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Abstract

This is a draft Chapter from a book by the authors on “Lévy Driven Volatility Models”.
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6.1.1 Estimation of GH Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.2 Confidence intervals via profile likelihoods . . . . . . . . . . . . . . . . . . . . 41

6.2 Model misspecification: robust standard errors . . . . . . . . . . . . . . . . . . . . . 42
6.3 Further empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3.1 Six daily exchange rate movements . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.2 Daily equity indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Quadratic variation 46

7.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Brownian motion and quadratic variation . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3 Realised QV process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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1 What is this Chapter about?

In this Chapter we provide a first course on Lévy processes in the context of financial economics.

The focus will be on probabilistic and econometric issues; understanding the models and assessing

their fit to returns on speculative assets. The Chapter will delay the discussion of some of the

technical aspects of this material until Barndorff-Nielsen and Shephard (2012a). Our stochastic

analysis primer Barndorff-Nielsen and Shephard (2012b) may be of help to readers without a strong

background in probability theory. Throughout we hope our treatment will be as self-contained as

possible.

This long Chapter has 12 other Sections, whose goals are to:

• Build continuous time random walk models using the concept of infinite divisibility.

• Introduce Lévy processes with non-negative increments.

• Extend the analysis to Lévy processes with real increments.

• Introduce time change, where we replace calendar time by a random clock.

• Use statistical methods to fit some common Lévy processes to financial data.

• Introduce quadratic variation, a central concept in econometrics and stochastic analysis.
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• Briefly discuss stochastic analysis in the context of Lévy processes.

• Introduce various methods for building multivariate Lévy processes.

• Discuss the relationship between stochastic volatility and general semimartingales.

• Draw conclusions to the Chapter.

• Provide some exercises.

• Discuss the literature associated with Lévy processes.

Lévy processes can only provide a rather partial description of asset prices, for they have

independent increments and so ignore volatility clustering. However, later developments in this

book will extend the setting to deal with that issue.

2 What is a Lévy process?

2.1 The random walk

The most basic model of the logarithm of the price of a risky asset is a discrete time random walk.

It is built by summing independent and identically distributed (i.i.d.) random variables C1, C2, ...

to deliver

Yt =

t∑

j=1

Cj , with Y0 = 0, t = 0, 1, 2, ... .

The process is moved by the i.i.d. increments

Yt+1 − Yt = Ct+1. (1)

Hence future changes in a random walk are unpredictable.

What is the natural continuous time version of this process? There are at least two strong

answers to this question.

2.2 Brownian motion

The first approach is based on a central limit type result. Again suppose that C is an i.i.d. sequence

whose first two moments exist. Then, for a given n > 0, define the partial sum

Y
(n)
t =

1√
n

⌊tn⌋∑

j=1

{Cj − E(C1)} , t ∈ R≥0, (2)

where t represents time and ⌊a⌋ denotes the integer part of a. It means that over any fixed interval

for t the process is made up of centred and normalised sums of i.i.d. events. We then allow n,
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the number of these events in any fixed interval of time of unit length, to go off to infinity. This

is often labelled “in-fill” asymptotics. As a result Y
(n)
t obeys a central limit theory and becomes

Gaussian. Further, this idea can be extended to show that the whole partial sum, as a random

function, converges to a scaled version of Brownian motion, as n goes to infinity. At first sight this

suggests the only reasonable continuous time version of a random walk, which will sum up many

small events, is Brownian motion. This insight is, however, incorrect.

2.3 Infinite divisibility

Our book follows a second approach. Suppose that the goal is to design a continuous time process

Yt such that Y1, its value at time 1, has a given distribution D. We can divide the time from 0

until 1 into n pieces of equal length. The corresponding increments are assumed to be independent

from a common distribution D(n) such that the sum

Y
(n)
t =

⌊tn⌋∑

j=1

C
(n)
j , where C

(n)
j

i.i.d.∼ D(n),

has the distribution D when t = 1. Then as n increases the division of time between zero and one

becomes ever finer. In response, the increments and their distribution D(n) also change, but by

construction D, the distribution of the sum, is left unchanged. A simple example of this is where

Y1 ∼ Po(1), a Poisson random variable with mean 1, then if

Y
(n)
t =

⌊tn⌋∑

j=1

C
(n)
j , where C

(n)
j

i.i.d.∼ Po(1/n),

this produces a random walk with independent Poisson increments which sum to a Poisson random

variable. Hence this process makes sense even as n goes to infinity and so this type of construction

can be used to introduce a continuous time model — the Poisson process. A second example is

where

Y
(n)
t =

⌊tn⌋∑

j=1

C
(n)
j , where C

(n)
j

i.i.d.∼ N(0, 1/n),

then as n→ ∞ this process converges to Brownian motion.

The class of distributions for which this general construction is possible is that for which D

is infinitely divisible. The resulting processes are called Lévy processes. Examples of infinitely

divisible distributions include, focusing for the moment only on non-negative random variables, the

Poisson, gamma, reciprocal gamma, inverse Gaussian, reciprocal inverse Gaussian, F and positive

stable distributions. A detailed technical discussion of infinite divisibility will be given in Barndorff-

Nielsen and Shephard (2012a).
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2.4 Lévy processes and semimartingales

The natural continuous time version of the discrete time increment given in (1) is, for any value of

s > 0,

Yt+s − Yt, t ∈ [0,∞) .

Increments play a crucial role in the formal definition of a Lévy process.

Definition 1 Lévy process. A càdlàg stochastic process Y = {Yt}t≥0 with Y0 = 0 is a Lévy process

if and only if it has independent and (strictly) stationary increments.

The càdlàg assumption is an important one which is discussed in detail below. For the moment

let us focus on the independence and stationarity assumption. This means that the shocks to the

process are independent over time and that they are summed, while the stationarity assumption

specifies that the distribution of Yt+s − Yt may change with s but does not depend upon t. The

independence and stationarity of the increments of the Lévy process implies that the cumulant

function of Yt

C {θ ‡ Yt} = log [E exp {iθYt}]

= t log [E exp {iθY1}]

= tC {θ ‡ Y1} ,

so the distribution of Yt is completely governed by the cumulant function of Y1, the value of the

process at time one.

If a Lévy process is used as a model for the log-price of an underlying asset then the increments

can be thought of as returns. Consequently Lévy based models provide a potentially flexible

framework with which to model the marginal distribution of returns. However, the returns will be

independent and identically distributed when measured over time intervals of fixed length. Thus

important serial dependencies such as volatility clustering are ignored.

A feature of some stochastic processes, including Brownian motion, is that they have continuous

sample paths with probability one. We need to relax this assumption. We will allow jumps but

require the process Y to be, with probability one, right continuous

lim
s↓t

Ys = Yt

and have limits from the left

Yt− = lim
s↑t

Ys.
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For such processes the jump at time t is written as

∆Yt = Yt − Yt−,

and the processes are said to be càdlàg (continu à droite, limites à gauche). We might, in par-

ticular, expect these types of jumps to appear in financial economics due to dividend payments,

microcrashes due to short-term liquidity challenges or news, such as macroeconomic announce-

ments. The similarly named property càglàd (continu à gauche, limites à droite), which has

lim
s↓t

Ys = Yt+ and Yt = lim
s↑t

Ys,

plays an important role in our stochastic analysis primer.

Semimartingales have a central role in modern stochastic analysis. They are càdlàg (by defini-

tion) and provide, in particular, a basis for the definition of a stochastic integral. Consequently it

is important to note that all Lévy processes Y are semimartingales (written Y ∈ SM). They also

have the property that

Pr(∆Yt > 0) = Pr(∆Yt < 0) = 0,

i.e. there are no fixed discontinuities.

For Y ∈ SM, if H is càdlàg then H− is locally bounded and the stochastic integral

Xt =

∫ t

0
Hu−dYu,

is well defined. This is often written in the more abstract notation as the process

X = H • Y.

More details of stochastic integrals are given in Barndorff-Nielsen and Shephard (2012b) and also

in Section 8.

3 Non-negative Lévy processes — subordinators

We start our more detailed discussion of Lévy processes by considering Lévy processes with non-

negative increments. Such processes are often called subordinators — the reason for this nomencla-

ture will become clear in Section 5. This is our focus for two reasons: (i) they are mathematically

considerably simpler, (ii) many of the models we build in this book will have components which

are Lévy processes with non-negative increments. The discussion of processes with arbitrary real

increments will be given in the next Section. As the processes are positive, it is natural to work

with the kumulant function in the form

K {θ ‡ Y1} = log {Eexp (−θY1)} , where θ ≥ 0.
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Occasionally the more standard cumulant function (or log Laplace transform)

K {θ ‡ Y1} = log {Eexp (θY1)} ,

where θ ∈ {φ : E exp(φY1) <∞}, will be used.

3.1 Examples

3.1.1 Poisson process

Suppose we count the number of events which have occurred from time 0 until t ≥ 0. The very

simplest continuous time model for this type of observation is a Lévy process with independent

Poisson increments, so that

Y1 ∼ Po(ψ), ψ > 0,

with density

fY1(y) =
e−ψψy

y!
, y = 0, 1, 2, ....

The process Y is called a (homogeneous) Poisson process and the mean of Y1, ψ, is often called

the intensity of this counting process. A simulated sample path of this process, when ψ = 1, is

given in Figure 1(a). It shows a jumping process, where the jumps are irregularly spaced in time

and are of equal size. The times at which events occur are called arrival times, and are written as

τ1, τ 2, ..., τ Yt .

For the Poisson process

K {θ ‡ Y1} = log [E exp {−θY1}]

= ψ(e−θ − 1)

= −ψ(1− e−θ).

Now we have that −tψ(1−e−θ), the kumulant function of Yt, corresponds to the kumulant function

for a Po(tψ).

The Poisson process as a semimartingale Let Y be a Poisson process with Y1 ∼ Po(ψ).

Then Y is of finite variation and hence Y is a semimartingale. We can write it in the form of a

semimartingale, as

Y = Y0 +A+M, (3)

where Y0 = 0,

At = E(Yt|F0) = ψt and Mt = Yt − ψt.
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Figure 1: Horizontal axis is time t, vertical is Yt. (a) Sample path of a homogeneous Poisson
process with intensity ψ = 1. (b) Corresponding compound Poisson process with Cj ∼ IG(1, 1).
code: levy graphs.ox.

The M process, which is often called a compensated Poisson process, is a mean-0 martingale, for

E(Mt+s|Ft) =Mt and E(Mt) = 0 for t, s ≥ 0. The A process is of finite variation.

As Y is a Poisson process, any stochastic integral X = H • Y simplifies to the random sum

Xt =

Yt∑

j=1

Hτj−

where τ1, τ 2, ..., τ Yt are the arrival times of Y .

3.1.2 Compound Poisson process

Suppose N is a Poisson process and C is an i.i.d. sequence of strictly positive random variables.

Then define a compound Poisson process as (for t ≥ 0)

Yt =

Nt∑

j=1

Cj , where Y0 = 0. (4)

That is, Yt is made up of the addition of a random number Nt of i.i.d. random variables. This is a

Lévy process for the increments of this process

Yt+s − Yt =

Nt+s∑

j=Nt+1

Cj

are independent and are stationary as the increments of the Poisson process are independent and

stationary.
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At this point it is important to note that there is no added flexibility if the distribution of the

C is allowed to have a positive probability of being exactly zero for this would, in effect, just knock

out or thin some of the Poisson process arrivals. This point will recur in our later exposition. It is

informative to note that for non-negative C

K {θ ‡ Y1} = log [E exp {−θY1}]

= log [EN1Eexp {−θY1} |N1]

= log
(
Eexp

[
N1K {θ ‡ C1}

])

= K
{
K(θ ‡ C1) ‡N1

}

= −ψ
{
1− expK (θ ‡ C1)

}
. (5)

Example 1 Figure 1(b) gives a simulation using Cj
i.i.d.∼ IG(1, 1), taking exactly the same Poisson

process draws as used in Figure 1(a). IG(1,1) is a special case of the inverse Gaussian law IG(δ, γ),

with density

δ√
2π
eδγy−3/2e−

1
2(δ

2y−1+γ2y), y ∈ R>0.

The resulting K {θ ‡ Y1} is

−ψ
(
1− exp

[
δ
{
γ −

(
γ2 + 2θ

)1/2}])
.

3.1.3 Negative binomial process

A negative binomial Lévy process Y requires the process at time one to follow a negative binomial

distribution Y1 ∼ NB(r, p), where r > 0, p ∈ (0, 1), with probability function

Pr(Y1 = y) =
Γ (r + y)

y!Γ (r)
pr (1− p)y , y = 0, 1, 2, ....

This implies

K {θ ‡ Y1} = r log p− r log
{
1− (1− p) e−θ

}
. (6)

So this is infinitely divisible, so supports a Lévy process. The form of the cumulant function implies

Yt ∼ NB(tr, p) — so this has a finite number of jumps over a finite time interval. Such processes

are called “finite activity” and in this case it looks somwhat like a Poisson process. However, the

spaces in times between arrivals are not uniformly distributed and the variance of the number of

arrivals in a fixed time interval will be bigger than the corresponding expected value. We will

discuss the relationship between these two processes in the Section 5 on time-change.
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3.1.4 Infinite activity subordinators

Gamma process The Poisson process and the compound Poisson process are by far the most

well-known non-negative Lévy processes in economics. The jumps happen, typically, rather rarely.

Consequently increments to these processes are often exactly zero, even when measured over quite

large time intervals. This feature of the process is fundamentally different from the gamma Lévy

process. A gamma Lévy process Y makes Y1 obey a gamma law

Y1 ∼ Γ(ν, α), ν, α > 0,

with density

fY1(y) =
αν

Γ (ν)
yν−1 exp (−αy) , y ∈ R>0. (7)

Here 2ν > 0 is thought of as a degrees of freedom parameter, controlling the skewness of the

distribution. The other parameter, α, is a scale parameter.

The kumulant function of the gamma distribution is

K {θ ‡ Y1} = ν log

(
1 +

θ

α

)
,

implying

K {θ ‡ Yt} = tν log

(
1 +

θ

α

)
,

and so Yt ∼ Γ(νt, α). The gamma process has the useful property that it has increments which

are strictly positive whatever small time interval has elapsed. Such Lévy processes are said to have

infinite activity (IA). This feature puts them apart from a compound Poisson process.

A sample path of a gamma process is drawn in Figure 2(a). The path is dominated by large

jumps and shows informally that the path of the process is not continuous (anywhere). It was

drawn by splitting time into intervals of length 1/2000 and sampling from the implied random

walk with increments taken from the Γ(ν/2000, α) distribution. Very similar paths are produced

by using smaller time intervals. The process is a rough upward trend with occasional large shifts.

In the special case of ν = 1, then

fY1(y) = α exp (−αy) , y ∈ R>0,

which is the exponential distribution Γ(1, α). Thus the exponential Lévy process has Yt ∼ Γ(t, α).

Inverse Gaussian process An inverse Gaussian (IG) Lévy process Y requires the process at

time one to follow an inverse Gaussian distribution Y1 ∼ IG(δ, γ), where δ > 0, γ ≥ 0, with density

fY1(y) =
δ√
2π
eδγy−3/2 exp

{
−1

2

(
δ2y−1 + γ2y

)}
, y ∈ R>0.
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Figure 2: Simulated Γ and IG Lévy processes, using intervals of length 1/2000. Code
levy graphs.ox.

This implies

K {θ ‡ Y1} = δ
{
γ −

(
γ2 + 2θ

)1/2}
.

Like the gamma process, the IG process has an infinite number of jumps in any small interval of

time. The form of the cumulant function implies Yt ∼ IG(tδ, γ).

A sample path of an IG Lévy process is drawn in Figure 2(b). The parameters were selected to

have the same mean and variance of Y1 as that used to draw the path of the gamma process given

in Figure 2(a). Again the process is a rough upward trend with occasional large shifts.

Some other non-negative processes A reciprocal (or inverse) gamma (RΓ) Lévy process Y

requires the process at time one to be a reciprocal gamma variable Y1 ∼ RΓ(ν, α), α, ν > 0, so that

Y −11 ∼ Γ(ν, α), with density

fY1(y) =
αν

Γ(ν)
y−ν−1 exp

(
−αy−1

)
, y ∈ R>0.

Only the moments of order less than ν exist for this distribution.

Sums of independent reciprocal gamma variables are not distributed as reciprocal gamma.

However, the reciprocal gamma is infinitely divisible (and so yields a Lévy process), although we

do not know the distribution of Yt in closed form. This makes simulation of this process non-trivial.

A lognormal (LN) Lévy process Y requires the process at time one to be a lognormal variable

12



Y1 ∼ LN(µ, σ2), σ2 ≥ 0, with infinitely divisible density

fY1(y) =
1√
2π
y−1 exp

{
− 1

2σ2
(log y − µ)2

}
, y ∈ R>0.

The proof that the lognormal is infinitely divisible is probabilistically challenging (cf. Thorin

(1977)) and not discussed here.

A reciprocal (inverse) Gaussian (RIG) Lévy process Y requires the process at time one to be a

reciprocal inverse Gaussian variable Y1 ∼ RIG(δ, γ), δ > 0, γ > 0, with density

fY1(y) =
γ√
2π
eδγy−1/2 exp

{
−1

2

(
δ2y−1 + γ2y

)}
, y ∈ R>0.

The corresponding kumulant function is

K {θ ‡ Y1} = −1

2
log
(
1 + 2θ/γ2

)
+ δγ

{
1−

(
1 + 2θ/γ2

)1/2}
.

By construction, Y −11 ∼ IG(γ, δ) provided δ > 0. Again sums of independent RIG variables are

not distributed as RIG, but the RIG distribution is infinitely divisible.

Generalised inverse Gaussian Lévy process Many of the above infinite activity processes

are special cases of the generalized inverse Gaussian (GIG) Lévy process. This puts

Y1 ∼ GIG(ν, δ, γ),

with GIG density

fY1(y) =
(γ/δ)ν

2Kν(δγ)
yν−1 exp

{
−1

2
(δ2y−1 + γ2y)

}
, y ∈ R>0, (8)

where Kν(·) is a modified Bessel function of the third kind (cf. Barndorff-Nielsen and Shephard

(2012c)). This density has been shown (Barndorff-Nielsen and Halgreen (1977)) to be infinitely

divisible. Prominent special cases are achieved in the following ways:

IG(δ, γ) = GIG(−1
2 , δ, γ), PH(δ, γ) = GIG(1, δ, γ),

RΓ(ν, δ2/2) = GIG(−ν, δ, 0), Γ(ν, γ2/2) = GIG(ν > 0, 0, γ),
RIG(δ, γ) = GIG(12 , δ, γ), PHA(δ, γ) = GIG(0, δ, γ)
RPH(δ, γ) = GIG(−1, δ, γ).

Here all these distributions have been introduced above except for

• the positive hyperbolic distribution (PH);

• the positive hyperbola distribution (PHA);

• reciprocal positive hyperbolic (RPH);

13



In order to obtain these results we have to allow δ or γ to be zero 0. In these cases the GIG’s

density has to be interpreted in the limiting sense, using the well-known results that for y ↓ 0 we

have

Kν(y) ∼





− log y if ν = 0

Γ(|ν|)2|ν|−1y−|ν| if ν 6= 0.

.

In general, the density of the increments to this process is unknown in explicit form and we cannot

directly simulate from it without using computationally intensive methods.

3.2 Lévy measures for non-negative processes

It should be clear by now that the kumulant function of Y1 plays an important role in Lévy

processes. In this subsection this observation will be further developed in order to build towards

the vital Lévy-Khintchine representation which shows us the form characteristic functions of Lévy

processes must obey. As this representation is so important, and is also mathematically involved,

its development will be carried out in stages. At first sight this looks unnecessary from a modelling

viewpoint, however we will see that practical modelling will sometimes be carried out directly via

some of the terms which make up the Lévy-Khintchine representation. Hence a good understanding

of this Section is essential for later developments.

To start off with, think of a Poisson process Yt ∼ Po(ψt). Then, letting δ1(y) be the Dirac

delta centred at y = 1, we write

K{θ ‡ Y1} = −ψ(1− e−θ)

= −ψ
∫ ∞

0
(1− e−θy)δ1(dy)

= −ψ
∫ ∞

0
(1− e−θy)P (dy),

where P is the Dirac delta probability measure centred at one. The introduction of the probability

measure is entirely expository in this context; however, expressing kumulant functions in this

type of way will become essential later. Before proceeding another level of abstraction has to be

introduced. Instead of working with probability measures we will have to use more general measures

v concentrated on R>0. An important point is that some of the measures that will be used later

will not be integrable (that is
∫∞
0 v(dy) = ∞) and so probability measures are insufficient for a

discussion of Lévy processes. In the simple Poisson case the measure is introduced by expressing

K{θ ‡ Y1} = −
∫ ∞

0
(1− e−θy)v(dy) (9)

where v = ψδ1 is called the Lévy measure. Of course this measure is integrable, indeed it integrates

to ψ.

14



Let us now generalise the above setup to the compound Poisson process (4), but still requiring

C to be strictly positive — ruling out the possibility that C can be exactly zero with non-zero

probability. Then, writing the distribution of C1 as P (dy ‡ C1),

K{θ ‡ Y1} = −ψ
{
1− expK (θ ‡ C1)

}

= −ψ
∫ ∞

0
(1− e−θy)P (dy ‡ C1)

= −
∫ ∞

0
(1− e−θy)v(dy), (10)

again, but now with v(dy) = ψP (dy ‡C1). Again this measure is integrable as it is proportional to

the probability measure of C1. In the simple case where C1 has a density we write

v(dy) = u(y)dy

and call u(y) (which is ψ times the density of C1) the Lévy density . In such cases the kumulant

function becomes

K{θ ‡ Y1} = −
∫ ∞

0
(1− e−θy)u(y)dy.

A simple example of this is where Cj
i.i.d.∼ Γ(ν, α). Then the Lévy density is

u(y) = ψ
αν

Γ (ν)
yν−1 exp (−αy) . (11)

Of course this Lévy density integrates to ψ — not one.

Remark 1 If they exist, the cumulants of Y1 satisfy

κj =
∂jK{θ ‡ Y1}

∂θj

∣∣∣∣
θ=0

=

∫ ∞

0
yjv(dy),

i.e. they equal the moments of v.

Although Poisson and compound Poisson processes have integrable Lévy measures, for v is

proportional to a probability measure which integrates to one, theoretically more general Lévy

processes can be constructed without abandoning the form (9). The non-integrable measures v

will not correspond to compound Poisson processes. To ensure that they yield a valid kumulant

function we require that
∫∞
0 (1 − e−θy)v(dy) exists for all θ > 0, while continuing to rule out the

possibility that v has an atom at zero. It is simple to prove that a necessary and sufficient condition

for existence is that

∫ ∞

0
min (1, y) v(dy) <∞.

If the Lévy measure is absolutely continuous then we can define u(y) as the Lévy density where

v(dy) = u(y)dy. However, as some Lévy measures are not finite, it follows that Lévy densities are
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not necessarily integrable. This is at first sight confusing. This point comes up in the following two

examples.

Example 2 It turns out that the Lévy density of Y1 ∼ IG(δ, γ) is

u(y) = (2π)−1/2 δy−3/2 exp(−γ2y/2), y ∈ R>0. (12)

This Lévy density is not integrable as it goes off to infinity too rapidly as y goes to zero. This

implies an IG process is not a compound Poisson process — it has an infinite number of jumps

in any finite time period. Although the Lévy density is not integrable it does satisfy the finiteness

condition on
∫∞
0 min (1, y) v(dy) for the addition of the y factor regularises the density near zero.

Example 3 It can also be shown that the Lévy density of Y1 ∼ Γ(ν, α) is

u(y) = νy−1 exp(−αy), y ∈ R>0. (13)

Again this is not an integrable Lévy density although it is slower to go off to infinity than the inverse

Gaussian case. This means in practice that it will have fewer very small jumps than the IG process.

These two results are special cases of the result for the GIG(ν, δ, γ) distribution (8). The

corresponding Lévy density is then

u(y) = y−1
[
1

2

∫ ∞

0
e−

1
2
δ−2yξgν(ξ)dξ +max{0, ν}λ

]
exp

(
−γ2y/2

)
(14)

where

gν(y) =
2

yπ2

{
J2
|ν|(

√
y) +N2

|ν|(
√
y)
}−1

and Jν and Nν are Bessel functions. This result is derived in Barndorff-Nielsen and Shephard

(2012a). Although this looks forbidding, when ν is a half integer these functions are analytically

simple.

Example 4 A case outside the GIG class is the positive stable PS(κ, δ) process. Although the

probability density of this variable is in general unknown in simple form (see Barndorff-Nielsen and

Shephard (2012a) for details), the kumulant function is

K {θ ‡ Y1} = −δ (2θ)κ , 0 < κ < 1, δ > 0,

which implies it does not possess moments of order κ and above. The Lévy density for the positive

stable Lévy process is given by

u(y) = cy−1−κ, where c = δ2κ
κ

Γ (1− κ)
, (15)
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while Yt ∼ PS(κ, tδ). Feller (1971a) discusses many basic facts and examples of stable laws, while

Samorodnitsky and Taqqu (1994) give a very comprehensive account of these laws and the associated

Lévy and other processes, in particular fractional Brownian motion. See also Sato (1999).

3.3 Lévy-Khintchine representation for non-negative processes

3.3.1 Representation

Having allowed the Lévy measure not to be integrable, a single extra step is required in order to

produce a general setup. We allow a drift a > 0 to be added to the cumulant function. This is

carried out in the following fundamental theorem.

Theorem 2 Lévy-Khintchine representation for non-negative Lévy processes. Suppose Y is a Lévy

process with non-negative increments. Then the kumulant function can be written as

K{θ ‡ Y1} = −aθ −
∫ ∞

0

(
1− e−θy

)
v(dy), (16)

where a ≥ 0 and v is a measure on R>0 such that
∫ ∞

0
min{1, y}v(dy) <∞. (17)

Conversely, any pair (a, v) with these properties determines a non-negative Lévy process Y such

that Y1 has kumulant function determined by (16).

The importance of this representation is that the kumulant function of all non-negative Lévy

processes can be written in this form. In other words, non-negative Lévy processes are completely

determined by a and the Lévy measure v (which has to satisfy (17)).

In the special case when
∫∞
0 v(dy) < ∞ we say that Y is of finite activity (FA) — indeed all

such processes can be written as a compound Poisson process. In cases where this does not hold,

Y is said to be an infinite activity (IA) process as it has an infinite number of very small jumps in

any finite time interval.

Importantly, when we move on to Lévy processes on the real line the condition (17) has to be

strengthen to
∫
|y|>0min{1, y2}v(dy) <∞. This will be discussed in some detail in Section 4.3.

3.3.2 Positive tempered stable process

An important implication of the Lévy-Khintchine representation is that Lévy processes can be built

by specifying a and v directly, implying the probability distribution of Y1. An important example of

this is the positive tempered stable, PTS(κ, δ, γ), class which exponentially tilts the Lévy density

pS(y;κ, δ) of the PS(κ, δ), to deliver

p(y;κ, δ, γ) = eδγ exp

(
−1

2
γ2y

)
pS(y;κ, δ), y ∈ R>0.
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The resulting Lévy density is

u(y) = δγ−2κ
κ

Γ (κ) Γ (1− κ)
y−κ−1 exp

(
−1

2
γ2y

)
, y, δ > 0, 0 < κ < 1, γ ≥ 0, (18)

which means the process has infinite activity. The density of Y1 is not generally known in simple

form, however the Lévy density is simple and plays such a crucial role that this difficulty is not

overly worrying. Special cases of this structure include the IG Lévy density (12) and the Γ Lévy

density (13), which is the limiting case of κ ↓ 0. Notice that the constraint κ < 1 is essential

in order to satisfy the condition (17) in the Lévy-Khintchine representation. The corresponding

kumulant function can be calculated by solving (16) implying

K{θ ‡ Y1} = δγ − δ
(
γ1/κ + 2θ

)κ
,

while for γ > 0 all cumulants of Y1 exist, the first two cumulants being

2κδγ(κ−1)/κ and 4κ (1− κ) δγ(κ−2)/κ.

Finally the kumulant function implies the convenient property that Yt ∼ PTS(κ, tδ, γ).

3.4 Simulation for non-negative Lévy processes∗

3.4.1 Simulating paths via the Lévy density

For subordinators the paths of Lévy processes can be simulated directly off the Lévy density u(y),

y ∈ R>0. Define the tail mass function

v+(y) =

∫ ∞

y
u(x)dx,

which is a decreasing function for all y ∈ R>0. Denote the inverse function of v+ by v←, i.e.

v←(y) = inf
{
x > 0 : v+(x) ≤ y

}
.

Then the desired result, called the series representation, is that

Y
(m)
t =

m∑

i=1

v←(bi/T )I(ui ≤ t), for 0 ≤ t ≤ T, (19)

converges uniformly to Y on [0, T ] as m → ∞. Here ui
i.i.d.∼ U(0, T ), where U(0, T ) is the uniform

distribution on (0, T ), is independent of b1 < ... < bi < ... which are the arrival times of a Poisson

process with intensity 1. Clearly the computational speed of these techniques will depend upon

how expensive it is to compute v← and how quickly v←(y) falls as y increases.
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Example 5 Compound Poisson process. Let the CPP have intensity ψ and probability density

f(y) for the positive jumps, then the Lévy density and tail mass function are u(y) = ψf(y) and

v+(y) = ψ {1− F (y)}, implying

v←(y) =

{
F−1

{
1−

(
y
ψ

)}
, y < ψ

0, y ≥ ψ.

Hence the inverse only involves computing the quantiles of the jumps. Overall this implies

Y
(m)
t =

m∑

bi≤Tψ

F−1
{
1−

(
bi
ψT

)}
I(ui ≤ t).

Clearly if bi > Tψ, then there is no approximation by using this series representation. This method

has a simple interpretation. If we sample from

F−1
{
1−

(
bi
ψT

)}
until bi > Tψ,

then an ordered sequence from f(y) of size Po(ψT ) is produced. The effect of the I(ui ≤ t) term is

to sample randomly from this ordered sequence a random share of the draws. So the infinite series

representation samples compound Poisson processes rather effectively.

As a special case, suppose u(y) = να exp(−αy) so that v+(y) = νe−αy, which has the convenient

property that it can be analytically inverted:

v←(y) = max

{
0,− 1

α
log
(y
ν

)}
.

Hence as soon as y > ν then v←(y) = 0, implying

Y
(m)
t = − 1

α

m∑

bi≤tν

log

(
bi
tν

)
I(ui ≤ t).

For some types of subordinators special methods have been devised to simulate their paths

without inverting v←.

Example 6 Rosinski’s method for dealing with PTS(κ, δ, γ) processes. This method approximates

the path over [0, T ] by the sum of non-negative terms

Y
(m)
t =

m∑

i=1

min

{(
AT

biκ

)1/κ

, B−1eiv
1/κ
i

}
I(ui ≤ t), for 0 ≤ t ≤ T, (20)

where

A = δ2κ
κ

Γ (1− κ)
, B =

1

2
γ1/κ,
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I(·) is an indicator function, {ei}, {vi}, {bi}, {ui} are independent of one another and over i except

for the {bi} process. Here ui
i.i.d.∼ U(0, T ), vi

i.i.d.∼ U(0, 1), the {ei} are exponential with mean 1.

Further the b1 < ... < bi < ... are the arrival times of a Poisson process with intensity 1. Then

as m → ∞ the process Y
(m)
t converges uniformly on [0, T ] to a sample path of the tempered stable

Lévy process.

3.4.2 Simulation via a small jump approximation

We will break up the subordinator into

Y = Y 1 + Y 2,

where Y 2 corresponds to a compound Poisson process with jumps of absolute size greater than

ε > 0, while Y 1 will contain the small jumps. A first order approximation is to take ε as very small

and to neglect Y 1 entirely and simply simulate the straightforward Y 2.

A second order approximation to the path of Y 1 is by using a Brownian motion, based on the

central limit result

{
σ−1ε

(
Y 1
t − µεt

)}
t≥0

→ {Wt}t≥0 ,

where µε =
∫ ε
−ε yv(dy) and σ

2
ε =

∫ ε
−ε y

2v(dy), which holds under certain conditions. A more detailed

discussion of this is given in Barndorff-Nielsen and Shephard (2012a).

4 Processes with real increments

4.1 Examples of Lévy processes

4.1.1 Motivation

In this Section the focus will be on Lévy processes with innovations which are on the real line.

Many of them play important roles in financial economics as direct models of financial assets.

4.1.2 Brownian motion

In Brownian motion we write

Y1 ∼ N(0, 1),

with density

fY1(y) =
1√
2π

exp

(
−1

2
y2
)
, y ∈ R,

while

K {θ ‡ Y1} = log [E exp {θY1}] =
1

2
θ2.
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The implication of this is that marginally Yt ∼ N(0, t), while the increments are independent as

usual with

Yt+s − Yt ∼ N(0, s).

A standard Brownian motion, writtenW , can be generalised to allow for the increments to have

a non-zero mean and a different scale than one. A drift µ and a volatility term σ can be introduced

to deliver the Lévy process
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0.4 (a) Simulated scaled Brownian motion
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(b) Simulated NIG Lévy process

Figure 3: (a) Sample path of
√
0.02 times standard Brownian motion. (b) Sample path of a

NIG(0 .2 , 0 , 0 , 10 ) Lévy process. Thus the increments of the processes have a common variance.
Code: levy graphs.ox.

Yt = µt+ σWt,

with increments

Yt+s − Yt ∼ N(µs, σ2s).

The associated kumulant function for Y1 is µθ + 1
2θ

2σ2.

A graph of a sample path from standard Brownian motion is displayed in Figure 3(a). It

illustrates that the path is continuous. In a moment we will see that, except for the pure linear

drift case Yt = µt, Brownian motion is the only Lévy process with this property — all other Lévy

processes have jumps.
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4.1.3 Compound Poisson process

Compound Poisson processes were introduced in (4), but there we required the shocks {Cj} to be

strictly positive. Here this condition is relaxed, just ruling out that they have an atom at zero. In

this case, again,

K {θ ‡ Y1} = log [E exp {θY1}]

= ψ {expK {θ ‡ C1} − 1}

(so long as K {θ ‡ C1} exists).

Example 7 Suppose that Cj
i.i.d.∼ N(µ, σ2), then

K {θ ‡ Y1} = ψ

{
exp

(
µθ +

1

2
θ2σ2

)
− 1

}
.

So here the Lévy process is constant until there is a new arrival from the Poisson process. The

arrival then moves the Lévy process by a Gaussian variable. This variable can have a non-zero

mean and a non-unit variance. Quite a lot of effort has been expended on working on the derivative

pricing theory associated with this simple structure.

4.1.4 Skellam process

Let

Yt = N
(1)
t −N

(2)
t ,

where N
(i)
t are independent Poisson processes with E(N

(i)
1 ) = ψi > 0. This is a Skellam process

and has the attractive feature that it can be scaled to have a fixed tick size which may be helpful

for certain types of high frequency financial data.

The essential nature of this discreteness at the microscopic financial level is shown in Fig-

ure 4 which reports the first 80 best bid (squares) and best ask (crosses) rescaled prices from a

Euro/Dollar futures contract for 10th November 2008. For this contract the tick size is 0.0001 of a

unit, i.e. prices move from, for example, 1.2768 to 1.2767 U.S. Dollar to the Euro.

Now for the Skellam process

K {θ ‡ Y1} = K
{
θ ‡N (1)

1

}
+K

{
−θ ‡N (2)

1

}
=
(
ψ1e

θ + ψ2e
−θ − ψ1 − ψ2

)
,

so is infinitely divisible. The Yt is distributed as a Skellam Sk(tψ1, tψ2) variable — the distribution

of the difference between two independent Poisson variables with means ψ1t and ψ2t. A Sk(ψ1, ψ2)

probability function is

pk = e−ψ1−ψ2

∞∑

n=0

ψk1ψ
k+n
2

k!(k + n)!
= e−ψ1−ψ2

(
ψ1

ψ2

)k/2
Ik(2

√
ψ1ψ2), k = 0,±1,±2, ...,
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Figure 4: From Barndorff-Nielsen, Pollard, and Shephard (2012)

where Ik(x) is a modified Bessel function of the first kind. Importantly E(Yt) = (ψ1 − ψ2) t and

Var(Yt) = (ψ1 + ψ2) t. Hence if ψ1 = ψ2 the process is a martingale.

4.2 Normal variance-mean mixture processes

A rather general way of building densities on the real line is by using a normal variance-mean

mixture

Y = µ+ βσ2 + σU, (21)

where U ∼ N(0, 1) and U ⊥⊥ σ2 (⊥⊥ denoting stochastic independence). In this mixture the

constraint β = 0 would imply Y would be symmetrically distributed, while β < 0 typically delivers

a negatively skewed density. Further, E(Y ) = µ+ βE(σ2) so long as E(σ2) exists and

C {ζ ‡ Y1} = iµζ +K

{
iβζ − 1

2
ζ2 ‡ σ2

}
,

where for complex z,

K
{
z ‡ σ2

}
= log

{
Eexp

(
zσ2
)}
.

Provided σ2 is infinitely divisible this normal variance-mean mixture has an elegant time deforma-

tion intepretation which will be an important common theme to the threads of this book. Many of

the commonly used parametric densities used in financial economics fall within this class by specific

choices for the density for σ2. Here we discuss some of these important special cases.
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4.2.1 Normal inverse Gaussian

If we assume σ2 ∼ IG(δ, γ) then Y ∼ NIG(α, β, µ, δ), where α =
√
β2 + γ2, has a normal inverse

Gaussian (NIG) distribution. The NIG Lévy process puts

Y1 ∼ NIG(α, β, µ, δ), µ ∈ R, δ ∈ R>0, |β| < α

which has the density

fY1(y) = a(α, β, µ, δ)q

(
y − µ

δ

)−1
K1

{
δαq

(
y − µ

δ

)}
exp {β (y − µ)} ,

where q(y) =
√

1 + y2, K1(·) is a modified Bessel function of the third kind and

a(α, β, µ, δ) = π−1α exp

{
δ

√
α2 − β2 − βµ

}
.

Sometimes it is convenient to reparameterise this model, noting that

α = δα, β = δβ,

are invariant under changes of the location and scale parameters µ and δ. A popular location-scale

invariant choice is achieved by defining

ξ =

(
1 + δ

√
α2 − β2

)−1/2
and χ =

β

α
ξ, (22)

where ξ, the steepness parameter, and χ, the asymmetry parameter, obey a triangular constraint

{(χ, ξ) : −1 < χ < 1, |χ| < ξ < 1} . (23)

The flexibility of the model is shown in Figure 5, which displays the log-density for a variety of

values of χ, ξ. Such a plot is called a shape triangle. As ξ → 0 so the log-density becomes more

quadratic, while for values of ξ around 0.5 the tails are approximately linear. For larger values of ξ

the tails start decaying at a rate which looks appreciably slower than linear. In the limit as ξ → 1

while χ = 0 the density becomes that of a Cauchy variable.

Note that it is sometimes more convenient to think of ρ = β/α = χ/ξ, rather than χ, as an

asymmetry parameter. A fixed value of ρ corresponds to a straight proportionality line in the shape

triangle.

One of the NIG’s attractions is that the cumulant function has the simple form

K {θ ‡ Y1} = δ

{√
α2 − β2 −

√
α2 − (β + θ)2

}
+ µθ,

which means that

Yt ∼ NIG(α, β, tµ, tδ).
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Figure 5: Shape triangle for the NIG model. That is we graph the shape of the log-density for
the NIG model for a variety of values of the steepness parameter ξ and the asymmetry parameter
χ. The representative distributions shown all have variance of one. This graph was kindly made
available to us by Preben Blæsild.

In particular this implies that the increments of the NIG Lévy process are non-zero NIG with

probability one. A sample path of a NIG Lévy process is drawn in Figure 3(b). For this case we

have chosen there is symmetry and no drift (since µ = β = 0) and the variance per unit of time is

the same as for the Brownian motion given in Figure 3(a). The process moves only by jumps, with

infinitely many jumps in any time interval, however small. The irregular size of the jumps implies

the very jagged shape of the picture.

4.2.2 Normal gamma process

If we assume σ2 ∼ Γ(ν, γ2/2) then Y ∼ NΓ(ν, γ, β, µ), which we call the normal gamma (written

NΓ) distribution. From the cumulant function

K {θ ‡ Y1} = µθ − ν log

(
1− θβ + θ2/2

γ2/2

)
, (24)

it follows that Yt ∼ NΓ(tν, γ, β, tµ). This means this process is analytically simple to handle. The

density of the process at time one is

fY1(y) =
γ2να1−2ν

√
2πΓ(ν)2ν−1

K̄ν−1/2

(
γ2

2
|y − µ|

)
exp {β (y − µ)} , where K̄ν(x) = xνKν(x).

Note that γ−2 is a scale parameter and that ν and β/γ are invariant under location-scale changes.

25



0 2 4 6 8 10

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3 (a) Simulated NΓ Lévy process

0 2 4 6 8 10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
(b) Simulated Laplace Lévy process

Figure 6: (a) Sample path of a NΓ(4,200,0,0) Lévy process. Such processes are often called vari-
ance gamma processes in the literature. (b) Sample path of a La(0.2,0,0) Lévy process. Code:
levy graphs.ox.

The special case of β = 0 (symmetry) has been used extensively in the finance literature where it

is often called the variance gamma (V G) process. It was introduced by Madan and Seneta (1990),

while the β 6= 0 case was developed by Madan, Carr, and Chang (1998). Later we will mention

a generalisation of the normal gamma process, the extended Koponen (or KoBol) class, which is

often referred to in the finance literature as the CMGY Lévy process.

Figure 6(a) graphs a simulated path from a NΓ(4, 200, 0, 0) process. As we would expect, the

sample path has some of the features of the NIG process we drew in Figure 3(b). In particular

both of these infinite activity processes are very jagged. More detailed mathematical analysis of

the corresponding Lévy measures shows that the NIG process has more very small jumps than the

NΓ process. In particular near zero the Lévy density u(y) of the NIG process behaves like y−3/2,

while the corresponding result for the NΓ process is y−1.

An interesting feature of the normal gamma process is that it can be written in the form Y+−Y−
where Y+ and Y− are independent Γ subordinators (see Exercise 8).

For comparison with the NIG log-density (see Figure 5), note that NΓ log-density either has a

cusp at zero, when ν ∈ (0, 1], or is concave.
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4.2.3 Hyperbolic, Laplace and skewed Student’s t processes

If we assume σ2 ∼ PH(δ, γ) then Y ∼ H(α, β, µ, δ), where α =
√
β2 + γ2, has the hyperbolic

distribution. This distribution can be shown to be infinitely divisible, although the proof of this

is difficult — see Barndorff-Nielsen and Shephard (2012a). The hyperbolic process puts Y1 ∼
H(α, β, µ, δ), where the density is

fY1(y) =
γ

2
√
β2 + γ2δK1 (δγ)

exp

{
−α
√
δ2 + (y − µ)2 + β (y − µ)

}
, y ∈ R. (25)

All the moments of this process exist so long as γ > 0, while the cumulant function is

K {θ ‡ Y1} =
1

2
log

{
γ2

α2 − (β + θ)2

}
+ log





K1

{
δ

√
α2 − (β + θ)2

}

K1 (δγ)





+ θµ. (26)

We can compare the hyperbolic model to theNIG density using the shape triangle. In particular

reparameterise into the location-scale invariant parameters given in (22), then Figure 7 shows the

log-densities for this model. We see that again as ξ → 0 we get the normal quadratic log-density.

For higher values the log-density gets increasingly linear decay in the tails as ξ → 1. Indeed in the

limit we get the Laplace densities, see below. This contrasts with the NIG density which has the

ability to have thicker tails. Hyperbolic laws have the interesting and important feature that the

Figure 7: Shape triangle for the hyperbolic model. That is we graph the shape of the log-density
for the hyperbolic model for a variety of values of the steepness parameter ξ and the asymmetry
parameter χ. This graph was kindly made available to us by Preben Blæsild.
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log-density is a hyperbola (hence their name) and so behaves approximately linearly in the tails of

the distribution.

Hyperbolic Lévy processes have the disadvantage that we do not have an exact expression for

the density of Yt for t 6= 1, nor can we simulate from the process in a non-intensive manner. Both

of these properties are inherited from the fact that this is also the case for the positive hyperbolic

process we discussed in the previous Section.

The Laplace distributions (symmetric and asymmetric) occur as limiting cases of (25) for α, β

and µ fixed and δ ↓ 0. We write this as La(α, β, µ). The corresponding density is

α2 − β2

2α
exp {−α |y − µ|+ β (y − µ)} , where α =

√
β2 + γ2, (27)

which is achieved by σ2 ∼ E(γ2/2) = Γ(1, γ2/2). One of the main features of this model is that

Yt ∼ NΓ(t, γ, β, tµ).

Finally, if we assume σ2 ∼ RΓ(ν, δ2/2) then Y ∼ T (ν, δ, β, µ), a skewed Student’s t distribution,

which is infinitely divisible and so can be used as the basis of a Lévy process. The skewed Student’s

t Lévy process puts Y1 ∼ T (ν, δ, β, µ), where the density is

δ−2ν |β|1−2ν√
2πΓ(ν)2ν−1

K̄ν−1/2

{
|β|
√
δ2 + (y − µ)2

}
exp {β (y − µ)} ,

where, for any ν ∈ R, Kν(x) = xνKν(x). The more familiar Student’s t distribution is found when

we let β → 0, then the density becomes

Γ (ν + 1/2)√
δ2πΓ(ν)

{
1 +

(
y − µ

δ

)2
}−ν−1/2

.

In the symmetric case only moments of order less than ν will exist — at any time horizon. However,

we do not know the distribution of Yt for this process in any explicit form, while simulation has

to be carried out in quite an involved manner. Hence this process is not as easy to handle as the

NIG or normal gamma Lévy processes.

4.2.4 Generalized hyperbolic process

If we assume σ2 ∼ GIG(ν, δ, γ) then Y ∼ GH(ν, α, β, µ, δ), where α =
√
β2 + γ2, the generalised

hyperbolic (GH) distribution. Its density is

γ2να1−2ν

Kν (δγ)
√
2π
Kν− 1

2

{
α

√
δ2 + (y − µ)2

}
exp {β (y − µ)} , (28)

where Kν is the modified Bessel function of the third kind and Kν(x) = xνKν(x). It is helpful

to recall that Kν(y) = K−ν(y). This distribution includes as special cases many of the above

28



distributions in the following way:

N(µ, σ2) = limγ→∞GH(ν, γ, 0, µ, σ2γ), NIG(α, β, µ, δ) = GH
(
−1

2 , α, β, µ, δ
)
,

NRIG(α, β, µ, δ) = GH
(
1
2 , α, β, µ, δ

)
, H(α, β, µ, δ) = GH(1, α, β, µ, δ),

T (ν, δ, β, µ) = GH(−ν, β, β, µ, δ), La(α, β, µ) = GH(1, α, β, µ, 0),
NΓ(ν, δ, β, µ) = GH(ν, α, β, µ, 0), RH(α, β, µ, δ) = GH(−1, α, β, µ, δ),

for ν > 0. The GH distribution is infinitely divisible (a proof is given in Barndorff-Nielsen and

Shephard (2012a)) and so can be used as the basis of a rather general Lévy process. The special

cases not introduced above are

• normal reciprocal inverse Gaussian distribution (NRIG), which happens when σ2 ∼ RIG(δ, γ).

• reciprocal hyperbolic (RH ), which happens when σ2 ∼ RPH(δ, γ).

The cumulant function of the GH is

K {θ ‡ Y1} =
ν

2
log

{
γ

α2 − (β + θ)2

}
+ log





Kν

{
δ
√
α2 − (β + θ)2

}

Kν

{
δ
√
α2 − β2

}





+ θµ, |β + θ| < α,

while the first two moments (when they exist) are

E(Y1) = µ+ β
δ

γ

Kν+1(δγ)

Kν(δγ)
and

Var(Y1) = δ2

(
Kν+1(δγ)

δγKν(δγ)
+
β2

γ2

[
Kν+2(δγ)

Kν(δγ)
−
{
Kν+1(δγ)

Kν(δγ)

}2
])

.

Not surprisingly, in general we do not know the GH density of Yt for t 6= 1, nor can we simulate

from the process in a non-intensive manner. This model is so general that it is typically difficult to

manipulate mathematically and so is not often used empirically. Instead special cases are usually

employed.

4.2.5 Normal positive stable and symmetric stable processes

If we assume σ2 ∼ PS(α/2, δ) then Y has a normal stable distribution, S(α, β, µ, δ), which is

infinitely divisible and so supports a Lévy process. The important special case where µ = β = 0

is the well known symmetric stable Lévy process with index α. Except for the boundary case of

α = 2, the symmetric stable distribution has the empirically unappealing feature that the variance

of Y1 is infinity. The density of this variable is unknown in general, with exceptions being the

Gaussian variable (α = 2) and the Cauchy variable (α = 1).

Despite the complexity of the density of a stable random variable the cumulant function is

simply

C {ζ ‡ Y1} = δ |ζ|α ,
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which implies Yt ∼ S(α, 0, 0, tδ). Note that for this process the mean exists only if α > 1. The

Lévy density for a symmetric stable process is given by

u(y) = δ |y|−1−α , 0 < α < 2. (29)

Stable Lévy processes have the remarkable property that for λ > 0

{Yλt}t≥0
L
=
{
λ1/αYt

}
t≥0

. (30)

Thus, in particular, increments of the Lévy process over time λt are, in distribution, just scaled

versions of increments over time t. This fractal like property is called self-similarity , and stable

Lévy processes (symmetric or not) are the only Lévy processes which possess this feature.

Although stable processes have received considerable attention in financial economics since their

introduction into that subject in the early 1960s, it has been known since the late 1960s that they

provide a poor fit to the empirical data we usually see in practice. This is because returns over long

time intervals, which are sums of returns over finer time intervals, tend to be more Gaussian than

the ones over short horizons. Hence our interest in this type of process will usually be to provide

theoretical illustrations, rather than as practical models.

4.2.6 Normal tempered stable process

If we assume σ2 ∼ PTS(κ, δ, γ) then Y ∼ NTS(κ, δ, γ, β, µ), a normal tempered stable distribution.

The NTS distribution is infinitely divisible and so can be used to generate a Lévy process. Special

cases of the normal tempered stable process is the NIG Lévy process and the normal gamma Lévy

process (when κ ↓ 0). This process will be discussed in more detail in Example 5.2.3.

4.3 Lévy-Khintchine representation

The Lévy-Khintchine representation for positive variables given in (16) can be generalised to cover

Lévy processes with increments on the real line. Four basic developments are needed. First, the

Lévy measure must be allowed to have support on the real line, not just the positive half-line, but

still excluding the possibility that the measure has an atom at zero. Second, the parameter a needs

to be allowed to be a real, not just positive. Third, we imagine that an independent Brownian

motion component is added to the process. Fourth, the below technical condition on the Lévy

measure (32) must be satisfied. The result is the celebrated Lévy-Khintchine representation for

Lévy processes.

Theorem 3 Lévy-Khintchine representation. Suppose Y is a Lévy process. Then

C{ζ ‡ Y1} = aiζ − 1

2
σ2ζ2 +

∫

R

{
eiζy − 1− iζy1[−1,1](y)

}
v(dy), (31)
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where a ∈ R, σ ≥ 0, and the Lévy measure v must satisfy
∫

R

min{1, y2}v(dy) <∞ (32)

and v has no atom at 0.

Lévy processes are completely determined by the characteristic triplet (a, σ2, v): the drift a, the

variance σ2 of the Brownian motion and the Lévy measure v (which has to satisfy (32)). Importantly

only processes with v = 0 do not have jumps — but in that case Y is a scaled Brownian motion

with drift a. The representation implies that all Lévy processes can be decomposed into

Yt = at+ σWt + Ldt ,

a drift, a scaled Brownian motion W and an independent pure jump process Ldt .

There are many interesting additional features of the Lévy-Khintchine representation which we

bring out in Barndorff-Nielsen and Shephard (2012a). Important points are that the centring func-

tion 1[−1,1](y) is one choice amongst many and that many interesting properties of the distribution

of Y1 can be deduced from direct inspection of v (e.g. existence of moments and unimodality).

4.4 Blumenthal-Getoor index

A key measure of the degree of variation of Lévy processes is the Blumenthal-Getoor index α defined

by

α = inf

{
β :

∫

R

(
1 ∧ |y|β

)
v(dy) <∞

}
.

This index has the property that

p− lim
n→∞

n∑

i=1

∣∣∣Y i
n
− Y i−1

n

∣∣∣
δ
<∞

for any δ > α.

Clearly for any CPP we have α = 0; but what about infinite activity processes? In general we

know α ≤ 2 as the limit exists for quadratic variation, but more generally? The Blumenthal-Getoor

index is determined by the behaviour of the Lévy measure near zero, with larger indexes arising

when the Lévy density goes to infinity quickly as |y| → 0. Informally the higher the index the

larger the frequency of small jumps in the Lévy process. Some examples of the index are given in

Table 1.

4.5 Power variation

Related to the Blumenthal-Getoor index is power variation, which is

{Y }[r] = p− lim
n→∞

nr/2−1
n∑

i=1

∣∣∣Y i
n
− Y i−1

n

∣∣∣
r
.
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name w(y) B-G index

IG cy−3/2 exp(−y) 1/2
Γ cy−1 exp(−y) 0
PTS cy−1−α exp (−y) α

NIG ≈ c |y|−2 for small y 1

NΓ ≈ c |y|−1 (for small y) 0

PS c |y|−1−α α

Table 1: Blumenthal-Getoor index for various infinitely divisible distributions.

In a moment we will see its most famous case where r = 2, which is quadratic variation

{Y }[r] = σ2 +
∑

s≤1

(∆Ys)
2 ,

but the other cases are interesting too. In particular when r < 2 we have that

{Y }[r] = µrσ
r, µr = E |U |r , U ∼ N(0, 1),

which reveals the volatility of the Brownian motion component of the Lévy process, while when

r > 2 then power variation goes off to infinity. This suggests that sums of power of absolute

returns maybe useful ways of assessing the importance of jumps in financial economics. This was

first formalised in finance by Barndorff-Nielsen and Shephard (2004), although the mathematics

behind this goes back further (see, for example, Jacod and Protter (2012)).
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Figure 8: (a) rotates the IG(1 , 2 ) density for χ1. (b) displaying the Poisson basis N(dy,dt).
Filename is levy graphs.ox.
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4.6 Lévy-Ito representation

An important application of Lévy bases is in the Lévy-Ito representation of Lévy processes.

Theorem 4 Lévy-Ito representation1. Let L be a Lévy process with Lévy measure v. Then L has

the representation

Lt = at+
√
bWt +

∫ t

0

∫

R

y{N (dy,ds)− 1[−1,1](y)v(dy)ds}. (33)

where W is a Brownian motion and N is a Poisson basis on R>0 ×R, independent of W and with

mean measure v(dy)dt.

That N is a Poisson basis means that it is a random measure which attaches a random number

N(A) to any (bounded Borel) subset of the underlying space, in this case R>0 × R, and that the

numbers are independent for disjoint subsets. Furthermore, since we are talking about a Poisson

basis the law of N(A) is Poisson with mean equal to the integral over A of the measure v(dy)dt.

The representation may be given the alternative form

Lt = at+
√
bWt

+

∫

{|y|<ε}
y{Nt(dy)− tv(dy)}

+

∫

{|y|≥ε}
yNt(dy),

where

Nt(dy) =

∫ t

0
Ndy,ds

and ε is an arbitrarily chosen positive number (here a will generally depend on ε.).

This is insightful in a number of ways. For example, it demonstrates that Lévy processes are

always semimartingales for we can decompose

At = at+
∑

0<s≤t

1{|∆Ls|≥ε}∆Ls and Mt =
√
bWt +

∫

{|y|<ε}
y{Nt(dy)− tv(dy)}.

The latter is obviously a martingale, while A is of finite variation (since the number of jumps ∆Ls

of absolute size ≥ ε is locally finite, as follows from the fact that
∫
{|y|≥ε} v(dy) <∞.)

The mean value of L1 exists if and only if (cf. Sato (1999, p. 39))
∫

|y|>1
|y|v(dy) <∞.

In this case the representation (33) can be recast in the form

Lt = E(Lt) +
√
bWt +

∫ t

0

∫

R

y{N(dy,ds)− v(dy)ds}. (34)

1For a proof see, for instance, Sato (1999, Ch. 4).
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If, moreover, the Lévy measure is a member of the infinite activity finite variation (denoted IAFV)
class then

Lt = a0t+

∫ t

0

∫

R

yN(dy,ds), (35)

where the drift a0 is given by

a0 = E(L1)−
∫

R

yv(dy).

Recall that finite variation means here that the sums of the absolute values of the infinitesimal

increments of the process are bounded with probability one.

Any non-negative Lévy process L without drift is representable in the Lévy-Ito form

Lt =

∫ t

0

∫ ∞

0
yN(dy,ds) (36)

with v satisfying

∫ ∞

0
min{1, y}v(dy) <∞.

5 Time deformation and time-change

5.1 Basic framework

Financial markets sometimes seem to move more rapidly than in other periods. One way of starting

to model this is to allow the relationship between calendar time and the pace of the market to be

random. We call a stochastic process which models the random clock a time-change, while the

resulting process is said to be time deformed.

Definition 5 A time-change is any non-decreasing random process T with T0 = 0. The special

case where the time-change has independent and stationary increments is called a subordinator.

The requirement that the time-change is non-decreasing rules out the chance that time can go

backwards. A special case of a time-change is a subordinator, while subordinators are special cases

of Lévy processes (e.g. Poisson or IG Lévy processes are subordinators). All subordinators are pure

upward jumping processes plus non-negative drift. We should note here that the finance literature

often labels time-changes subordinators, while in the probability literature the term subordinator

is reserved for positive Lévy processes and we stick to the latter convention in this book.

In this Section we will study what happens when a subordinator is used to change the clock,

that is deform, a stochastically independent Lévy process L. The result is

Yt = LTt ,
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which is often written as

Yt = L ◦ Tt,

or

Y = L ◦ T.

The increments of this process are

Yt+s − Yt = L ◦ Tt+s − L ◦ Tt,

which are independent and stationary and so Y is a Lévy process.

Brownian motion is the only Lévy process with continuous sample paths, however this property

does not survive being deformed by a pure subordinator for such a process has to be a pure jump

process.

5.2 Examples

5.2.1 Compound Poisson process

Let T be a Poisson process, independent of a scaled Brownian motion W and so that

Y = βT + σW ◦ T,

then Y1|T1 ∼ N(βT1, σ
2T1). This is a compound Poisson process

Yt =

Tt∑

j=1

Cj , Cj
i.i.d.∼ N(µ, σ2), (37)

with shocks which are Gaussian. The implication is that when the process jumps, the jumps are

independent of the time we have waited until the jump.

5.2.2 Normal inverse Gaussian process

Suppose T is an IG(δ, γ) Lévy process and Yt = µt + βTt +WTt , where W is Brownian motion,

then

Y1|T1 ∼ N(µ+ βT1, T1)

and so unconditionally the increments are independent with

Y1 ∼ NIG(α, β, µ, δ), α2 = β2 + γ2.

Hence this deformed Brownian motion is the NIG Lévy process, which we simulated in Figure 2(b).

Likewise the NΓ Lévy process can be obtained by subordinating Brownian motion plus drift by a

gamma process.
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5.2.3 Normal tempered stable process

Suppose T is a PTS(κ, δ, γ) Lévy process. If Yt = µt + βTt + WTt , then Y is called a normal

tempered stable (NTS) Lévy process. We write

Y1 ∼ NTS(κ, α, β, µ, δ), where α =

√
β2 + γ2,

but the corresponding probability density is generally unknown (except for an infinite series rep-

resentation, see Feller (1971b, p. 583)). The cumulant function, on the other hand, is rather

simple

K {θ ‡ Y1} = µθ + δγ − δ
{
α2 − (β + θ)2

}κ
.

The form of this function implies Yt ∼ NTS(κ, α, β, µt, δt). It can be shown (after some considerable

work), using the cumulant function of the NTS process, that the Lévy density is

u(y) =
δ√
2π

κ2κ+1

Γ (1− κ)
ακ+

1
2 |y|−(κ+

1
2)Kκ+ 1

2
(α |y|) exp {βy} .

The direct use of this Lévy density is obviously going to be difficult due to its complexity. The

deformation interpretation will mean that we can usually sidestep this, instead employing the simple

Lévy density of the PTS(κ, δ, γ) Lévy process given in (18).

5.2.4 Type G and P Lévy processes

Definition 6 We call Lévy processes which can be written as Yt = µt + βTt + WTt, for some

subordinator T , type G Lévy processes.

This is the subset of Lévy processes for which there is a deformation of Brownian motion with

drift interpretation.

Definition 7 We call Lévy processes which can be written as Yt = NTt, for some subordinator T

and where N is a Poisson process, type P Lévy processes.

This is the subset of Lévy processes for which there is a deformation of Poisson process repre-

sentation. We will now give some examples of this.

5.2.5 Negative binomial process

Suppose T is a Γ(ν, α) Lévy process and let Yt = NTt , where N is a standard Poisson process with

unit intensity and N ⊥⊥ T . Then Y is a negative binomial Lévy process with Yt having a negative

binomial distribution

NB

(
tν,

1

1 + α

)
,
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which follows from the well known Poisson-gamma mixture. Of course if ν = λα and α→ ∞ then

Tt → λt and so Yt becomes like a Poisson process with intensity λ. For this model

K {θ ‡ Y1} = log E
[
exp

{
ψ(e−θ − 1)

}]
, where ψ ∼ Γ(ν, α),

= K
{(
e−θ − 1

)
‡ ψ
}

= −ν log
(
1 +

1− e−θ

α

)
,

which is a reparameterisation of (6). Then E(Y1) = ν/α.

5.2.6 Discrete Laplace process

A special case of this is where T is an exponential Γ(1, α) Lévy process. Then Y1 has a geometric

probability function

Pr(Y1 = y) = p (1− p)y , y = 0, 1, 2, ..., p =
1

1 + α
,

while generally Yt ∼ NB
(
t, 1

1+α

)
. Further let Yt = N

(1)

T
(1)
t

−N
(2)

T
(2)
t

, where N (1), N (2), T (1) and T (2)

are independent processes, the first two of which are Poisson processes and the last two exponential

processes. Then Yt is a discrete Laplace Lévy process while

Pr(Y1 = y) =
1− p

1 + p
p|y|, y = 0,±1,±2, .... (38)

This has a zero mean and variance of 2p/(1 − p)2. It is a heavier tailed alternative to the Skellam

distribution discussed in Section 4.1.4, but again it only has one parameter.

5.2.7 Poisson-IG process

More generally if T is a GIG Lévy process and we let Yt = NTt , then we call the result a Poisson-

GIG Lévy process. The most important special case is the gamma one just discussed and the

IG(δ, γ) case. Writing γ2∗ = γ2 + 2, the P-IG(δ, γ) variable has

Pr(Y1 = y) =

∫ ∞

0

e−ψψy

y!

δ√
2π
eδγψ−3/2 exp

{
−1

2

(
δ2ψ−1 + γ2ψ

)}
dψ,

=
δ

y!
√
2π
eδγ
∫ ∞

0
ψ(y−

1
2)−1 exp

{
−1

2

(
δ2ψ−1 + γ2∗ψ

)}
dy,

=
2δ
√
γ∗/δ√
2π

eδγ
Ky− 1

2
(δγ∗) (δ/γ∗)y

y!
, y = 0, 1, 2, ...,

where Kν(·) is a modified Bessel function of the third kind. This follows from using the properties

of the GIG distribution. The Yt is marginally P-IG(tδ, γ).

Of course this is a finite activity process with

K {θ ‡ Y1} = K
{(

1− e−θ
)
‡ ψ
}
, where ψ ∼ IG(δ, γ),
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Figure 9: Top graph: Simulation from a Poisson and Poisson-IG(1.5, 0.5) process with mean in-
tensity of 3. It shows the larger gaps in the P-IG process and larger jumps. Bottom graph: log of
the probability function for Y1 for the Poisson and P-IG distributions. It shows the approximate
quadratic tails of the Poisson distribution and the approximate linear tails of the P-IG distribution.
Code: poisson.ox.

= δ

[
γ −

{
γ2 + 2

(
1− e−θ

)}1/2
]
.

Now E(Y1) = δ/γ. For γ ≥ 1/2 this can be thought of as a compound Poisson process with intensity

δ and a discrete mixing distribution (5) for C1 whose cumulant function is

exp
{
K(θ ‡ C1)

}
= 1 + γ −

{
γ2 + 2

(
1− e−θ

)}1/2
, γ ≥ 1/2.

From this E(C1) = 1/γ.

The top part of Figure 9 shows a simulated sample path from a Poisson-IG process, it illustrates

the longer gaps between arrivals and the occasional very large new arrival, compared to a Poisson

process. The two processes are simulated to have the same mean, but the Poisson-IG process has

δ = 1.5 and γ = 0.5. The bottom part of the Figure show the log of the probability function for

the Poisson-IG and Poisson distributions for Y1, which has equal means of 3. It shows that the

Poisson distribution decays approximately quadratically in the tails, while the Poisson-IG’s decay

is more like linear.

5.2.8 Time-changed Skellam processes

Suppose that

Yt =
(
N (1) −N (2)

)
Tt

= N
(1)
Tt

−N
(2)
Tt
,
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where N (i) are independent Poisson processes with unit intensity and Tt is a gamma process. Now
(
N (1) −N (2)

)
t
is marginally a Skellam variable with

Pr(N
(1)
t −N

(2)
t = k) = e−2tI|k|(2t), k = 0,±1,±2, ...,

whose cumulant function is

K {θ ‡ Yt} = t
(
eθ + e−θ − 2

)
.

This means that for a random time change T independent of Y we have that

K {θ ‡ YT1} = K
{
eθ + e−θ − 2 ‡ T1

}
,

which has an analytic solution for all cases where the cumulant function of T1 is known. Leading

examples are the gamma and inverse Gaussian cases.

Although the cumulant function is simple the probability function is less easy to work with.

For example in the Skellam-gamma case

Pr(N
(1)
T1

−N
(2)
T1

= k) =
αν

Γ (ν)

∫ ∞

0
e−2ψI|k|(2ψ)ψ

ν−1e−αψdψ

=
αν

Γ (ν)

∫ ∞

0
I|k|(2ψ)ψ

ν−1e−(α+2)ψdψ.

An analytic expression for this integral does not seem to be available.

6 Empirical estimation and testing of GH Lévy processes

6.1 A likelihood approach

6.1.1 Estimation of GH Lévy processes

Here we will assess how well Lévy processes fit the marginal distribution of financial returns. Their

flexibility allows important improvements over conventional Brownian motion, however they clearly

neglect the dynamics of returns.

Throughout we assume that Y is observed at unit time intervals which we will think of as

representing a day. Then inference will be based on the increments

yi = Yi − Yi−1, i = 1, 2, ..., n.

Under the Lévy assumption

f(y1, ..., yn) =
n∏

i=1

fY1(yi),

where fY1 is the density of Y1.
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Typically fY1 is indexed by some parameters which are written as θ. Inference on θ is carried

out using the likelihood

log f(y1, ..., yn; θ) =

n∑

i=1

log fY1(yi; θ).

For concreteness we will now focus on the case where Y is a GH Lévy process. Then fY1(y; θ) is

γ2να1−2ν

Kν (δγ)
√
2π
Kν− 1

2

{
α

√
δ2 + (y − µ)2

}
exp {β (y − µ)} .

The parameters of the GH distribution are θ = (ν, µ, β, δ, γ)′, where α =
√
β2 + γ2. The maximum

likelihood (ML) estimator of θ is given by

θ̂ =arg
θ

max log f(y1, ..., yn; θ),

which has to be determined by numerical optimisation, either directly or via the EM algorithm.

The latter is particularly effective in the multivariate case and is used in Section 9.2.2 while the

associated theory is detailed in Barndorff-Nielsen and Shephard (2012c). In the case where Y is

univariate the optimisation is carried out using the Broyden, Fletcher, Goldfard and Shanno (BFGS)

quasi-Newton algorithm made available in the matrix programming language Ox by Doornik (2001)

and takes a handful of seconds for sample sizes of around 3, 000.

Confidence intervals for the parameters can be constructed via the asymptotic distribution of

θ̂ based on the Lévy assumption of i.i.d. increments. As already mentioned, the independence

assumption is clearly unrealistic. In a later subsection we will discuss the impact of this misspeci-

fication on confidence intervals. For now we stand by the Lévy assumption.

The asymptotic theory for ML estimators means that

√
T
(
θ̂ − θ

)
L→ N(0,I−1), as n→ ∞, (39)

where I is the expected information per observation which is

I = −E

(
∂Si
∂θ′

)
= Cov (Si) , where Si =

∂ log f(yi; θ)

∂θ
. (40)

For inference expected information is usually replaced by averaged observed quantities

IS = − 1

n

n∑

i=1

∂Si
∂θ′

or IO =
1

n

n∑

i=1

SiS
′
i. (41)

The terms Si and ∂Si/∂θ
′ are found by numerical differentiation. This allow us to construct

asymptotically valid t statistics for elements of θ̂ − θ. In particular a 95% asymptotic confidence

interval for ν can be found as

ν̂ ± 1.96

√
1

n
(I−1)νν , (42)
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MLE of GH parameters Likelihoods
µ β γ δ ν GH β = 0 N(µ, σ2)

ML estimates -0.0133 0.179 0.419 1.95 -1.62 -626.74 -627.97 -819.32
Outer product (IO) (.0088) (.113) (.053) (.43) (.71)
Second derivative (IS) (.0087) (.115) (.049) (.39) (.65)

Robust: m=250 (.013) (.14) (.071) (.39) (.74)
Robust: m=500 (.016) (.17) (.076) (.39) (.76)

Table 2: ML estimates of GH for the Canadian daily exchange rate. Brackets are the asymptotic
standard errors computed using different estimates of the expected information: IO and IS. GH
column denotes the likelihood for the unrestricted model. β = 0 imposes symmetry. Robust,
denotes robust standard errors computed using m lags, which will be explained in a moment.

where
(
I−1

)
νν

denotes the diagonal element of I−1 corresponding to ν.

To illustrate the above methods we go back to the daily exchange rate series for the Canadian

Dollar rate against the US Dollar. The results are given in Table 2. The ML estimate of ν is quite

negative, while µ and β are close to zero. The asymptotic standard errors for β and ν are quite

large and suggest both µ and β are not significantly different from zero. Interestingly the standard

errors based on IO and IS are very similar indeed.

The Table also gives the likelihood when β is constrained to be zero. The likelihood drops by

around one, which again suggests β can be set to zero. Finally the Table shows the GH model

improves upon the Gaussian likelihood fit by around 193, which is a very large improvement.

6.1.2 Confidence intervals via profile likelihoods

An alternative way of quantifying uncertainty is based on the likelihood ratio statistic. Again

suppose our focus is on ν. Define ω = (µ, β, δ, γ)′, so that θ = (ν, ω′)′, and

ω̂ν =arg
ω

max log f(y1, ..., yn; ν, ω).

ω̂ν is a constrained ML estimator of ω, imposing on θ an a priori fixed value of ν. Likelihood theory

tells us that if we constrain ν correctly then the likelihood ratio statistic

2
{
log f(y1, ..., yn; θ̂)− log f(y1, ..., yn; ν, ω̂ν)

}
L→ χ2

1, as n→ ∞,

then the ratio should typically take on unusually large values. We will be plotting the profile

likelihood

log f(y1, ..., yn; ν, ω̂ν)− log f(y1, ..., yn; θ̂) against ν

to indicate plausible values of ν. Of course, while the χ2
1 distribution is only valid if the model is

accurate, which certain features are demonstrably not, it is still interesting to plot out the profile.

The top left graph in Figure 10 draws the profile likelihood function for ν for the Canadian

Dollar example. This gives a similar result to the t statistics given in Table 2 with ranges of
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Figure 10: Daily exchange rate data. Profile likelihood (truncated at -25) for the ν parameter of the
GH. Also profile likelihood for the skewed Student (ν < 0) and the normal gamma (ν > 0). NIG
case corresponds to the generalised hyperbolic curve at the point ν = −0.5.

approximately −2.5 to −0.2 supported by the data. The Figure also shows the profile likelihoods

for the normal gamma and skewed Student’s t, special cases of the GH model. Recall in the normal

gamma model δ is set to zero, while in the skewed Student’s t case γ = 0. Of course the likelihoods

for these models cannot exceed that of the GH model, but this plot shows how far these models

fall behind the GH model. We can see that for very negative ν the likelihood for the GH model is

the same type of that as the skewed Student’s t model, for the ML of γ turns out to be zero. The

same effect can be seen for large values of ν for then the ML of δ is zero. The Figure shows that

the skewed Student’s t model performs quite well, but the normal gamma process has some very

significant difficulties.

6.2 Model misspecification: robust standard errors

Lévy processes allow us to flexibly model the distribution of i.i.d. increments, however in financial

economics returns exhibit volatility clustering. Later models will be developed which deal with

this feature, but for now our Lévy models are misspecified. Even though our models are incorrect,

estimation by ML methods makes sense. We will now be modelling the marginal distribution of

the increments.

The theory of estimating equations implies

√
n
(
θ̂ − θ

)
L→ N

(
0,I−1J I−1

)
, as n→ ∞, (43)
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where

J = lim
n→∞

1

n
Cov

(
n∑

i=1

Si

)
, and I = − 1

n
E

(
n∑

i=1

∂Si
∂θ′

)
.
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Figure 11: Correlograms for the Canadian data drawn against lag length. Top left is of |yi|, other
graphs are for the five elements of Si. Code: em gh.ox.

In order to construct robust standard errors for θ̂ we estimate the elements of the sandwich

I−1JI−1. The empirical average IS will consistently estimate I so long as the process is ergodic.

However, unless the returns, and so the scores Si, are i.i.d. IO will not correctly estimate J . Figure

11 shows the correlograms in the Canadian Dollar case (evaluated at θ̂) of the elements of the score

and |yi|. It shows the scores for ν, δ and γ have correlograms which are close to that of |yi|. The

scores for µ and β are much less dependent.

There is a large literature on estimating J in the presence of autocorrelation. J is just the zero

frequency of the spectral matrix of the vector Si process, i.e.

J = Cov (Si) +
∞∑

s=1

{Cov (Si, Si−s) + Cov(Si−s, Si)} ,

which can be estimated by

JO =
1

n

n∑

i=s+1

SiS
′
i +

m∑

s=1

K(j;m)

{
1

n

n∑

i=s+1

SiS
′
i−s +

1

n

n∑

i=s+1

Si−sS
′
i

}
,

where K(j;m) denotes a non-negative Bartlett smoothing window

K(j;m) =





1−
∣∣∣ j
m+1

∣∣∣ ,
∣∣∣ j
m+1

∣∣∣ ≤ 1,

0,
∣∣∣ j
m+1

∣∣∣ > 1,
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while m is called the lag truncation parameter.
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Figure 12: Log of the estimates of the unconditional density of the returns for six exchange rates
against the U.S. Dollar. Also plotted is the log-density for fitted GH model.

Table 2, considered earlier, reports the results from using the above methods to compute the

robust standard errors for the Canadian Dollar dataset. The results do not vary much with m.

The corresponding fitted generalised hyperbolic log-density for the Canadian Dollar is given in

the upper left hand graph in Figure 12. This shows sub-log-linear tails in the marginal distribution.

The fit of the model is very close to the drawn non-parametric estimate of the log-density. The

non-parametric estimator is the log of the Gaussian kernel estimator coded in Applied Statistics

Algorithm AS 176 by Bernard Silverman, which is available at StatLib and NAG and in many

statistical software environments. The bandwidth is chosen to be 1.06σ̂n−1/5, where σ̂2 =
∑
y2i /n

(this is an optimal choice against a mean square error loss for Gaussian data).

6.3 Further empirical results

6.3.1 Six daily exchange rate movements

Table 3 gives the estimates of the parameters, together with their standard and robust standard

errors, for our daily exchange rate return data sets. The corresponding fitted log-density for all six

series was given in Figure 12. This shows sub-log-linear tails in the marginal distributions for all the

fitted distributions except for and German Mark and Sterling, which has approximately log-linear

tails. And, as already notes, the fit of the model is very close to the drawn non-parametric estimate

of the log-density.
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Partly repeating some of the discussion above, there are a number of common features across

these results. First all the non-Gaussian models provide dramatic improvements over the fit of

the normal likelihood. The ν parameters seems to take values between −2 and 0.5, while neither

δ nor γ are close to zero. To reinforce this, Figure 10 showed the profile likelihood function for

each of the datasets. Also drawn are the corresponding profile likelihoods for the skewed Student’s

t and normal gamma models. The results indicates that the normal gamma model is not really

supported by the data. The skewed Student’s t model fits better — primarily as it has fatter tails.

Typically when γ = 0, ν is around −2, which corresponds to 4 degrees of freedom for the Student’s

t distribution. The fit of the distribution is very sensitive to this value. The skewed Student’s t

is dominated by GH models with γ > 0. The likelihood function is typically flat for GH models

with ν between −2 and 2. Overall, however, the values between −2.0 and 0 seem best. Finally,

the special cases of imposing β = 0 seems not to harm the fit a great deal for exchange rate data,

although there is slight statistical significance in the negative skewness in the UK Sterling, Swiss

Franc and Japanese Yen series.

Rate MLE of GH parameters Likelihoods
µ β δ γ ν GH β = 0 δ = 0 γ = 0 N

Canada -0.013 0.179 0.419 1.95 -1.62 -626.74 -627.97 -638.19 -627.61 -819.32
(.016) (.172) (.076) (.399) (.769)

DM 0.024 -0.064 0.873 1.40 -0.979 -3,903.1 -3,903.8 -3,909.8 -3,905.0 -4,052.2
(.033) (.063) (.129) (.265) (1.10)

FF 0.030 -0.074 0.930 0.923 -1.55 -3,797.1 -3,798.1 -3,809.3 -3,798.1 -3,988.2
(.029) (.060) (.083) (.208) (.614)

SF 0.073 -0.143 1.08 1.25 -1.27 -4,296.9 -4,300.6 -4,302.1 -4,298.3 -4,428.2
(.037) (.065) (.094) (.214) (.834)

JY 0.044 -0.120 0.800 0.841 -1.12 -4,022.6 -4,027.1 -4,042.8 -4,025.5 -4,310.3
(.026) (.041) (.069) (.144) (.372)

Pound 0.034 -0.089 0.430 1.89 0.145 -3485.7 -3487.5 -3492.5 -3495.1 -3704.8
(.018) (.039) (.090) (.097) (.439)

Table 3: Fit of GH for daily exchange rates. GH denotes unrestricted model. β = 0 imposes
symmetry, δ = 0 skewed NΓmodel, γ = 0 skewed Student. Robust S.E.s (m = 500) are in brackets.

6.3.2 Daily equity indexes

Table 4 gives the estimates of our parameters for the daily equity return data. The corresponding

profile likelihoods are given in Figure 13. These results are more mixed, with values of ν between

−1 and 1 being roughly necessary. Overall again the normal inverse Gaussian usually does pretty

well, never fitting really poorly. One conclusion from these fitted models is that there seems very

little asymmetry in this data. This is perhaps surprising as this is always an important possibility

for equity data. The improvement over the Gaussian fit is picked up very well in the discrepancy

between the Gaussian and the GH likelihood fits. This holds across all the assets, but is less severe
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for FTSE — which is not surprising given its normal gamma like behaviour.

Index MLE of GH parameters Likelihoods
µ β δ γ ν GH β = 0 δ = 0 γ = 0 N

DAX 30 0.234 -0.113 0.983 0.821 -0.206 -2,735.5 -2,740.6 -2,739.1 -2,740.3 -2,849.4
(.091) (.037) (.126) (.133) (.836)

FTSE 100 0.043 -0.004 0.734 1.99 1.72 -2,488.7 -2,488.7 -2,488.8 -2,490.4 -2,515.4
(.041) (.037) (.328) (.190) (1.95)

S&P 500 0.124 -0.059 1.05 0.655 -1.03 -2,314.6 -2,315.6 -2,322.3 -2,315.8 -2,444.9
(.027) (.019) (.191) (.236) (.872)

Nikkei 500 0.009 -0.007 1.08 0.780 -0.654 -2,531.0 -2,531.0 -2,536.1 -2,532.4 -2,638.1
(.038) (.029) (.293) (.322) (1.75)

Table 4: Fit of GH for daily equities. GH denotes unrestricted model. β = 0 imposes symmetry,
δ = 0 skewed NΓ model, γ = 0 skewed Student. Robust S.E.s (m = 500) are in brackets.
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Figure 13: Daily index return data. Profile likelihood for ν in GH model. Also profile for the skewed
Student (ν < 0) and the skewed NΓ (ν > 0).

7 Quadratic variation

7.1 Basics

A central concept in financial econometrics, derivative pricing and stochastic analysis is the Quadratic

Variation (QV) process. This has two steps. First, time is split into small intervals

tr0 = 0 < tr1 < ... < trmr
= t.

Then the QV process is defined as

[Y ]t =p− lim
r→∞

∑(
Ytri+1

− Ytri

)2
, (44)
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where supi
(
tri+1 − tri

)
→ 0 for r → ∞.

It is sometimes helpful to work with an alternative, and equivalent2 (to (44)), definition of QV

which is written in terms of a stochastic integral. It is that

[Y ]t = Y 2
t − 2

∫ t

0
Yu−dYu. (45)

This is discussed in some detail in our primer on stochastic analysis.

Example 8 Let N be a Poisson process and let us check the consistency of the formulae (45) and

(44). Suppose Nt = n. It is immediate from (44) that

[N ]t = n

while, on the other hand,

N2
t − 2

∫ t

0
Nu−dNu = n2 − 2

n∑

i=1

(i− 1) = n2 − 2
(n
2

)
= n.

In general the QV process of a Lévy process is a subordinator, for the increments are non-

negative, independent and stationary. If Y has a Lévy density u, recalling this means its Lévy

measure v can be written as v(dy) = u(y)dy, then for y > 0 the Lévy density of the QV process is

u(
√
y)

2
√
y

+
u(−√

y)

2
√
y

.

This follows from the Lévy-Ito representation of Y .

Example 9 Suppose Y = σW ◦ T where W is Brownian motion and T is a Poisson process

independent of W with intensity λ, then Yt =
∑Tt

j=1Cj , where Cj
i.i.d.∼ N(0, σ2), is a compound

process (37) while

[Y ]t =

Tt∑

j=1

C2
j .

Hence [Y ] is a compound Poisson process subordinator with Lévy density

λσ−1f(σ−1y ‡ χ2
1),

where f(y ‡ χ2
1) denotes the probability density function of the χ2

1 distribution with one degree of

freedom.

2That they are exactly equivalent follows from Ito’s lemma. Many probabilists use this second form as the original
definition of QV, rather than via the limit of sums of squares. However, their formal equivalence implies we can use
either definition provided we are in the semimartingale framework.
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7.2 Brownian motion and quadratic variation

Suppose Y is a scaled Brownian motion with drift, such that Y1 ∼ N(µ, σ2). Then

Ytri+1
− Ytri ∼ N(

(
tri+1 − tri

)
µ,
(
tri+1 − tri

)
σ2).

For small values of
(
tri+1 − tri

)
the variation in the series dominates — the standard deviation and

drift are O
(√

tri+1 − tri
)
and O

(
tri+1 − tri

)
, respectively. As a result

[Y ]t = tσ2,

whatever the value of µ. The QV is non-stochastic and is the only non-trivial example of a Lévy

process where the QV degenerates to a deterministic function of time.

From a statistical viewpoint it means we can theoretically estimate σ2 without error using a

tiny path of Brownian motion even in the presence of drift. Of course in practice this is a highly

misleading argument for the continuous time model is unlikely to be perfectly specified at very

short time horizons.

7.3 Realised QV process

The realised QV process is defined, for δ > 0 and any stochastic process Y , by

[Yδ]t =

⌊t/δ⌋∑

j=1

(
Yδj − Yδ(j−1)

)2
,

where ⌊t⌋ denotes the largest integer less than or equal to t. We can see that if Y ∈ SM then

p− lim
δ↓0

[Yδ]t = [Y ]t,

that is the realised QV is a consistent estimator of QV. However, if Y is a Lévy process [Yδ] is

not a Lévy process — rather it jumps upwards at specified points in time and so is a discrete time

random walk.

Example 10 A numerical example of the realised QV process is given in Figure 14, which computes

it for a NIG Lévy process. In this picture we have taken δ = 1 and δ = 1/10, so taking 1 and 10

squared observations per unit of time, respectively. Also given is the corresponding limit, the QV.

We see that as δ gets small so [Yδ] becomes a good approximation of [Y ].

In applied economics it is often inappropriate to study returns over tiny time intervals for our

models tend to be highly misspecified at that scale due to market frictions. In particular the idea

of a unique price is a fiction, for the transaction price tends to depend upon, for example, the

volume of the deal, the reputation of the buyer and seller, prevailing liquidity (and so time of day)
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Figure 14: Figure (a) Sample path of NIG(0.2,0,0,10) Lévy process. (b) Corresponding realised QV
process taking δ = 1. (c) Same but with δ = 1/10. (d) QV of the process. Code: levy code.ox.

and the initiator (i.e. was it the buyer or the seller). These issues will be discussed at more length

in later Chapters. To avoid the worst effects of misspecification, realised quadratic variation [Yδ]

with δ not too small is used.

In order to understand the connection between the Lévy, realised QV and QV processes it is

helpful to think about the following calculation

E




Yt
[Yδ]t
[Y ]t


 = t




κ1
κ2
κ2


 , Cov




Yt
[Yδ]t
[Y ]t


 = t




κ2 κ3 κ3
κ3 κ4 + 2κ22δ κ4
κ3 κ4 κ4


 ,

where κr denotes the r-th cumulant of Y1. The only one of these results which is not straightforward

is

Var([Yδ]t) =
t

δ

{
µ4 (Yδ)− µ2 (Yδ)

2
}

=
t

δ

{
κ4 (Yδ) + 2κ22 (Yδ)

}

= t
(
κ4 + 2δκ22

)
,

where, generically, κr(X) is the r-th cumulant of X. Finally we notice the implication that [Yδ]−[Y ]

has a zero mean, while

Var ([Y ]t − [Yδ]t) = 2κ22tδ.

Hence we could use [Yδ] as an estimator of [Y ].
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Example 11 Suppose Y is standard Brownian motion, then κ3 = κ4 = 0, which means that

E




Yt
[Yδ]t
[Y ]t


 = t




κ1
κ2
κ2


 , Cov




Yt
[Yδ]t
[Y ]t


 = t




κ2 0 0
0 2κ22δ 0
0 0 0


 ,

which makes sense, for [Y ]t = t.

Example 12 Suppose Y is the homogeneous Poisson process, then all the cumulants are equal to

κ1. Thus, writing ι = (1 1 ... 1)′,

E




Yt
[Yδ]t
[Y ]t


 = tκ1ι, Cov




Yt
{Yδ}t
[Y ]t


 = tκ1




1 1 1
1 1 + 2κ1δ 1
1 1 1


 .

Notice the covariance is singular, for Y = [Y ] as was noted in Example 8.

Example 13 Suppose Y = σW ◦ T . Then

C {ζ ‡ Y1} = K

{
1

2
ζ2σ2 ‡ T1

}
.

This implies

κ1 = 0, κ2 = σ2κ1(T ), κ3 = 0, κ4 = 3σ2κ2(T ).

Hence in this case

Var ([Y ]t − [Yδ]t) = 2σ4κ21(T )tδ,

which only depends upon the mean of the subordinator, not its variance.

8 Lévy processes and stochastic analysis

8.1 Ito’s formula for Lévy processes

Any Lévy process Y is a semimartingale and so Ito’s formula for semimartingales immediately

applies such that, for any real function f which is twice continuously differentiable, then f(Yt) ∈
SM and

df(Yt) = f ′(Yt−)dYt +
1

2
f ′′(Yt−)d[Y

c]t + f(Yt)− f(Yt−)− f ′(Yt−)∆Yt, (46)

where Y c is the continuous part of the Lévy process. For Lévy processes [Y c] is exactly zero unless

Y has a Brownian component, in which case [Y c] is proportional to t.

Example 14 Suppose Y is a pure jump Lévy process and V = exp(Y ), then

dVt = Vt−dYt +∆Vt − Vt−∆Yt.
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8.2 Stochastic exponential of a Lévy process

The stochastic exponential E(Y ) of Y is defined as

E(Y )t = eYt−
1
2
[Y ]t

∏

0<u≤t

(1 + ∆Yu)e
−∆Yu+

1
2
∆Y 2

u (47)

and V = E(Y ) is the unique solution to the SDE

dVt = Vt−dYt (48)

with initial condition V0 = 1. The process E(Y )t is a semimartingale. Some of the above is familiar

from the result on exponentiating a diffusion, where the result is E(Y )t = exp
(
Yt − 1

2 [Y ]t
)
.

8.3 Stochastic logarithm

The stochastic logarithm L(Y ) of Y ∈ SM, where Y is assumed to live on R>0, is defined as

L(Y )t =

∫ t

0

1

Yu−
dYu. (49)

Clearly, with V = E(Y ),

L(E(Y ))t =

∫ t

0

1

Vu−
dVu =

∫ t

0

1

Vu−
Vu−dYu = Yt,

where we have used formula (48).

9 Multivariate Lévy processes

9.1 Elemental constructions

An important question is how to generate multivariate Lévy processes, that is processes with

independent and stationary multivariate increments. Here we discuss just two approaches: linear

transformation and time deformation, of independent Lévy process U and V .

If Θ is some deterministic matrix, then the linear combination of the original Lévy processes

Y = Θ

(
U
V

)
,

is a bivariate Lévy process. The elements of Y are marginally Lévy processes. This type of argument

generalises to any dimension.

We saw in Section 5 that subordination can be used to generate compelling Lévy processes.

Here we use this idea to put

Y =

(
U
V

)
◦ T,
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where T is an independent, common subordinator. This means, for Y 1
t = UTt and Y

2
t = VTt , and Y

is a multivariate Lévy process. A concrete example of this is where (U, V ) are independent standard

Brownian motions, then

Yt|Tt ∼ N(0, TtI),

which implies the elements of Yt are uncorrelated but dependent. In particular

Cov

(
Y 1
t

Y 2
t

)
= E(Tt)

(
1 0
0 1

)
,

while

E
{(
Y 1
t

)2 (
Y 2
t

)2}
= E

(
T 2
t

)
6= E(Tt)

2 = E
{(
Y 1
t

)2}
E
{(
Y 2
t

)2}
.

More generally we could consider a bivariate Lévy process T =
(
T (1), T (2)

)
, with both T (1) and

T (2) being subordinators, setting Y =
(
U ◦ T (1), V ◦ T (2)

)′
.

9.2 Multivariate generalised hyperbolic Lévy process

9.2.1 Background

Suppose we take Vt as a d× 1 vector of correlated Brownian motions generated by

Vt = tΣβ +Σ1/2Wt,

where W is a d× 1 vector of independent, standard Brownian motions and Σ is a positive definite

d× d matrix. Further we take T to be an independent subordinator and define the deformed series

Yt = µt+ VTt . Then Y is a Lévy process with

Yt|Tt ∼ N(µt+ TtΣβ, TtΣ).

Suppose we choose to make T a GIG(ν, δ, γ) Lévy process, then we say that Y is a multivariate

generalised hyperbolic Lévy process, following our earlier work on the univariate process discussed

in Section 4.2.4. In particular the increments of such a process are independent and stationary

while the density of Y1 is known to follow a multivariate GH(ν, α, β, µ, δ,Σ) density

fY1(y) =
(2π)−d/2 γ2ναd−2ν

|Σ|Kν (δγ)
Kν−d/2

{
α

√
δ2 + q

}
exp

{
β′ (y − µ)

}
, (50)

where

q = (y − µ)′Σ−1 (y − µ) and α =
√
γ2 + β′Σ−1β.

Here Σ allows us to model the correlation between the processes, while ν, δ, and γ controls the tails

of the density. The whole vector β freely parameterises the skewness of the returns. In order to
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Figure 15: Densities and log-densities of N(0,I) and NIG(1,0,0,1,I) variables. Densities: (a) N(0,I).
(b) NIG. Log-densities: (c) N(0,I). (d) NIG. Code: levy graphs.ox.

enforce identification on this model it is typical to assume that det (Σ) = 1, although Mencia and

Sentana (2004) have normalised the model by setting δ = 1. The multivariate GH density has many

interesting special cases such as the multivariate skewed Student’s t, normal gamma, normal inverse

Gaussian, hyperbolic and Laplace. Of course, as the multivariate GH is a normal variance-mean

mixture, then linear combinations of Y are also GH, while if we write Y = (X ′, Z ′)′ then Z|X,

X|Z, X and Z are all GH. Hence many of the important attractive features of the multivariate

Gaussian distribution carry over to the multivariate generalised hyperbolic distribution.

A simple example of the above multivariate distributions of Y1 is given in Figure 15 which draws

the density and log-density for the bivariate standard normal and the correspondingNIG(1, 0, 0, 1, I)

variables (chosen so that the marginal variances of the variables are 1). Again the log-densities

show that the tails of the NIG variables are much thicker — looking roughly linear in all tails. This

has a very big impact on the chance of observing two observations in the tails of the distribution.

9.2.2 Empirical fit of multivariate GH processes

Experience suggests that it is computationally convenient to compute the ML estimator of multi-

variate GH models using the EM algorithm. This approach, which is detailed in Barndorff-Nielsen

and Shephard (2012c), becomes particularly attractive when d is large for the EM algorithm quickly

converges to the ML estimator as the degree of missing data, which in this context is the unknown

scale σ, lessens as d increases.
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We start by fitting some bivariate models. The first example of this is a fit of the German

DM and French Franc against the US Dollar which is reported in the first two lines of Table 5

and Figure 16. The Table shows the expected dramatic improvement in fit associated with these

DM MLE of GH parameters Likelihoods
+ µ β δ γ ν Σ GH β = 0 δ = 0 γ = 0 N

.0221 -.0310 .365 1.03 -1.06 3.83 3.59 -2,865 -2,867 -2,933 -2,869 -3,913
FF .0241 -.0143 3.59 3.62 4,835 4,834 4,785 4,834 4,127

.0130 -.0434 .655 1.78 -1.46 2.31 .049 -4,518 -4,524 -4,535 -4,520 -4,868
Can -.0116 .167 .049 .432 11.8 7.4 12.6 12.2 3.2

.0429 .0283 .660 1.36 -1.62 2.24 2.27 -4,592 -4,605 -4,615 -4,594 -5,023
SF .0548 -.129 2.27 2.76 3,607 3,599 3,596 3,609 3,179

.0185 .0424 .737 1.37 -.848 1.15 0.60 -7,258 -7,264 -7,281 -7,279 -7,730
JY .0578 -.175 0.60 1.18 667 666 671 651 632

.0315 -.303 .543 1.95 -.391 1.57 -0.98 -5,975 -6,026 -5,993 -5,986 -6,457
BP .0449 -.361 -0.98 1.24 1,413 1,365 1,408 1,414 1,298

Table 5: Bivariate GH models. Fits the pair of the DM plus another currency against US Dollar.
In italics are improvement in the log-likelihood compared to fit of the univariate models. β = 0
imposes symmetry, δ = 0 gives skewed NΓ model, γ = 0 gives skewed Student distribution. Code:
em gh mult.ox.

multivariate models, for the DM and FF are highly related currencies. This is shown up by the

estimated Σ matrix. Again ν is estimated to be negative, while the fit of the GH model is very close

to the bivariate skewed Student’s t in this case. The normal gamma model is quite a lot poorer in

this multivariate setting. The result in the italics gives the likelihood for the multivariate model

minus the sum of the likelihoods for the DM and FF univariate models. So the number for the

normal case shows an improvement in the likelihood of 4, 127. Although this is very substantial,

the improvements for the other models are much higher. Hence the gains in using GH models is

even higher in the multivariate case than one might have expected from the univariate analysis.

Figure 16 shows the fitted bivariate normal and GH densities for the DM and FF returns. The

graphs have been drawn to show the densities in places where the log-density does not drop 12

from the mode. This gives an impression of the plausible scatter of points from this variable. The

bivariate normal density is tightly packed, while the GH model gives a wider range of possible

points while the tails of the log-density appear linear or slower in each direction.

Table 5 gives the results for all the bivariate exchange rate relationships which involve the Dollar.

Broadly similar conclusions follow from the above, except the degree of dependence between the

currencies is smaller in these other cases. Interestingly the UK Sterling is negatively related to the

DM returns. Throughout the table the estimated values of ν ranges between about −0.5 and −1.5.

This is an important common theme, again suggesting evidence against the use of normal gamma

models.

Table 6 gives the GH fit to all six exchange rate return series. This high dimensional model has
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Figure 16: Fit of bivariate Gaussian and GH models for the DM and FF against the Dollar. (a) ML
fit of bivariate Gaussian density, (c) log-density. (b) ML fit of bivariate GH density, (d) log-density.
Code: em gh mult.ox.

a low value of ν, which suggests the fit is very close to a skewed multivariate Student’s t distribution.

The skewness parameters are important. The NIG fits worse than the skewed Student’s t but is

much better than the normal gamma model. All these models are enormous improvements over

the multivariate normal fit to the data.

Table 7 gives the corresponding result for the four dimensional equity return data. Here the

elements of β are all estimated to be negative, indicating common negative skewness. That is, the

large negative movements have a tendency to occur in all the markets at the same time. In this

case the non-symmetries are important, while the normal gamma is again considerably worse than

the Student’s t or the NIG distributions.

δ = .638, γ = .586, ν = −2.22,

Σ =

















.628 .0692 .0754 .0760 .0199 −.115
.0692 3.09 2.86 3.13 1.66 −1.95
.0754 2.86 2.91 2.99 1.57 −1.86
.0760 3.13 2.99 3.82 1.85 −2.08
.0199 1.66 1.57 1.85 3.45 −1.19
−.1157 −1.95 −1.86 −2.08 −1.19 2.54

















, µ =

















−.0115
.0307
.0346
.0494
.0605
.0239

















, β =

















.120
.0875
−.0647
−.182
−.148
−.254

















.

Likelihoods

GH β = 0 δ = 0 γ = 0 NIG N

-9,671 -9,726 -9,791 -9,672 -9,697 -11,635

Table 6: Multivariate GH model for CD, DM, FF, SF, JY and Sterling. β = 0 imposes symmetry.
δ = 0 gives skewed NΓ model, γ = 0 gives skewed Student t distribution. Code: em gh mult.ox.
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δ = 1.47, γ = .660, ν = −1.72,

Σ =









1.54 .778 .654 .145
.778 1.18 .510 .181
.654 .510 .977 .128
.145 .181 .128 1.26









, µ =









.201

.132

.161
.0872









, β =









−.0668
−.0105
−.0438
−.0580









.

Likelihoods

GH β = 0 δ = 0 γ = 0 NIG N

-9,268 -9,285 -9,293 -9,270 -9,271 -9,694

Table 7: Multivariate GH model for DAX 30, FTSE 100, S&P500, Nikkei 100. β = 0 imposes sym-
metry, δ = 0 implies the skewed NΓ model, γ = 0 is the skewed Student t. Code: em gh mult.ox.

9.3 Stochastic discount factors

In financial economics we typically price contingent payoffs g(YT ) as

Ct = E

(
M̃∗T

M̃∗t
g(YT )|Ft

)
, M̃∗t = exp

(
M̃t

)
,

the expected discounted value of the claim where T > t, M̃∗ is called the stochastic discount factor

(SDF) and M̃ is the log-SDF. For this setup to rule out trivial arbitrages we require that

exp
(
M̃tYt

)
and exp(M̃t) exp (tr)

are local martingales, in order to avoid arbitrage, and where r is a riskless interest rate. A book

length exposition of this approach to asset pricing is given by Cochrane (2001).

Suppose that M̃ and Y together constitute a bivariate Lévy process. What constraints are

imposed on the Lévy process in this setup? For exp(M̃t) exp (tr) to be a martingale we need that

K
{
1 ‡ M̃1 + Y1

}
= 0 and K

{
1 ‡ M̃1

}
= −r. (51)

Example 15 Suppose

(
M̃
Y

)

t

=

(
µ
M̃
µY

)
t+

(
σ
M̃
B

σYW

)

t

,

where B,W are independent Brownian motions. Then (51) imply

µY = r − 1

2
σ2Y and µ

M̃
= −r − 1

2
σ2
M̃
.

Hence Ct does not depend upon the value of σ2
M̃
. More generally, if M̃ ⊥⊥ Y and M̃, Y are Lévy

processes then we require

K {1 ‡ Y1}+K
{
1 ‡ M̃

}
= r and K

{
1 ‡ M̃

}
= −r.
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10 From Lévy processes to semimartingales∗

Lévy processes are determined by their characteristic triplets. For any Lévy process Y with char-

acteristic triplet (a, b, v) the law of Yt has characteristic triplet (ta, tb, tv). Suppose we think of

extending the concept of Lévy processes by having a triplet of predictable processes (at, bt, vt) in-

stead of (a, b, v). It turns out that the class of semimartingales can be seen as the natural answer

to this quest — which in turn places them at the centre of modern continuous time asset pricing

for arbitrage freeness and semimartingales are synonymous.

We will indicate the character of this, leaving the rather formidable technicalities aside.

Subject to minor regularity assumptions, if Y is a univariate semimartingale then there is a

unique triplet ∂Y = (a, b, v) of predictable processes such that Y has representation

Yt = Y0 +

∫ t

0
asds+

∫ t

0
σsdWs +

∫ t

0

∫

Rd

c̄ (x)µ (dsdx)

+

∫ t

0

∫

Rd

c (x) (µ (dsdx)− νs (dx) ds) (52)

whereW is Brownian motion, b = σ2, c is a truncation function, c̄ = 1−c, µ is the random measure

given by

µ ((0, t]×A) =
∑

0<s≤t

1A (∆Ys)

(where A is an arbitrary Borel set in R) and vt (dx) dt is the compensator of µ (dtdx), i.e.

vt (dx) dt = E {µ (dtdx)} .

Example 16 If there are no jumps then

Yt = Y0 +

∫ t

0
asds+

∫ t

0
σsdWs, (53)

which is often called a Brownian semimartingale. The characteristic triplet of Y is in this case
(
at−, σ

2
t−, 0

)
. The term

∫ t
0 σsdBs is a stochastic volatility process and such processes are the subject

of the next Chapter.

Example 17 Suppose N is a Poisson process jumping with intensity λ and let

Yt =
∑

0≤s≤t

Cs1{1} (∆Ns) (54)

where {Ct}t≥0 is a family of independent but not necessarily identically distributed random variables.

Then Y is semimartingale of the form (52) with triplet (0, 0, λπt) where πt is the law of Ct and is

assumed to depend continuously on t. In this case,

Yt = µ ((0, t] × {1}) .
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If, more generally, the process N is a Poisson process with deterministic intensity λt we are still in

the semimartingale setting but the structure is slightly more complicated than in (52) and a more

general triplet concept is needed.

Example 18 Adding (53) and (54), assuming they are independent, gives a semimartingale as in

(52) and with triplet
(
at−, σ

2
t−, λπt

)
.

The process (54) is an example of an additive process, that is a process with independent

increments. Note that all such processes have deterministic triplet (at, bt, νt).

11 Conclusion

This Chapter has provided an informal introduction to Lévy processes. Starting with subordina-

tors, where the Lévy-Khintchine representation is more accessible, we have typically built models

using the idea of time deformation. Such models are then imbedded within the familiar normal

variance-mean mixture class of processes. We have emphasised the role of QV and have discussed

the development of various multivariate Lévy processes. Barndorff-Nielsen and Shephard (2012a)

provides a more detailed mathematical treatment of the material we have developed in this Chap-

ter, as well as other topics involving Lévy processes, that we develop later. Background information

of semimartingale theory is provided in Barndorff-Nielsen and Shephard (2012b).

12 Exercises

Exercise 8 Suppose that Y and Y ′ are independent gamma processes indexed by ν, α and ν, α′;

show that Y − Y ′ is a skewed normal gamma process. Hint, recall that

K {θ ‡ Y1} = ν log

(
1 +

θ

α

)
.

Exercise 9 Suppose that Y and Y ′ are independent IG processes indexed by δ, γ and δ, γ ′; show

that Y − Y ′ is not a NIG process.

Exercise 10 Suppose that Y is a compound Poisson process

Yt =

Nt∑

j=1

Cj .

Prove directly that

[Y ]t = Y 2
t − 2

∫ t

0
Yu−dYu =

Nt∑

j=1

C2
j .
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Exercise 11 Let X be a random variable such that

Y = sign(X) |X|1/2

follows the standard normal distribution. Compare the law of X to that of the symmetric NRIG

distribution, as regards the behaviour of the probability densities at 0 and ±∞.

Exercise 12 Let X and Y be semimartingales and suppose that they are related by

E(Y )t = eXt .

Show that Y is a Lévy process if and only if X is a Lévy process.

Exercise 13 Show that the Cauchy motion (that is the Lévy process which at time one follows

the Cauchy law) can be represented as the sum of an NIG motion and an independent compound

Poisson process. Give an extension of this result.

Exercise 14 Show that if Y is a Lévy process of type G and if its subordinator T has Blumenthal-

Getoor index α then the Blumenthal-Getoor index of Y is 2α.

13 Bibliographic notes

13.1 Lévy processes

Lévy processes were introduced by Lévy (1937) who pioneered the theory of infinite divisibility.

Modern accounts of the probability theory of Lévy processes are given in Bertoin (1996), Sato (1999)

and Applebaum (2004). See also Ito (2004), Rogers and Williams (1994, pp. 73–84) and Bertoin

(1999). In his notes after each chapter Sato (1999) gives a detailed discussion of the historical

development of the subject. A reasonably accessible overview of the theory and uses of Lévy

processes is given in Barndorff-Nielsen, Mikosch, and Resnick (2001). A compact account in the

context of finance is presented by Shiryaev (1999, pp. 200-206), while a more extensive discussion

of the uses of Lévy processes in finance is given in Cont and Tankov (2004) and Boyarchenko and

Levendorskii (2002b).

The simulation of Lévy processes has to be carried out with some care. There are extensive

results available. Some of the most useful are the infinite series representation developed by Rosinski

(2001), Rosinski (2002) and Rosinski (2007). The special case of gamma process simulation is

discussed by Wolpert and Ickstadt (1999), while some more general discussion is given in Walker

and Damien (2000). We should also note the important contribution of Asmussen and Rosinski

(2001). Cont and Tankov (2004, Ch. 6) is an excellent source on these numerical issues.
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The connections between Lévy processes and semimartingales are well discussed in some tech-

nical depth by for example Kallsen (2006). In turn this relies strongly on results in Jacod and

Shiryaev (2003), see also Jacod (1979).

13.2 Flexible distributions

Most of modern financial economics is built out of Brownian motion and the corresponding Itô

calculus. In this Chapter we have discussed many familiar alternative Lévy processes like the

Poisson, normal gamma, Student’s t, Laplace and normal inverse Gaussian laws. All these processes

have been used as empirical models for log-prices. Throughout we have emphasised the normal

variance-mean mixture distributions

Y = µ+ βσ2 + σU,

where U is a standard normal variable which is independent from a random σ2. When β = 0 these

variables are called normal variance mixtures and are very familiar in econometrics. The extension

to β 6= 0 is important in financial economics as this allows us to model skewness. This approach

to building non-Gaussian densities is attractive for it leads naturally into Lévy processes which

have a subordination interpretation. A general discussion of these types of mixtures in statistics

is given in Barndorff-Nielsen, Kent, and Sørensen (1982). When the distribution of σ2 is infinitely

divisible a natural name for this distribution is type G. On the other hand, Steutel and Van Harn

(2004) call this type of distribution B(V), while Chaumont and Yor (2003) use the label “Gaussian

transforms”.

In early work Praetz (1972) and Blattberg and Gonedes (1974) suggested modelling the incre-

ments to log-prices using a Student’s t distribution. This model was not set in continuous time, but

we have seen above that it is possible to construct a Lévy process to justify this type of modelling.

Further the model can be extended to allow for asymmetry. More recently Granger and Ding (1995)

have advocated the use of Laplace distributions to model discrete time returns, while the non-linear

Brownian motion based Cox, Ingersoll, and Ross (1985) processes have gamma marginals and so

normal gamma distributions are often implicitly used in econometrics. It turns out that fitted

values of the normal gamma distribution are typically thinner tailed, in fact sub-log-linear, than

the corresponding Student, normal inverse Gaussian or the Laplace.

In this Chapter we have placed a great deal of emphasis on generalised hyperbolic and gener-

alised inverse Gaussian distributions. We have carried this out for they support Lévy processes,

are empirically flexible, encompass many of the familiar models econometricians are accustomed to

and are mathematically tractable. However, their generality and some of the special cases are not

so familiar.
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The hyperbolic distribution and its extension to the generalised hyperbolic distribution was

introduced in Barndorff-Nielsen (1977) in order to describe the size distribution of sand grains in

samples of windblown sands. This was motivated by empirical observations due to R. A. Bagnold

who noted that in double logarithmic plotting (that is both the horizontal and vertical axes are

plotted on the logarithmic scale) the histograms looked strikingly as following hyperbolae, the slopes

of the asymptotes being related to the physical conditions under which the sand was deposited; see

Bagnold (1941) (note the similarity to the Granger and Ding (1995) empirics). Subsequently, it

was discovered that the hyperbolic shape, or shapes very close to that, occur in a very wide range

of empirical studies, for instance in other areas of geology, in turbulence, in paleomagnetism, in

relativity theory and in biology. For a survey of developments up till the mid-1980ies, see Barndorff-

Nielsen, Blæsild, Jensen, and Sørensen (1985). The generalised inverse Gaussian distribution is due

to Étienne Halphen in 1946 (see the review article by Seshadri (1997)), while it was briefly discussed

by Good (1953). A detailed discussion of this distribution was given by Jørgensen (1982).

Following a suggestion by Barndorff-Nielsen, Ernst Eberlein and coworkers began an investiga-

tion of the applicability of the generalised hyperbolic laws in finance and this has developed into a

major project. For their work on this, see Eberlein and Keller (1995), Eberlein, Keller, and Prause

(1998), Eberlein (2001), Eberlein and Özkan (2003b) and Prause (1999). Bauer (2000) discusses

the use of these models in the context of value at risk.

When deviations from the hyperbolic shape occurred they typically showed somewhat heav-

ier tails than the hyperbolic. This led Barndorff-Nielsen to consider more closely another of the

generalised hyperbolic laws, the normal inverse Gaussian, which had until then received no atten-

tion, but turned out not only to fit a much wider range of data but also to possess various nice

mathematical properties not shared by the hyperbolic (Barndorff-Nielsen (1997), Barndorff-Nielsen

(1998b), Barndorff-Nielsen (1998a)). Sørensen (2006) presents a model for the development of the

size distribution of sand under transport by wind, leading to the log NIG distribution.

The class of tempered stable distributions was introduced by Tweedie (1984). Hougaard (1986)

discussed their applicability in survival analysis. See also Jørgensen (1987) and Brix (1999). The

normal variance-mean mixtures with TS mixing was introduced by Barndorff-Nielsen and Shephard

(2001b), who also extended this concept to the normal modified stable distributions. Barndorff-

Nielsen and Shephard (2001a) used some of these distributions in their work on stochastic volatility.

Multivariate Student’s t distributions have been used since their introduction by Mardia (1970,

p. 92) and Zellner (1971, pp. 383-389). The multivariate GH distribution was first defined in

Barndorff-Nielsen (1977) and was discussed in considerable detail and with a biological application

by Blæsild (1981). A rather extensive discussion of the use of multivariate GH distributions in
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financial econometrics is given by Mencia and Sentana (2004). Alternative skewed multivariate

Student’s t distributions are provided by Fernández and Steel (1998), Bauwens and Laurent (2005)

and Bera and Premaratne (2002). Jones and Faddy (2003) provides a discussion of much of the

literature. Applications of the multivariate NIG distribution have been discussed by Aas, Haff, and

Dimakos (2006) and Øigard, Hanssen, Hansen, and Godtliebsen (2005).

In a series of papers Kou (2002), Kou and Wang (2003), Kou and Wang (2004), Kou, Petrella,

and Wang (2005), Heyde and Kou (2004) and Glasserman and Kou (2003).

The Skellam distribution was introduced by Irwin (1937). Related mathematical finance work

is carried out by Kirch and Runggaldier (2004). Sichel (1973) and Sichel (1975) studied Poisson-IG

distributions. The Skellam process was introduced by Barndorff-Nielsen, Pollard, and Shephard

(2012) together with various integer valued extensions. They used it in the context of high

frequency financial data.

Bondesson (1992) is also a key reference for infinite divisibility. It also includes a detailed

account of Thorin’s pioneering work (e.g. Thorin (1977) and Thorin (1978)) on the log-normal

distribution and some of the important work that followed.

A simple generic method to sample from the GIG distribution has been derived by Dagpunar

(1988, pp. 133-5) (see also Atkinson (1982)). Tempered stable variables are simulated by Devroye

(2009) (see also Zhang (2011)).

13.3 Lévy processes in finance

The use of normal gamma based Lévy processes in finance was pioneered by Madan and Seneta

(1990) and Madan, Carr, and Chang (1998) who paid particular attention to their use in option

pricing. Recent extensions of this work include Carr, Geman, Madan, and Yor (2002).

The thicker tailed hyperbolic distribution and Lévy process was studied extensively in the

context of finance by Eberlein and Keller (1995), who also discussed the corresponding option

pricing theory and practice in Eberlein, Keller, and Prause (1998) and Eberlein (2001). This

work is possible because the generalised inverse Gaussian distribution were shown to be infinitely

divisible by Barndorff-Nielsen and Halgreen (1977). In fact it has the stronger property of being

selfdecomposable and the same holds for the GH distribution, see Halgreen (1979).

The even thicker tailed normal inverse Gaussian process is studied by Barndorff-Nielsen (1995),

Barndorff-Nielsen (1997), while Rydberg (1997b) and Rydberg (1997a) discusses both fitting the

process to financial data and simulating from such processes. Prause (1999) and Raible (2000)

have recently written first rate Ph.D. theses on generalised hyperbolic Lévy processes under the

supervision of Ernst Eberlein. Both of these theses have a wealth of information on this topic.

Bingham and Kiesel (2000) looks at the use of hyperbolic processes in finance, while Bibby and
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Sørensen (2003) reviews the area of generalised hyperbolic processes in finance.

The idea of time deformation or subordination is due to Bochner (1949) and Bochner (1955),

while it was introduced into economics by Clark (1973) who suggested the use of volume statistics

as a subordinator, placing particular weight on studying the implications of using a lognormal

subordinator. At that stage it was not known that this was a valid mathematical construction for

it was not until Thorin (1977) that the lognormal was shown to be infinitely divisible. See also

Bondesson (2002) for up to date treatment of lognormal Lévy processes. Epps and Epps (1976)

and Tauchen and Pitts (1983) further studied the relationship between volume and the variance of

the increments to prices. Recent discussions of this includes Ané and Geman (2000). Stock (1988)

used the concept of subordination in a wider economic context outside finance. The Student-

OU process, and other stationary processes with Student marginals, are discussed in Heyde and

Leonenko (2005).

Mandelbrot (1963) and Mandelbrot and Taylor (1967) introduced the concepts of self-similarity

and stable Lévy processes into financial economics. Almost immediately the main stream academic

profession rejected these models, after some initial support from Fama (1965), due to their lack of

empirical fit, as most research papers suggested the existence of at least two moments for returns.

An elegant discussion of the move away from these models and its importance is given in Campbell,

Lo, and MacKinlay (1997, pp. 17-19). However, there still remains a small group of researchers

who push in this area. Recent work is discussed by Rachev and Mittnik (2000). Taleb (2007) has

popularised some direct uses of stable models, although without any detailed empirical work to

back them up in the financial context nor discussion of heavy tailed alternatives which are both

tractable mathematically and empirically more appealing. Put simply stable processes are a poor

way to produce financial Black Swans.

Truncated Lévy flights were introduced by Mantegna and Stanley (1994), while it has been

pioneered in finance in Mantegna and Stanley (1996) and Mantegna and Stanley (2000). The

extended Koponen class has been considered by Novikov (1994), Koponen (1995), Mantegna and

Stanley (2000), Boyarchenko and Levendorskii (2002b), Boyarchenko and Levendorskii (2000), Bo-

yarchenko and Levendorskii (2002c), Boyarchenko and Levendorskii (2002a), Barndorff-Nielsen and

Levendorskii (2001), Carr, Geman, Madan, and Yor (2002), and Rosinski (2001). Carr, Geman,

Madan, and Yor (2002) called these models CGMY processes after their own initials. We have

not followed that nomenclature. Meixner distributions were introduced by Schoutens and Teugels

(1998) and have been studied in the context of Lévy based models for finance by Schoutens and

Teugels (2001) and Grigelionis (1999). Ben-Hamou (2000) has studied estimating the parameters

of the Lévy process from option prices.
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The use of Lévy processes for term structure and credit risk has been an active recent area.

Work includes, for example, Eberlein and Raible (1999), Özkan (2002), Eberlein, Jacod, and Raible

(2005), Barndorff-Nielsen, Christiansen, and Nicolato (2001) and Eberlein and Özkan (2003a),

Schoutens and Cariboni (2009) and Eberlein and Kluge (2007). See also Bocker and Klüppelberg

(2007) for an application to operational risk. This highly stimulating literature is beyond the scope

of this book and so will not be discussed further.

Kijima (2002), Cont and Tankov (2004) and Schoutens (2003) are general books which discuss

the use of Lévy processes and finance.

13.4 Empirical fit of Lévy processes

There is a large literature on studying the fit of various parametric models to the marginal distri-

bution of returns of speculative assets. Most of these papers are not based on a background of a

Lévy process and so risked fitting an incoherent (from a continuous time viewpoint) model. An

example of this is Praetz (1972) in his work on the Student t distribution. Notable exceptions are

Mandelbrot (1963), where he used stable distributions and related this to stable processes. See also

Eberlein and Keller (1995), Eberlein (2001) and Eberlein and Özkan (2003b).

The likelihood methods we used to fit the models are entirely standard. We have used profile

likelihoods. A discussion of this literature is given in Barndorff-Nielsen and Cox (1994, Section

3.4). The use of profile likelihoods for ν in the generalised hyperbolic is new as was the use of the

EM algorithm in this context. As well as our own work on the EM algorithm for GH distributions,

independent and concurrent work on the use of the EM algorithm for this problem was carried out

by Protassov (2004). An elegant discussion of the EM algorithm is given in Tanner (1996). The

theory of robust standard errors for maximum likelihood estimation is standard in econometrics

and statistics. Leading references are White (1982) and White (1994).

Barndorff-Nielsen and Prause (2001) showed that the Olsen scaling law is explainable by the

NIG Lévy process.
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Ané, T. and H. Geman (2000). Order flow, transaction clock and normality of asset returns. Journal of
Finance 55, 2259–2284.
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latency financial econometrics. Quantitative Finance 12, 587–605.

Barndorff-Nielsen, O. E. and K. Prause (2001). Apparent scaling. Finance and Stochastics 5, 103–113.

Barndorff-Nielsen, O. E. and N. Shephard (2001a). Non-Gaussian Ornstein–Uhlenbeck-based models and
some of their uses in financial economics (with discussion). Journal of the Royal Statistical Society,
Series B 63, 167–241.

Barndorff-Nielsen, O. E. and N. Shephard (2001b). Normal modified stable processes. Theory of Probability
and Mathematical Statistics 65, 1–19.

Barndorff-Nielsen, O. E. and N. Shephard (2004). Power and bipower variation with stochastic volatility
and jumps (with discussion). Journal of Financial Econometrics 2, 1–48.

Barndorff-Nielsen, O. E. and N. Shephard (2012a). Mathematics of Lévy based processes. Unpublished
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Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University
Press.
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