal to use them in pricing.

However, just like the SAS variables (risk tolerance, cognition, income, education, etc.), these

demographic variables may also affect tastes for insurance (and hence demand, conditional

on price and expenditure risk). Hence, these demographics are also potential source of

adverse/advantageous selection.

In our final exercise we include the demographics (race, marital status, etc) in the in-

surance equation. Doing so reduces the average marginal effect of E∗i from 0.055 to 0.037

(panel (e)). Thus, these variables are a source of adverse selection. In particular, blacks and

hispanics have a relatively low probability of purchasing Medigap (and they have relatively

low expected expenditure (see Table 5). Overall, these results support the results of FKS

- the set of SAS variables used in their study is enough to explain advantageous selection

into Medigap insurance - but also imply that additional demographics like race may be an

important source of selection.

Table 4 presents marginal effects of covariates on the probability of Medigap coverage

Φ(
α0E∗i +α′1Pi+α′2SASi√

σ11
). The effects are evaluated for a median individual, i.e. an individual
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for whom: (i) exogenous characteristics are set to their sample medians, (ii) the E∗i and σ2
si

are set to their medians over E∗ki and σ2k
ski

, and (iii) ci is set to it’s median in the HRS

subsample. We present the mean and the 5th and 95th percentile of the series of effects

evaluated for 1000 draws from the posterior distribution. For continuous variables we report

the change in Medigap probability brought about by a one standard deviation increase in the

variable of interest from these median levels. For E∗i and σ2
si

the marginal effects correspond

to a one standard deviation increase in E∗ki and σ2
ski

, while for ci they correspond to a one

standard deviation increase in the HRS subsample. Note that the marginal effects of E∗i in

Table 4 do not correspond to those in Figure 4, as the former are for a median individual,

while the latter correspond to the whole sample distribution. Table 4 also summarizes the

posterior distributions of the correlation coefficient between ε1 and ε2 (ρ) and the variance

of ε2, (σ22).

The first column of results in Table 4 is for the basic model that contains only expected

expenditure (E∗i ) and pricing variables (gender, age, region) in the insurance equation. The

subsequent columns progressively add the demographic and behavioral variables that are

potential sources of selection (SAS variables). Consistent with Figure 4, the effect of E∗i goes

from -0.03 in the basic model (advantageous selection) to +0.04 in the full model (adverse

selection). The results in Table 4 column (2) suggest that, conditional on expenditure risk,

the probability of Medigap coverage is higher for females, increases with age, education and

income, and varies substantially by region. But in column (3) the inclusion of the cogn,

finplan and praliv75 variables eliminates the effect of education and greatly reduces the

positive effect of income. Clearly cognitive ability has a much larger effect on the probability

of Medigap coverage than the other behavioral variables. In the 4th column the model

includes the risk tolerance and variance measures. This has little effect on the impacts of

other variables, but it raises the effect of E∗i to 0.07, which clearly implies adverse selection.

Finally, the inclusion of race and marital status variables in column (5) causes the effects of
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cognition to drop from 0.17 to 0.08, and the effect of E∗i to fall to 0.04. The indicators for

black and hispanic are among the most important determinants of Medigap status - they

both decrease Medigap probability by 0.24.

As we noted, cognition has a much bigger effect on Medigap coverage than other behav-

ioral variables (e.g. risk tolerance, longevity expectation, etc.). In particular, a one standard

deviation increase in the cognitive ability factor from the sample median level increases prob-

ability of Medigap coverage by 0.08 on average. This effects is estimated rather precisely -

90% of the support of it’s posterior distribution is between 0.06 and 0.10.

Aside from cognition, the variance of the forecast error, σ2
j , has a larger effect on insurance

demand than any behavioral variable. It is one of the most important sources of advantageous

selection. A one standard deviation increase in σ2
j (keeping E∗i constant) decreases the

probability of Medigap by 0.04 for individuals at the median of the risk tolerance distribution,

and by 0.05 for individuals at the 90th percentile of risk tolerance distribution. Several

potential explanations for the negative effect of the variance are given in FKS, including the

crowding out of Medigap by Medicaid in the case of catastrophic health care expenses, as

well as possible behavioral factors, such as underweighting of small probabilities of a large

loss, and underestimation of the expenditure variance by individuals.

The probability of Medigap coverage also differs by region. In particular, residents of

New England, the West South Central and Mountain census divisions are less likely to have

Medigap than individuals living in other regions, while the East North Central and South

Atlantic census divisions are the areas with the highest Medigap coverage. For example, the

probability of having Medigap for individuals living in the East-North Central and South

Atlantic census divisions is about 0.08 higher than that for residents of the Middle Atlantic

census division, and it is about 0.36 higher than that for residents of the Mountain census

division, conditional on other variables.

Interestingly, in all models the correlation between the unobservable determinants of
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insurance coverage and expenditure risk ε1 and ε2 is strongly negative, suggesting that

selection with respect to unobservable determinants of the expenditure is advantageous (even

when the SAS variables are included).25 This may appear to contradict the finding of FKS

that the observed SAS variables account for advantageous selection. This, in turn, raises a

puzzle of why we obtained similar results to FKS in Figure 4.

The most plausible explanation for the similarity between our results and those of FKS

is that the health status variables included in the prediction model of FKS capture most

of the information relevant when individuals form an expectation about future health care

costs and make a decision about Medigap insurance status. Indeed, our results indicate

that the standard deviation of the unobservable component of expenditure risk, ε2i, is very

small compared to the standard deviation of expenditure risk E∗i itself (i.e., 0.5826 vs. 11.6

thousand dollars). This suggests that any systematic difference in expenditure risk between

individuals with and without Medigap that is left unexplained by the observable health status

characteristics is also small. Hence, results about the extent of adverse selection obtained

from a model that does not account for the correlation between ε1i and ε2i should not be

very different from the results reported in this paper.

In fact, we have also re-estimated our most general model with the covariance parameter

σ12 set to zero. The fit of this restricted model to the data was very similar to that of

the unrestricted model, and the posterior distribution of the marginal effect of E∗i on the

Medigap coverage probability was similar as well. This can be seen by comparing panels (e)

and (f) of Figure 4. Note that the mean effect increases only slightly from 0.037 to 0.045.

25Note that σ12 < 0 means that, ceteris paribus, people with higher expected expenditure E∗i tend to have
lower demand for insurance.

26The posterior mean of σ22 is equal to 0.33, while the posterior mean of
√
σ22 is equal to 0.576.
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4.3 The Moral Hazard Effect

Row 2 of Table 3 presents the posterior means of type-specific moral hazard effects of Medigap

insurance on health care expenditure (γj). The moral hazard effect increases as health status

deteriorates (with the exception of type 3). Interestingly, however, the moral hazard effect

makes up a smaller proportion of health care expenditure for unhealthy individuals compared

to healthy individuals. For example, the individuals of type 1 who have Medigap insurance

spend about 215% more than their counterparts with no Medigap, while individuals of type

5 who have Medigap spend only about 19% more.

The moral hazard effect of 215% for type 1 might seem very large, but note that this does

not correspond to a large absolute expenditure increase (i.e. types 1 have average spending

of $580 when uninsured and $1,830 when insured). Also note that for most individuals

there is considerable posterior uncertainty about their type: e.g. almost no individual has a

posterior probability of being type 1 equal to one. In the data, low expenditure individuals

have high posterior probabilities of being types 1-2 and low posterior probabilities of being

types 3-5, while the opposite is true for high expenditure individuals. When this individual-

level uncertainty about the type is taken into account, estimates of the moral hazard effect

are averages over type specific effects. For example, for individuals whose posterior type

probability is highest for type 1, the average moral hazard effect is equal to 1,759 dollars,

which makes up about 53% of their average expected expenditure in the Medicare only state

(3,344 dollars). For individuals whose posterior modal type is 5, the moral hazard effect is

equal to 5,334 dollars, which makes up about 17% of their average expected expenditure in

the Medicare only state of 30,680 dollars.

This finding suggests that the price elasticity of health care demand decreases as health

status deteriorates. This seems intuitive. For instance, much of the health expenditure for

healthy low expenditure individuals may go towards treatment of minor ailments - treat-

ment that one may fairly easily forgo due to cost. In contrast, expenditures for unhealthy
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individuals are presumably more often for essential treatment of serious illness.

The moral hazard effect of Medigap insurance for an individual with observable charac-

teristics xi can be computed as: E(MHi|xi,θ) =
∑m
j=1 γj · P (typei = j|xwi, δ1, ..., δm).27

The posterior mean (over the posterior of parameters) of E(MHi|xi,θ) can be approximated

as 10−3∑10−3

k=1 γ
k
ski

, where ski are simulated as discussed in section 4.1. This posterior mean

varies between $1,333 and $9,834 in our sample. The sample average of the moral hazard

effect is equal to 2,119 dollars, which makes up about 32% of the average expenditure risk in

the Medicare only state (6,476 dollars). The ratio of the average moral hazard effect to the

average expenditure risk is at least comparable to the effect of insurance found in the RAND

Health Insurance Experiment. For example, Manning et al. (1987) report that a decrease in

the co-insurance rate from 25% to 0 increased total health care expenditure by 23%. Such a

drop in co-pays is similar to the consequences of adopting many typical Medigap plans that

cover co-pays.

It is interesting to see how different health types contribute to the aggregate increase

in spending which would result from the moral hazard effect assuming we had universal

Medigap coverage. As can be seen from Table 3, individuals of type 1 contribute about

23% of the increase in spending. This number is computed as the ratio of the type-specific

moral hazard effect weighted by the type probability to the average moral hazard effect:

27Alternatively, we could define the moral hazard effect as the difference between the expected actual
expenditure Ei of an individual with and without Medigap, i.e

E(MHi|xi,θ) =

m∑
j=1

(E1(Ei|typei = j,xei,θ)− E0(Ei|typei = j,xei,θ)) · P (typei = j|xwi, δ1, ..., δm)),

where

EI(Ei|typei = j,xei,θ) = Φ(
xe′iβj + γj · I
(σ2
j + σ22)0.5

)[xe′iβj + γj · I + (σ2
j + σ22)0.5 ·

φ(
xe′

iβj+γj ·I
(σ2

j
+σ22)0.5

)

Φ(
xe′

i
βj+γj ·I

(σ2
j
+σ22)0.5

)
]

for I = 0, 1. This last expression is due to the Tobit specification for the distribution of actual expenditure.
The two definitions of the moral hazard effect produce similar results.
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1250·0.39
2119

= 0.23. Similarly, the contributions of individuals of types 2-5 to the aggregate

increase in spending are 30%, 17%, 14% and 15%, respectively. Thus, the two healthiest

types, who make up about 71% of the sample, give about 53% of the total spending increase.

On the other hand, the three least healthy types, who make up 29% of population, account

for 47% of the total increase in spending.

In contrast to the selection effect, restricting the covariance between unobservables ε1

and ε2, σ12, to zero does have a noticeable effect on the estimate of the moral hazard effect.

In such a specification the posterior mean of the moral hazard effect E(MHi|xi,θ) is 1,315

dollars, compared to 2,119 in the full model. This drop in magnitude is not surprising given

the large negative correlation between the unobervables shown in Table 4 (i.e. advantageous

selection into Medigap). Once we control for this advantageous selection on unobservables,

the moral hazard effect effect of insurance is revealed to be larger. This, even though ignoring

σ12 does not have much impact on the estimated selection effect, it does significantly alter

the estimate of the moral hazard effect.

It is also of interest to evaluate the potential effects on aggregate health expenditure of a

policy which would expand Medigap coverage by making it more affordable. To this end we

simulate a situation where the price of Medigap insurance drops sufficiently so that Medigap

coverage increases by 10% (or 5 percentage points). According to the estimate of the price

elasticity of health insurance demand in Buchmueller (2006), this would require approxi-

mately a 25$ drop in Medigap premiums.28 The simulations suggest that the individuals

who are attracted to Medigap insurance by this policy would on average spend 8.6 thousand

dollars when Medigap-insured, compared to an average expenditure of 8 thousand dollars for

28Buchmueller (2006) estimates that a 5$ increase in an insurance premium would decrease a plan’s
enrollment by 2% in his sample of retirees over the age of 65. For estimation this study relies on changes
in demand for different plans caused by an exogenous change in the retiree health insurance contributions
policy of a single employer. Other studies which utilize natural experiment to estimate the elasticity of
health insurance demand also suggest that this demand is relatively inelastic (e.g., Gruber and Washington
(2005)). We use the estimate of Buchmueller (2006) because the demographic characteristics of individuals
in his sample are similar to those in our data.
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those who were already covered before the policy was implemented. The newly insured spend

more in part because they have higher expenditure risk - their average expenditure risk in

the Medicare only state (E∗i ) is 6.5 thousand dollars, compared to 5.9 thousand dollars for

individuals who had Medigap coverage before the policy was implemented. But the newly

insured also have a somewhat higher moral hazard effect (2.1 thousand dollars) than the

previously insured (2.07 thousand dollars). This is because they come from a less healthy

part of the population, and, as we have seen, moral hazard is inversely related to health.

Thus, expanding Medigap coverage results in a somewhat higher cost per insured person due

to both advantageous selection and moral hazard. But the increase in the average health

expenditure of all insured individuals is still very small (from 8.02 to 8.06 thousand dol-

lars). The policy increases per capita expenditure from 7.6 thousand dollars to 7.7 thousand

dollars.29

In contrast, expanding Medigap coverage universally would have a large effect on expen-

diture, increasing per capita expenditure from 7.6 thousand dollars to 8.6 thousand dollars.

The increase in expenditure is due to the moral hazard effect: the newly insured (who make

up about 50% of the sample) increase their spending by 2.16 thousand dollars on average,

which increases average expenditure by about 1 thousand dollars. Of course, the welfare

consequences of expanding Medigap coverage cannot be evaluated using our model, but this

is an interesting issue for future research.

29These calculations are based on artificial data samples of Eki , Iki and E∗ki simulated as discussed in
section 4.1 for two situations: (i) before the policy (the original posterior distribution of the parameters is
used); (ii) after the policy (the intercept term in the insurance equation is increased by a constant to achieve
the average Medigap coverage of 0.55, all random terms (e.g. εi1, εi2, si, ηi) are the same as in (i)). The
average expenditure risk and moral hazard effects of the two groups, (i) with Medigap before the policy and
(ii) with no Medigap before the policy but with Medigap after the policy, are computed as discussed above.
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4.4 Marginal Effects of Covariates

Table 5 presents posterior means and the 5th and 95th percentiles of the posterior distributions

of marginal effects of covariates on the following covariate-dependent functions of interest:

1. The expected expenditure risk (columns 1-3):30

E(E∗i |xei,β1, ...,βm, δ1, ..., δm) =
m∑
j=1

E(E∗i |xei, typei = j,βj)·P (typei = j|xwi, δ1, ..., δm),

(23)

where E(E∗i |xei, typei = j,βj) = xe′iβj and P (typei = j|xwi, δ1, ..., δm) is given in

equation (10);

2. The moral hazard effect of Medigap insurance on health care expenditure (columns

4-6):

E(MHi|xwi, γ1, ..., γm, δ1, ..., δm) =
m∑
j=1

γj · P (typei = j|xwi, δ1, ..., δm); (24)

3. The unconditional standard deviation of the forecast error (columns 7-9):

SD(ηi|xwi, σ
2
1, ..., σ

2
m, δ1, ..., δm) =

 m∑
j=1

σ2
j · P (typei = j|xwi, δ1, ..., δm)

 1
2

. (25)

The marginal effects in Table 5 are computed for a median individual (i.e. an individual

whose covariates xei are set to the sample median level) and are measured in thousands of

dollars. For continuous covariates the effects are for a one standard deviation increase in the

covariate from its sample median level, for categorical covariates the effect is from moving

to the next category. The 5th and 95th percentiles reflect the uncertainty with respect to

the posterior distribution of parameters, i.e. the effects of the covariates on the expressions

30Because in our analysis xwi is a subset of xei, as discussed in section (3.1), conditioning on xei is
equivalent to conditioning on both xwi and xei
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(23)-(25) were evaluated for 1000 draws from the posterior distribution of parameters, and

the average and 5th and 95th percentiles of these 1000 values are reported in Table 5.

The expenditure risk in the Medicare only state E(E∗i |xei,β1, ...,βm, δ1, ..., δm) is lower

for females, blacks and Hispanics. On average females are expected to spend 370 dollars less

than males, while blacks and Hispanics are expected to spend 700 and 830 dollars less than

other ethnic groups, respectively.31 The expenditure risk is insensitive to age, conditional

on detailed measures of health status, and is lower for married individuals. Unhealthy

individuals are expected to spend more than their more healthy counterparts - a one standard

deviation increase in the unhealthy factor 2 raises expenditure risk by 3.73 thousand dollars,

while a one standard deviation increase in the healthy factor 3 decreases risk by 1.79 thousand

dollars. Expenditure risk also varies by census division. In particular, residents of the New

England census division have the highest expenditure risk, while residents of the East North

Central, Pacific, South Atlantic and West South Central census divisions have the lowest

expenditure risk, conditional on other variables.

The moral hazard effect of Medigap is higher for individuals in worse health, and is lower

for Hispanics. Individuals living in Pacific census division have the lowest moral hazard

effect, while individuals living in New England census division have the highest mean moral

hazard effect. The standard deviation of the forecast error SD(ηi|xwi, σ
2
1, ..., σ

2
m, δ1, ..., δm)

is lower for females and is higher for less healthy individuals. The variance of the forecast

error is the highest for individuals living in the New England census division, and is the

lowest for individuals residing in the Pacific and West South Central census divisions.

31It is notable that race and marital status were not significant predictors of health expenditure in the OLS
regression in Table 1, column C, but they are significant in the full model. This may be the result of a more
flexible functional form for the conditional expectation of expenditure in the full model, compared to OLS.
It may also be due to the bias in the Medigap coefficient due to failure of OLS to account for endogeneity of
insurance.

51



Table 5: Marginal effects of individual characteristics on selected functions of interest

E(E∗i |xei,β1, ...,βm, δ1, ..., δm)E(MHi|xwi, γ1, ..., γm, δ1, ..., δm)SD(ηi|xwi, σ
2
1 , ..., σ

2
m, δ1, ..., δm)

Variable Post.
mean

(5th, 95th) prct. Post.
mean

(5th, 95th) prct. Post.
mean

(5th, 95th) prct.

1 2 3 4 5 6

Female -0.37 -0.86 , 0.08 -0.05 -0.13 , 0.02 -0.83 -1.32 , -0.37
Age -0.10 -0.33 , 0.11 0.01 -0.01 , 0.04 -0.10 -0.32 , 0.13
New Eng 0.20 -0.53 , 0.96 0.14 0.02 , 0.30 1.01 -0.02 , 2.07
Mid Atl -1.14 -1.87 , -0.48 -0.03 -0.15 , 0.07 -0.13 -1.16 , 0.81
East North Cent -1.28 -2.03 , -0.59 -0.06 -0.18 , 0.07 -0.12 -1.25 , 1.03
West North Cent -0.94 -1.67 , -0.28 0.00 -0.11 , 0.10 -0.12 -1.11 , 0.75
South Atl -1.65 -2.45 , -0.89 -0.02 -0.15 , 0.10 -0.62 -1.71 , 0.33
East South Cent -1.04 -1.76 , -0.36 -0.01 -0.13 , 0.10 0.09 -0.87 , 1.10
West South Cent -1.37 -2.11 , -0.66 -0.11 -0.23 , 0.00 -0.97 -2.02 , -0.11
Mountain -0.98 -1.68 , -0.31 -0.02 -0.14 , 0.08 -0.20 -1.19 , 0.68
Pacific -3.25 -4.09 , -2.50 -0.26 -0.46 , -0.09 -2.49 -3.52 , -1.63
Health factor 2 3.73 2.98 , 4.64 0.32 0.13 , 0.53 2.06 1.33 , 2.92
Health factor 3 -1.79 -2.12 , -1.51 -0.15 -0.23 , -0.08 -1.03 -1.32 , -0.78
Health factor 7 0.85 0.61 , 1.15 0.07 0.02 , 0.13 0.44 0.10 , 0.92
Health factor 8 0.94 0.77 , 1.13 0.06 0.02 , 0.09 0.13 -0.12 , 0.41
Health factor 10 -0.36 -0.67 , -0.07 -0.02 -0.06 , 0.01 -0.36 -0.71 , 0.02
Health factor 11 -0.68 -0.86 , -0.53 -0.06 -0.10 , -0.03 -0.45 -0.66 , -0.23
Health factor 17 1.04 0.64 , 1.50 0.12 0.06 , 0.20 0.46 0.12 , 0.90
Health factor 20 0.05 -0.20 , 0.30 0.01 -0.02 , 0.04 -0.08 -0.37 , 0.26
Health factor 22 0.44 0.25 , 0.68 0.03 0.00 , 0.06 0.03 -0.22 , 0.35
Health factor 23 0.16 -0.04 , 0.40 0.04 0.00 , 0.08 0.28 -0.06 , 0.71
Black -0.70 -1.21 , -0.14 -0.11 -0.21 , -0.01 -0.12 -0.77 , 0.81
Hispanic -0.83 -1.32 , -0.33 -0.12 -0.20 , -0.05 -0.78 -1.32 , -0.24
Married -0.37 -0.71 , -0.06 -0.01 -0.07 , 0.03 -0.42 -0.83 , -0.02
Year -1.12 -1.41 , -0.84 -0.07 -0.12 , -0.02 -0.60 -0.94 , -0.28

∗ Note: The marginal effects are measured in thousand dollars and are evaluated for the median individual. For
continuous covariates the effects are for a one standard deviation increase in the covariate from its sample median
level. The omitted category for census division is the group with missing census division information.
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5 Conclusion

This paper studies selection and moral hazard in the US Medigap health insurance market.

Medigap is a collection of supplementary insurance plans sold by private companies to cover

gaps in Medicare, a social insurance program providing health insurance coverage to senior

citizens. We develop an econometric model for insurance demand and health care expen-

diture, in which the degree of selection is measured by the sensitivity of insurance demand

to expected health care expenditure in the absence of Medigap insurance (our measure of

expenditure risk). The model allows for correlation between unobservable determinants of

expenditure risk and demand for insurance. This extends the analysis in Fang, Keane and

Silverman (2008) who did not allow for correlated unobservables. To capture the complex

shape of the expenditure distribution, we employ a smooth mixture of Tobit models gener-

alizing the smoothly mixing regressions framework of Geweke and Keane (2007). To obtain

the posterior distribution of parameters of the model we construct an MCMC algorithm with

data augmentation.

We find that a specification which conditions Medigap insurance choice only on expen-

diture risk and insurance pricing variables suggests the existence of advantageous selection:

that is, a one standard deviation increase in expenditure risk decreases probability of insur-

ance coverage by 3 percentage points. However, when we condition on a range of potential

sources of advantageous selection - including income, education, risk attitudes, cognitive

ability, financial planning horizon, longevity expectation, race and marital status - we find

that there is adverse selection into Medigap insurance. But this effect is modest: a one

standard deviation increase in expenditure risk increases probability of insurance coverage

by 3.7 percentage points. These findings are qualitatively and quantitatively similar to the

results of Fang, Keane and Silverman (2008) (FKS). Hence, our first contribution is to show

that the FKS results on the sources of advantageous selection are robust to correlation in
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unobservables.

Our second contribution, which goes beyond the findings of FKS, is that we provide

estimates of the effects of “behavioral” SAS variables (i.e. risk attitudes, cognitive ability,

financial planning horizon and longevity expectation) on the probability of Medigap coverage.

We find that among these variables it is cognitive ability which has the largest effect: a one

standard deviation increase in the cognitive ability factor increases the probability of having

Medigap by 0.08 for a median individual. Variance in the health care expenditure forecast

error also has a substantial effect on Medigap coverage - it decreases the Medigap probability

by 4 percentage points per one sample standard deviation increase. Other “behavioral” SAS

variables are less important: the effects of risk tolerance and financial planning horizon are

close to zero, and longevity expectations have a modest effect. We also find that race is

a source of adverse selection: blacks and hispanics are considerably less likely to purchase

Medigap insurance (conditional on other determinants of Medigap status in the full model),

and also have lower health care expenditure risk (conditional on health).

Notably this paper is the first to estimate selection and moral hazard effects jointly in the

Medigap insurance market. We estimate the degree of moral hazard in the Medigap insurance

market while accounting for the endogeneity of insurance choice. This third contribution goes

well beyond the findings of FKS, who do not attempt to estimate moral hazard. We find

that on average individuals with Medigap insurance coverage spend about $2,119 more on

health care than similar individuals without Medigap. This is a 32% increase, which is in

the ballpark of moral hazard effects found in the RAND experiment.

We also estimate the sample distribution of the moral hazard (or price) effect of Medigap

insurance on health care expenditure. We find that the moral hazard effect varies with indi-

vidual characteristics - it is higher for individuals in worse health and is lower for Hispanics.

Moreover, the moral hazard effect differs by risk level - individuals with higher expenditure

risk tend to have a larger moral hazard effect in absolute terms, but a smaller moral hazard
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effect in percentage terms. This suggests that the price elasticity of health care demand

decreases with health. This makes intuitive sense - healthy people are more likely to have

ailments that can be relatively easy forgone due to price of health care, while people in poor

health are more likely to have ailments which require treatments that are less easily forgone.

We also find some interesting differences by region. Both the expenditure risk and the moral

hazard effect of Medigap are greatest in New England, while the moral hazard effect is lowest

in the Pacific and West South Central census division.

Finally, we simulate the effects of policies which would (i) reduce the price of the Medigap

insurance to achieve a 10% increase in coverage, or (ii) implement universal coverage. Our

results suggest that such policies will result in higher total health care expenditure, both

per capita and per insured, because they attract individuals with a higher expenditure risk

and a higher moral hazard effect to the pool of the insured. These effects are quantitatively

very small for the policy that increases coverage by 10%. Expanding Medigap coverage to

all individuals has a much larger effect: this policy would increase per capita health care

expenditure by about $1,000 due to moral hazard effect. The welfare consequences of these

policies is obviously an important issue that warrants further research.

Appendix

A-1. Prior Distributions

We specify the following prior distributions:

1. α0 ∼ N(α0, h
−1
α0

), where α0 = 0 and the prior variance h−1
α0

= 0.4. This specification

implies that for an individual whose probability of Medigap coverage is equal to 0.5,

the effect of a one sample standard deviation increase in expected expenditure (in

Medicare only state) on this probability is centered at zero, while the 1st, 25th, 75th
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and 99th percentiles of this effect are -0.31, -0.10, 0.10, 0.31, respectively.32 That is,

this prior reflects the belief that the effect of E∗i is not very large, but still places a

non-negligible probability on the event that a one standard deviation increase in E∗i

can change the Medigap coverage substantially (e.g., from 0.5 to 0.80 or 0.20).

2. α ∼ N
(
α,H−1

α

)
, where α = 0 and the variance-covariance H−1

α is a diagonal matrix

which allows for reasonable prior uncertainty about the effects of the variables on the

probability of Medigap coverage. In Table A-1 we present the diagonal elements of H−1
α1

for the continuous variables, as well as the implied effects of a one sample standard

deviation increase in these variables on the probability of Medigap coverage at the

Medigap probability of 0.5.33 The diagonal elements of H−1
α1

for the intercept and for

the indicator variables (i.e., census division, gender, education and income categories)

are set to 1, so the prior distribution of the effect of increasing the indicator variables

from 0 to 1 (evaluated at a Medigap probability of 0.5) are -0.49, -0.23, 0.23, 0.49 at

1st, 25th and 75th and 99th percentiles respectively.

3. βj ∼ N
(
β,H−1

β

)
for j = 1, . . . ,m. We specify that β = [E,0KE−1]′, where E is

the sample average of expenditure in the MCBS subsample and KE is the size of xei.

The precision matrix Hβ = 0.1 ·∑i∈MCBS xei · xe
′
i/(N

M · V ar(E)), where V ar(E) is

the sample variance of expenditure in the MCBS subsample. This prior specification is

32Because the expected expenditure in the Medicare only state E∗i is a latent variable, its distribution across
individuals is unknown until the estimation is completed. To set the prior variance of α0 we approximate E∗i
by the health expenditure risk computed using the FKS imputation methodology. In particular, we compute
the expenditure risk as xeib, where b is a vector of least squares coefficients on health status characteristics
xei from the regression of health care expenditure on xei and the Medigap insurance status in the MCBS
subsample. The sample standard deviation of the imputed expenditure is equal to 0.59 for the expenditure
measured in tens thousands of dollars.

33Similarly, the distribution of σ2
si across the individuals in the sample is not known until the estimation is

completed. To set the prior variance of α1 we approximate σ2
si by the imputed health expenditure variance

computed using the FKS imputation methodology. In particular, we impute the expenditure variance as
xeiv, where v is a vector of least squares coefficients on heath status characteristics xei from the regression
of (Ei − xeib − Ii · bI)2 on xei and the Medigap insurance status in the MCBS subsample. The sample
standard deviation of the imputed variance of expenditure is equal to 2.3 for the expenditure measures in
tens thousands of dollars.
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Table A-1: Prior distribution of α1

Variable Prior
Variance

1st, 25th, 75th, 99th
percentiles of marginal
effect

σ2
si 0.01 -0.20, -0.06, 0.06, 0.20
σ2
si · risktol∗ 0.025 -0.09, -0.03, 0.03, 0.09

Age] 1.5 -0.36, -0.13, 0.13, 0.36
Age2 3
Age3 3
risktol 10 -0.35, -0.12, 0.12, 0.35
cogn 3 -0.39, -0.14, 0.14, 0.39
finpln 0.15 -0.39, -0.14, 0.14, 0.39
praliv75 0.35 -0.39, -0.14, 0.14, 0.39
∗ This marginal effect corresponds to the change in
the effect of σ2

si brought about by two HRS sample
standard deviations change in risk tolerance.
] The marginal effect corresponds to the total effect
when age changes by one sample standard deviation.

based on the prior for the normal linear regression model proposed in Geweke (2005),

Chapter 5. It specifies considerable prior uncertainty about the effects of a one standard

deviation change in a covariate on the expenditure. In particular, the implied 1st and

99th percentiles of the effect on expenditure of a one standard deviation increase in

any of the covariates is ± 18.5 thousand dollars or more, which is enough to take

expenditure from the 50th to the 90th percentile of it’s sample distribution.

4. γj ∼ N(γ, h−1
γ ), where γ = 0 and hγ = 0.01 for j = 1, ...,m. This prior allows for

substantial prior uncertainty about the effect of Medigap on health expenditure, e.g.

the 1st and 99th percentiles of this effect are ±23.3 thousand dollars.

5. Shj ∼ χ2 (V ), where V = 1 and S = 0.59 for j = 1, ...,m. This prior allows for

substantial prior uncertainty about the type-specific variance of Êi. The interval con-

structed of the 10th and 90th percentiles of the prior distribution of 1/hj is [0.63, 108],

which contains the variance of the observed expenditure (equal to 2.13 for expenditure

measured in tens of thousands of dollars).
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6. λk ∼ N
(
λk,H

−1
λk

)
for k = 1, ..., 4, where λk = [ck,0Kc−1]′, ck denotes sample average

of cki in the HRS subsample, and Kc is the number of covariates in the vector xci. The

prior precision Hλk =
∑
i∈HRS xci ·xc

′
i/(N

H ·V ar(ck)) for k = 1, ..., Kc, where V ar(ck)

is the sample variance of ck in the HRS subsample. The prior distributions of λk are

independent.

7. V −1
c ≡ Hc ∼ Wishart

(
V c, S

−1
c

)
, so that the expectation of Hc is equal to V c ·S−1

c . We

set V c = 4 and specify that Sc is a diagonal matrix with diagonal elements hc,kk equal

to V c · 0.7 ·V ar(ck). This prior is based on that for the normal linear regression model

proposed in Geweke (2005), Chapter 5, and specifies that for each ck the population

multiple correlation coefficient 1 − 1
V ar(ck)hc,kk

is equal to 0.3 at the prior expectation

of Hc. The prior probability that this coefficient is greater than 50% is 23%.

8. s22h22 ∼ χ2 (V σ), where V σ = 1 and s22 = 0.039. This prior sets the population

multiple correlation coefficient 1 − 1
V ar(E∗i )h22

to 0.90 at the prior expectation of h22.

This reflects a prior belief that the fraction of the variance in expected expenditure

E∗i due to unobserved determinants is much lower than that due to the wide array of

observed health status characteristics that we use.34 It seems plausible that expected

expenditure is mostly due to observable health factors. However, our prior also allows

for substantial prior variability in this coefficient. For example, the prior probability

that it is less than 0.30 is 0.31. At the same time, the prior of h22 is flexible enough

that unobserved factors can account for all variability in health care expenditure: the

prior probability that 1/h22 is greater than the sample variance of Ei (equal to 2.13

for expenditure measured in tens thousands of dollars) is 0.11.

9. σ12 ∼ N
(
σ12, h

−1
12

)
, where σ12 = 0 and h−1

12 = 50. Together, the prior specifications

34To set this prior distribution we approximate the sample distribution of E∗i by the imputed health care
expenditure in Medicare only state, as described in the footnote to the discussion of the prior of α0 (bullet
point 1). Hence, we set V ar(E∗) to 0.592 for E∗ measured in tens thousands of dollars.

58



of h22 and σ12 imply a significant uncertainty about the strength of the relationship

between the unobservables, i.e. it specifies that the 1st, 25th, 75th and 99th percentiles

of the prior distribution of the correlation coefficient between ε1 and ε2, σ12√
(1+h22·σ2

12)h−1
22

,

are -0.91, -0.25, 0.25, 0.91, respectively.

10. δj ∼ N
(
δ,H−1

δ

)
for j = 1, . . . ,m − 1, where we specify δ = 0 and Hδ = 0.1 ·∑

i∈MCBS xwi · xw
′
i/N

M .

A-2. Posterior Simulation Algorithm

To obtain the posterior distribution of parameters of the model we construct a Gibbs sam-

pling algorithm. We split the parameters vector into several blocks introduced in section

3.3 so that it is relatively easy to sample from the conditional posterior distributions of

each block. Let θ−θk denote the vector of parameters θ with the block of parameters θk

removed. The Gibbs sampler iteratively draws from the conditional posterior distributions

of the following blocks of parameters and latent data:

1. The posterior conditional distribution of α0, p(α0|θ−α0 , Ê, I∗,Cm, s,W,data), is pro-

portional to the product of it’s prior density p(α0) given in Section A-1 and the density

of observable and latent data p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, α0,θ−α0) given in equa-

tion (21). This distribution is not of any known form and is sampled using the random

walk Metropolis-Hastings algorithm. In particular, on iteration n the algorithm draws

a proposal value α̃0 from N(αn−1
0 , vα0), where the subscript n − 1 indicates the value

of α0 from a previous iteration of the Gibbs sampler. The proposal α̃0 is accepted as

the new draw αn0 with probability

ρα0 = min{1, p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, α̃0,θ−α0)p(α̃0)

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, αn−1
0 ,θ−α0)p(α

n−1
0 )
}.
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The variance of the proposal distribution vα0 was set so that 45% of the new draws

were accepted, as recommended in Roberts, Gelman, and Gilks (1997).

2. The posterior conditional distribution of α, p(α|θ−α, Ê, I∗,Cm, s,W,data), is propor-

tional to the product of it’s prior density p(α) given in Section A-1 and the density of

observable and latent data p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X,θ) given in equation (21).

To derive the posterior conditional distribution of α we first need to establish some

notation.

Let V11 = 1 +
σ2
12

σ22
+ 2α0σ12 + α2

0σ22 and V12 = σ12 + α0σ22. Without loss of generality

assume that the observations are arranged so that the first NM observations belong to

MCBS subset, and the last NH belong to the HRS subset. Let Ĩ∗i = I∗i − α0β
′
si

xei,

and
˜̃
I
∗

i = Ĩ∗i − V12
σ2
si

+σ22
(Êi − β′sixei − γsiIi). Let Ĩ

∗
S denote the vector of elements Ĩ∗i

for i = 1, ..., NM (MCBS observations), while Ĩ
∗
1−S be the vector of elements Ĩ∗i for

i = NM + 1, ..., N (HRS observations). Let
˜̃
I
∗

S be defined similarly for the elements˜̃
I
∗

i , i = 1, ..., NM (MCBS observations). Also, let ZS be the matrix with the rows

[σ2
si
, σ2

si
· C1i,xi′i, C1i, ..., C4i] for i = 1, ..., NM , while Z1−S be the matrix with these

rows for i = NM + 1, ..., N , where Cki = cmki · Si + coki · (1− Si).

Then, it can be shown that the posterior conditional distribution of α is given by:

p(α|θ−α, Ê, I∗,Cm, s,W,data) ∼ N(α,H
−1

α ),

where

Hα = Hα +
1

V11

Z
′

1−SZ1−S + Z
′

SQαZS

and

α = H
−1

α [Hαα+
1

V11

Z
′

1−S Ĩ
∗
1−S + Z

′

SQα
˜̃
I
∗

S],

and where Qα is the NM × NM diagonal matrix with the iith element given by
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1

V11−
V 2
12

σ2si
+σ22

.

3. The posterior conditional distribution of βj, p(βj|θ−βj , Ê, I∗,Cm, s,W,data), is pro-

portional to the product of it’s prior density p(βj) given in Section A-1 and the density

of observable and latent data given in equation (21). To derive this distribution for

j = 1, ...,m we need to establish the following notation:

Let Î∗i = I∗i − [σ2
si
, σ2

si
· C1i,xi′i, C1i, ..., C4i]α, Ẽi = Êi − Iiγsi , x̃ei = α0 · xei. Define

XEj
S and X̃E

j

S as the matrices with the rows xei and x̃ei respectively for observations

i such that si = j and i ∈ MCBS. Let XEj
1−S and X̃E

j

1−S be similarly constructed

matrices for observations i ∈ HRS. Similarly, let Î
∗j
S and Î

∗j
1−S denote the vectors of Î∗i

for i with si = j and i ∈MCBS, or si = j and i ∈ HRS, respectively. Let Ẽ
j

S denote

the vector of Ẽi for i such that si = j and i ∈ MCBS. Also, let the matrix F j with

the elements f jkl be defined as

F j =

 V11 V12

V12 σ22 + σ2
j


−1

.

Then for j = 1, ...,m the posterior conditional distribution of βj is independent of βl

for l 6= j and is given by:

βj|(θ−βj , Ê,Eo, I∗,Co,Cm, s,W,data) ∼ N(βj,H
−1

βj
),

where

Hβj = Hβ + f j11X̃E
j′

S X̃E
j

S + 2f j12X̃E
j′

SXEj
S + f j22XEj′

SXEj
S +

1

V11

X̃E
j′

1−SX̃E
j

1−S
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and

βj = H
−1

βj
[Hββ+f j11X̃E

j′

S Î
∗j
S +f j12X̃E

j′

S Ẽ
j

S+f j12XEj′

S Î
∗j
S +f j22XEj′

S Ẽ
j

S+
1

V11

X̃E
j′

1−S Î
∗j
1−S].

4. The posterior conditional distribution of γj, p(γj|θ−γj , Ê, I∗,Cm, s,W,data), is pro-

portional to the product of it’s prior density p(γj) given in Section A-1 and the

density of observable and latent data given in equation (21). To derive the poste-

rior conditional distribution of γj we need to establish the following notation. Let

Ĭ∗i = I∗i − α0xeiβsi − [σ2
si
, σ2

si
·C1i,xi′i, C1i, ..., C4i]α, and Ĭ

∗j
S denote a vector of Ĭ∗i for i

with si = j and i ∈MCBS. Also, let Ĕi = Êi − xeiβsi , and Ĕ
j

S denote a vector of Ĕi

for i with si = j and i ∈ MCBS. Let IjS denote the vector of Ii for i with si = j and

i ∈MCBS.

Then, the posterior conditional distribution of γj for j = 1, ...m is independent of l 6= j

and is given by:

γj|(θ−γj , Ê, I∗,Cm, s,W,data) ∼ N(γj, h
−1

γj
),

where

hγj = hγ + f j22I
j′

S Ij
′

S

and

γj = h
−1

γj
(hγγ + Ij

′

S (f j22Ĕ
j

S + f j12Ĭ
∗j
S )).

5. The posterior conditional distributions of hj for j = 1, ...m are proportional to the

product of prior density of hj, p(hj) given in Section A-1 and the density of observable

and latent data as defined in (21). It is easy to see that the posterior conditional

distributions of hj for j = 1, ...m are independent of those of hl for l 6= j. For all j
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the posterior conditional distribution of hj is not of any known form and is sampled

using the Metropolis-Hastings algorithm. In particular, on iteration n we draw the

proposal value h̃j from gamma distribution with the parameters (vj
2
,

2h
(n−1)
j

vj
). Note,

that the expected value of this distribution is equal to h
(n−1)
j . We set the parameters vj

for j = 1, ...,m so that the new draws are accepted with a probability of 0.45. Denote

the probability density of this proposal gamma distribution as g(h̃j|h(n−1)
j ). We accept

h̃j as the new draw hnj with probability

ρhj = min{1,
p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, h̃j,θ−hj)p(h̃j)g(h

(n−1)
j |h̃j)

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, h(n−1)
j ,θ−hj)p(h

(n−1)
j )g(h̃j|h(n−1)

j )
}

6. The posterior conditional distribution of Λ, p(Λ|θ−Λ, Ê, I
∗,Cm, s,W,data), is propor-

tional to the product of it’s prior density p(Λ) given in Section A-1 and the density of

observable and latent data given in equation (21). To obtain the conditional posterior

distribution of Λ we need to establish the following notation. Let XC denote the

matrix of covariates xci for observations i = 1, ..., N , i.e. XC = [xc1, ...,xcN ]′. Let

DK denote the identity matrix of size K and let ZΛ = D4⊗XC, where ⊗ denotes the

Kroneker product.

Then, the posterior conditional distribution of Λ is given by:

Λ|(θ−Λ, Ê, I
∗,Cm, s,W,data) ∼ N(Λ,H

−1

Λ ),

where

HΛ = HΛ + Z
′

Λ(Vc ⊗DN)−1ZΛ

and

Λ = H
−1

Λ [HΛΛ + Z
′

Λ(Vc ⊗DN)−1C].
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In the above expressions HΛ is a block-diagonal matrix with the diagonal blocks Hλk ,

k = 1, ..., 4, Λ = [λ′1,λ
′
2,λ

′
3,λ

′
4]′, C = [C

′

1, ...,C
′

4]′, and for k = 1, ..., 4 the vectors Ck

consist of the elements Cki = cmki · Si + coki · (1− Si).

7. The posterior conditional distribution of the inverse of the variance-covariance matrix

of the SAS variables missing from the MCBS data, Hc ≡ V −1
c , p(Hc|θ−Hc , Ê, I∗,Cm,W, s,data),

is proportional to the product of its prior probability given in Section A-1 and the den-

sity of observable and latent data as defined in (21), and is given by:

Hc|(θ−Hc , Ê,Eo, I∗,Cm,Co,W, s,data) ∼ W ((Sc + Sc)
−1, V c +N),

where

Sc =


(C1 −XCλ1)′(C1 −XCλ1) · · · (C1 −XCλ1)′(C4 −XCλ4)

...
. . .

...

(C4 −XCλ4x)
′(C1 −XCλ1) · · · (C4 −XCλ4)′(C4 −XCλ4)

 .

8. The posterior conditional distribution of h22 is proportional to the product of it’s prior

density p(h22) given in Section A-1 and the density of observable and latent data given

in equation 21. This distribution is not of any known form and is sampled using the

Metropolis-Hastings algorithm.

In particular, on iteration n we draw the proposal value h̃22 from gamma distribution

with the parameters (
vs2
2
,

2hn−1
22

vs2
). Note, that the expected value of this distribution is

equal to hn−1
22 . We set the parameter vs2 so that the acceptance rate is about 45%, as

recommended in Roberts, Gelman, and Gilks (1997). Denote the probability density

of this proposal gamma distribution as g(h̃22|hn−1
22 ). We accept h̃22 as the new draw
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hn22 with probability

ρσ22 = min{1, p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, h̃22,θ−h22)p(h̃22)g(hn−1
22 |h̃22)

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, hn−1
22 ,θ−h22)p(h

n−1
22 )g(h̃22|hn−1

22 )
}

9. The posterior conditional distribution of σ12 is proportional to the product of it’s prior

density p(σ12) given in Section A-1 and the density of observable and latent data given

in equation (21). This distribution is not of any known form and is sampled using the

random walk Metropolis-Hastings algorithm.

In particular, on iteration n draw the proposal value σ̃12 from N(σn−1
12 , vσ12). Accept

σ̃12 as the new draw σn12 with probability

ρσ12 = min{1, p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, σ̃12,θ−σ12)p(σ̃12)

p(I∗, I, Ê,Eo,Co,Cm, s,W|S,X, σn−1
12 ,θ−σ12)p(σ

n−1
12 )
}.

The variance of the proposal distribution vσ12 was set so that 45% of the new draws

are accepted, as recommended in Roberts, Gelman, and Gilks (1997).

10. The posterior conditional distribution of the vector of coefficients δj which determine

the latent type propensities W̃ij is proportional to the product of the prior density

of δj given in Section A-1 and (21). It is easy to see that the posterior conditional

distributions of δj are independent across j and are given by:

δj|(θ−δj , Ê, I∗,Cm,W, s,data) ∼ N(δj,H
−1

δ )

where

Hδ = Hδ + XW′XW,

δj = H
−1

δ [Hδδ + XW′w̃j] for j = 1, ...,m− 1.
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11. Latent utility of health insurance I∗i ∼ p(I∗i |θ, Ê, I∗−i,Cm, s,data). From (21) the

kernel of this posterior distribution for i ∈MCBS is given by

exp(−(I∗i − α0xeiβsi − α1σ
2
si
− α2σ

2
si
C1i −α′3xii − [C1i, ..., C4i]α4

− V12

σ2
si

+ σ22

(Êi − β′sixei − γsiIi))2/(2(V11 −
V 2

12

σ2
si

+ σ22

)))

· (ι(I∗i ≥ 0) · ι(Ii = 1) + ι(I∗i < 0) · ι(Ii = 0)),

while for i ∈ HRS it is given by

exp(−(I∗i − α0xeiβsi − α1σ
2
si
− α2σ

2
si
C1i −α′3xii − [C1i, ..., C4i]α4)2/(2V11))

· (ι(I∗i ≥ 0) · ι(Ii = 1) + ι(I∗i < 0) · ι(Ii = 0)).

These can be recognized as kernels of truncated normal distributions. Thus,

I∗i |(θ, Ê, I∗−i,Cm,W, s,data) ∼ TNR(Ii)(I
∗
i , VI∗),

where TNR(I)(a, b) denotes normal distribution with mean a and variance b truncated

to interval R(I), R(0) = (−∞, 0], R(1) = (0,∞). For i ∈MCBS we have

I
∗
i = α0xeiβsi + α1 · σ2

si
+ α2 · σ2

si
cm1i +α′3xii +α′4c

m
i +

V12

σ2
si

+ σ22

(E∗i − β′sixei − γsiIi),

VI∗ = V11 −
V 2

12

σ2
si

+ σ22

,

while for i ∈ HRS we have

I
∗
i = α0xeiβsi + α1 · σ2

si
+ α2 · σ2

si
co1i +α′3xii +α′4c

o
i
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and

VI∗ = V11.

12. Notional expenditure Êi ∼ p(Êi|θ, Ê−i, I∗,Cm,W, s,data, Si = 1). The kernel of this

posterior distribution is given by

exp(−
(Êi − xeiβsi − γsiIi −

V12
V11

(I∗i − α0xeiβsi − α1 · σ2
si
− α2 · σ2

si
cm1i −α′3xii −α′4cmi ))2

2(σ2
si

+ σ22 − V 2
12

V11
)

)

· (ι(Eo
i = Êi) · ι(Êi ≥ 0) + ι(Eo

i = 0) · ι(Êi < 0)). (26)

Thus, if Ei = 0 we draw notional expenditure from:

Êi|(θ, Ê−i, I∗,Cm,W, s,data, Si = 1) ∼ TN(−∞,0](Ei, σ
2
si

+ σ22 −
V 2

12

V11

)

where Ei = xeiβsi + γsiIi + V12
V11

(I∗i − α0xeiβsi − α1 · σ2
si
− α2 · σ2

si
cm1i −α′3xii −α′4cmi ),

while if Ei > 0 we simply set Êi = Ei.

13. SAS variables missing from the MCBS: cmi ∼ p(cmi |θ, Ê, I∗,Cm
−i,W, s,data, Si = 1).

The kernel of this posterior distribution is given by

exp(−(I∗i − α0xeiβsi − α1σ
2
si
− α2σ

2
si
cm1i −α′3xii −α′4cmi

− V12

σ2
si

+ σ22

(Êi − β′sixei − γsiIi)2/(2(V11 −
V 2

12

σ2
si

+ σ22

)))

· exp(−(cm1i −XCiΛ)′V −1
c (cm1i −XCiΛ)/2)

This kernel can be recognized as that of p(cmi |θ, Êi,xii,xei; I
∗
i ), where the joint con-

ditional distribution p(I∗i , c
m
i |θ, Êi,xii,xei) is multivariate normal with mean

 I
c
i

ci

 ≡
 α0xeiβsi + α1σ

2
si

+ α2σ
2
si
· xc′iλ1 +α′3xii +α′4XCiΛ + V12

σ2
si

+σ22
(Êi − β′sixei − γsiIi)

XCiΛ
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and variance matrix:

Vc
si

=

 vc11si
α′4Vc + α2σ

2
si

v1·
c

Vcα4 + α2σ
2
si

v·1c Vc

 ≡
 Vc

si11 Vc
si12

Vc
si21 Vc



where

vc11si
= V11 −

V 2
12

σ22 + σ2
si

+α′4Vcα4 + α2
2σ

4
si
· v11

c + 2α2σ
2
si

4∑
l=1

·α4l · v1l
c ,

and where vklc denotes klth element of Vc, while vk.c and v.kc denote kth row and kth

column of Vc, respectively. Using the results for the multivariate normal distribution

the posterior conditional distribution of cmi is given by

cmi |θ, Ê, I∗,Cm
−i,W, s,data, Si = 1 ∼ N(ci+Vc′

si12V
c−1

si11(I∗i −I
c

i), Vc−Vc′

si12V
c−1

si11V
c
si12).

14. The conditional posterior density kernel of latent type propensities W̃i is given by:

exp(−W̃ 2
im/2−

m−1∑
j=1

(W̃ij − xw′iδj)
2/2) (27)

·
m∑
j=1

(
m∏
l=1

ι(W̃il ∈ (−∞, W̃ij])

)
(28)

· gw(j),

where

gw(j) =

{
exp(−

(I∗i − α0xeiβj − α1σ
2
j − α2σ

2
jC1i −α′3xii − [C1i, ..., C4i]α4)2

2V11

)

}Si=0

·
{

(V11 −
V 2

12

σ2
j + σ22

)−
1
2 · exp

(
−
[
I∗i − α0xeiβj − α1σ

2
j − α2σ

2
jC1i −α′3xii

− [C1i, ..., C4i]α4 −
V12

σ2
j + σ22

(Êi − α0xeiβj − γjIi)
]2

/(2(V11 −
V 2

12

σ2
j + σ22

))
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· (σ2
j + σ22)−

1
2 · exp(−

(Êi − α0xeiβj − γjIi)2

2(σ2
j + σ22)

)


Si=1

Draws from this distribution are obtained by the Metropolis within Gibbs step sug-

gested in Geweke and Keane (2007). The candidate draw W̃
∗
i is obtained from the

normal density with the kernel given by (27). The function (28) then determines the

candidate type j∗ : W̃ij∗ ≥ W̃il for all l = 1, ...,m. The candidate values are then

accepted as new draws W̃
n

i and sni with probability

min

{
gw(j∗)

gw(j(n−1))
, 1

}
,

where j(n−1) denotes observation’s i type from the previous iteration, i.e. j(n−1)=sn−1
i .

We checked that this algorithm was correctly implemented using the joint distribution tests

of Geweke (2004).

A-3. Inclusion of Exogenous Variables in the Equations of the

Model

Table A-2 shows specification of the equations of the model in terms of exogenous covariates

included in each equation. As discussed in section 3.1, to identify selection and moral hazard

effects we use cross-equation exclusion restrictions. In particular, we assume that (i) health

status variables (i.e. health factors 2-23) and survey year indicator affect insurance status

only indirectly (i.e. through their effect on expenditure risk E∗i ), and (ii) SAS variables, such

as education, income, risk tolerance, cognitive ability, longevity expectations and financial

planning horizon, enter the insurance equation but not the expenditure risk equation, once

we condition on health status variables. That is, these SAS variables may affect one’s health

indirectly by shifting investment in health, but once we condition on health itself, they have
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no direct effect on one’s health expenditure risk.

The demographic characteristics (i.e. marital status, ethnicity and interactions of gender

with marital status and age) are included in both the expenditure and the insurance equations

(in the full model). These variables are included in the expenditure equation to capture

differences in health status and tastes for medical care between different demographic groups.

Similarly, these variables are included in the final specification of the insurance equation

to capture heterogeneity in tastes for insurance. We do not include these variables in the

baseline model because insurers cannot legally price Medigap policies based on race or marital

status.

The specification of the insurance equation (I∗i ) is the same as in FKS. In particular,

in addition to expenditure risk E∗i , the benchmark model includes only insurance pricing

variables (polynomial in age, gender and location of residence). The potential SAS vari-

ables (education, income, risk tolerance, cognitive ability, longevity expectations, financial

planning horizon, race and marital status) are progressively added to the insurance equation

in extended specifications. Hence, variables indicated by “SAS” in column 3 of Table A-2

correspond to the vector [xi′i, ci] (see equation (5)) in the full specification of the insurance

equation, and ci consists of variables indicated in the last four rows of column 3 (risktol,

cogn, finpln and praliv75).

The variables marked by “Yes” in column 4 of Table A-2 correspond to the vector xei of

characteristics included in the specification of the expenditure risk E∗i (see equation (6)).

The variables marked by “Yes” in column 5 of Table A-2 correspond to the vector xwi

of variables affecting type propensities W̃ (see equation (9)). Note, that the equations for

type propensities include most of the variables included in xei, with the exception of the

polynomial terms in age and the interactions of age with gender and gender with marital

status. We omit these variables to reduce the number of parameters, as the specification for

conditional mean of expenditure is already very flexible.
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Finally, the model for missing SAS variable (SAS) includes most of the exogenous vari-

ables used in the analysis to maximize predictive power. The variables marked by “Yes” in

column 6 of Table A-2 correspond to the vector xci of exogenous variables included in the

prediction equation (7).
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Table A-2: Exogenous variables included in equations for insurance status, expenditure risk,
type probabilities and the prediction model for the SAS variables.

Variable Description I∗ E∗ W̃ SAS

1 2 3 4 5 6

Female Indicator for female Yes Yes Yes Yes
Age Age, years Yes Yes Yes Yes
Age2 Age squared Yes Yes Yes
Age3 Age cubed Yes Yes Yes
Married Indicator for being married SAS Yes Yes Yes
Age*Female Interaction of age polynomial with Female SAS Yes
Married*Female Interaction of Married and Female SAS Yes
Health factor 1 Health Status Factor Yes Yes Yes
Health factor 3 Health Status Factor Yes Yes Yes
Health factor 7 Health Status Factor Yes Yes Yes
Health factor 8 Health Status Factor Yes Yes Yes
Health factor 10 Health Status Factor Yes Yes Yes
Health factor 11 Health Status Factor Yes Yes Yes
Health factor 17 Health Status Factor Yes Yes Yes
Health factor 20 Health Status Factor Yes Yes Yes
Health factor 22 Health Status Factor Yes Yes Yes
Health factor 23 Health Status Factor Yes Yes Yes
Black Indicator for race black SAS Yes Yes Yes
Hispanic Indicator for Hispanic SAS Yes Yes Yes
Survey year Year Yes Yes
hgc: ls8th Education: less than high school SAS Yes
hgc: somehs Education: some high school SAS Yes
hgc: hs Education: high school SAS Yes
hgc: somecol Education: some college SAS Yes
hgc: college Education: college SAS Yes
hgc: gradschl Education: grad. school SAS Yes
hgc: nr Education non-response SAS Yes
inc 5k-10k Income: $5-10 thousand SAS Yes
inc 10k-15k Income: $10-15 thousand SAS Yes
inc 15k-20k Income: $15-20 thousand SAS Yes
inc 20k-25k Income: $20-25 thousand SAS Yes
inc 25k-30k Income: $25-30 thousand SAS Yes
inc 30k-35k Income: $30-35 thousand SAS Yes
inc 35k-40k Income: $35-40 thousand SAS Yes
inc 40k-45k Income: $40-45 thousand SAS Yes
inc 45k-50k Income: $45-50 thousand SAS Yes
inc 50plus Income: $50+ thousand SAS Yes
risktol Risk tolerance SAS
cogn Congnition factor SAS
finpln Financial planning horizon SAS
praliv75 Subjective probability to live to be 75 or more SAS

∗ Note: All equations include indicators for census divisions. The variables labelled “SAS” are not included in the
baseline specification of the insurance equation (I∗i ). They are added later as potential sources of adverse/advantageous
selection. The baseline insurance equation only includes pricing variables and expenditure risk.
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