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Abstract

The classical Chow (1960) test for structural instability requires strictly exogenous regres-
sors and a break-point specified in advance. In this paper we consider two generalisations,
the 1-step recursive Chow test (based on the sequence of studentized recursive residuals)
and its supremum counterpart, which relax these requirements. We use results on strong
consistency of regression estimators to show that the 1-step test is appropriate for station-
ary, unit root or explosive processes modelled in the autoregressive distributed lags (adl)
framework. We then use results in extreme value theory to develop a new supremum version
of the test, suitable for formal testing of structural instability with an unknown break-point.
The test assumes normality of errors, and is intended to be used in situations where this
can either be assumed or established empirically.

1 Introduction

Identifying structural instability in models is of major concern to econometric practitioners.
The Chow (1960) tests are perhaps the most widely used for this purpose, but require strictly
exogenous regressors and a break-point specified in advance. As such, a plethora of variants have
been developed to meet different requirements. In this paper we consider two generalisations:
the 1-step recursive Chow test, based on the sequence of studentized recursive forecast residuals;
and its supremum counterpart. The pointwise test is frequently used and reported in applied
work, while the supremum test is new. Whereas Chow assumes a classical regression framework,
practitioners typically use the one-step test to evaluate dynamic models (e.g. Kimura, 2001;
Celasun and Goswami, 2002; Assarsson et al., 2004). Further, since a series of such tests is
usually presented graphically to the modeller, multiple testing issues arise, making it difficult to
determine how many point failures may be tolerated. These two issues motivate the analysis that
follows. First, in Theorem 4.1 we show that the pointwise statistic has the correct asymptotic
distribution under fairly general assumptions about the generating process, including lagged
dependent variables and deterministic terms. Second, we take advantage of the almost sure
convergence earlier proven to construct a supremum version of the 1-step test, applicable to
detecting parameter change or at outlier at an unknown point in the sample.

The pointwise 1-step Chow test is essentially the ‘prediction interval’ test described by
Chow, but computed recursively, and over the sample (rather than at an a priori hypothesised
change point). It first appears in PcGive version 4.0 (Hendry, 1986) as part of a suite of model
misspecification diagnostics. The idea of using residuals calculated recursively to test model
misspecification dates from the landmark CUSUM and CUSUMSQ tests (Brown and Durbin,
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1968; Brown et al., 1975), which are based on partial sums of (squared) recursive residuals,
and have since been generalised to models including lagged dependent variables (Ploberger and
Krämer, 1986; Krämer et al., 1988; Nielsen and Sohkanen, 2011). Unlike these tests, the 1-step
Chow test does not consider partial sums, but the sequence of recursive residuals itself; in effect
testing one-step-ahead forecast failure at each time step. As the following analysis shows, this
approach leads to a different type of asymptotics, with a residual sequence behaving like i.i.d.
random variables, rather than a partial sum of residuals behaving like a Brownian motion.

Examining the residual sequence to check model specification is, of course, well established.
As Brown et al. (1975) put it, ‘it is natural to look at residuals to investigate departures from
model specification’, although this has generally meant the OLS residuals. Other authors (e.g.
Galpin and Hawkins, 1984) have suggested plotting the recursive residuals, but in a different
manner. The recursive residuals have two advantages over the OLS residuals in many appli-
cations: first, under the normal linear model with fixed regressors, they are identically and
independently normal; second (and distinguishing them from other i.i.d. normal transformed
residuals, e.g. Theil’s (1965) BLUS residuals), they have a natural interpretation—in a time se-
ries setting—as forecast errors. Ironically, in typical time series settings where the forecast error
interpretation is most useful, independence of the residuals does not hold due to the presence
of lagged dependent variables, a problem noted by Dufour (1982). This may lead to difficulties
drawing firm conclusions from plotted pointwise test sequences, and thus motivates the second
part of this paper, which considers a supremum test.

The supremum test considers the maximum of the pointwise 1-step tests, appropriately
normalised. It is intended to reflect structural instability anywhere in the sample (with the
early part excluded to allow consistent estimation). It relates to work on parameter change at
an unknown time, and more particularly with work on tests for outliers at an unknown time.
Examples of the former include the already mentioned CUSUM and CUSUMSQ tests, and the
Quandt (1960) and Andrews (1993) supremum tests. The test is distinguished from Andrews’
test in not imposing any restrictions on the end-of-sample, so that end-of-sample instability may
be detected. Additionally, because the 1-step tests behave like an i.i.d. process, the asymptotics
differ from these cases, requiring the application of extreme value theory of independent and
weakly dependent sequences, rather than the suprema of random-walks.

Seen specifically as an outlier test, the supremum Chow test falls squarely within the tra-
dition of Srikantan (1961), which, however, considers an unknown outlier in a classical setting.
Even recently, the majority of work on outliers has taken place outside the time series settings,
so for instance, Barnett and Lewis (1994, p. 330) comment that ‘[recursive residuals] would
seem to have potential for the study of outliers, although no major progress on this front is
evident. There is a major difficulty in that the labeling of the observations is usually done at
random, or in relation to some concomitant variable. . . ’. This difficulty does not exist with
time series, where there is a natural chronological labelling of observations. The section in the
same book (at p. 396) on detecting outliers in time series is, nevertheless, notably brief, and
recursive methods are not considered.

2 The test statistics

The 1-step test applies generally to a linear regression

yt = β′xt + εt t = 1, . . . , T, (2.1)

with yt scalar, xt a k-dimensional vector of regressors, and the errors independently, identically
Gaussian. For such a regression we can define the sequence of least squares estimators calculated
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over progressively larger subsamples, along with the corresponding residual sums of squares and
recursive residual (or standardized 1-step forecast error), that is

β̂t =

(
t∑

s=1

xsx
′
s

)−1( t∑
s=1

xsy
′
s

)
t = k, . . . , T, (2.2)

RSS t =
t∑

s=1

(β̂′txt − yt)2 t = k, . . . , T, (2.3)

ε̃t =

1 + x′t

(
t−1∑
s=1

xsx
′
s

)−1

xt

−1/2

(yt − β̂′t−1xt) t = (k + 1), . . . , T. (2.4)

The 1-step Chow test statistic, C2
1,t is then defined as

C2
1,t =

(RSS t − RSS t−1)(t− k − 1)

RSS t−1
t = (k + 1), . . . , T, (2.5)

and can be expressed as

C2
1,t =

ε̃2
t (t− k − 1)

RSS t−1
. (2.6)

Chow showed that in a classical Gaussian regression model, this statistic would have an exact
F(1, t − k − 1) distribution. We first extend this result to show that, for a general class of au-

toregressive distributed lag (adl) processes, C2
1,t

d→ χ2
(1), so that asymptotically, the additional

dependence does not matter. This result means that comparing the pointwise statistic against
an F(1, ·) or χ2

(1) distribution (as is typically done) is reasonable in large samples. However it
still leaves unresolved the difficulty that this test is generally reported graphically, to detect
parameter change with an unknown changepoint. To formally treat the problem of multiple
testing that occurs in evaluating many pointwise statistics over the entire sample, we introduce
a new supremum test.

3 Model and assumptions

We consider the behaviour of the test statistic for adl models with arbitrary deterministic
terms, a class which includes by restriction many commonly posited economic relationships (see
Hendry (1995, Chapter 7)). For the purpose of analysis we assume the true data generating
model can be represented as a vector autoregression.

We observe a p-dimensional time series X1−k, . . . , X0, X1, . . . XT . We will model the series by
partitioning Xt as (Yt, Zt)

′ where Yt is univariate and Zt is of dimension p−1, and then consider
the regression of Yt on the contemporaneous Zt, lags of both Yt and Zt, and a deterministic
term Dt. That is,

Yt = ρZt +

k∑
j=1

αjYt−j +

k∑
j=1

β′jZt−j + νDt−1 + εt t = 1, . . . , T. (3.1)

In order to specify the joint distribution of Xt = (Yt, Zt)
′, we assume that Xt follows the

vector autoregression

Xt =

k∑
j=1

AjXt−j + µDt−1 + ξt t = 1, . . . , T, (3.2)
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with the deterministic term Dt given by

Dt = DDt−1. (3.3)

We assume the var innovations form a martingale difference sequence satisfying the assumption
below. The requirement that the innovations have finite moments just beyond 16 stems from
a problem with controlling unit root processes (see Nielsen, 2005, Remark 9.3). In the present
analysis this constraint emerges in Lemma A.1(i) and is transmitted via Lemma A.2(iv) to
Lemma A.5. If dimD = 0 and the geometric multiplicity of the unit roots equals their algebraic
multiplicity (including I(1) but excluding I(2) processes), this could be improved to finite
moments greater than 4 using a result of Bauer (2009).

Assumption 3.1. ξt is a martingale difference sequence with respect to the natural filtration
Ft, so E(ξt|Ft−1) = 0. The initial values X0, . . . X1−k are F0-measurable and

sup
t

E(‖ξt‖α|Ft−1)
a.s.
< ∞ for some α > 16, (3.4)

E(ξ′tξt|Ft−1)
a.s.
= Ω where Ω is positive definite. (3.5)

The deterministic term Dt follows the approach of Johansen (2000) and Nielsen (2005) and
may include, for example, a constant, a linear trend, or periodic functions such as seasonal
dummies. The matrix D has characteristic roots on the unit circle. For example,

D =


1 0 0 0
1 −1 −1 −1
0 1 0 0
0 0 1 0

 and D0 =


1
0
0
0


will generate a constant and three quarterly dummies. The term Dt is assumed to have linearly
independent coordinates, formalised as follows.

Assumption 3.2. |eigen(D)| = 1 and rank(D1, . . . , DdimD) = dimD.

We permit nearly all possible values of the autoregressive parameters Aj in (3.2), excluding
only the case of singular explosive roots, which can only arise for a var with p ≥ 2 and multiple
explosive roots. See Nielsen (2008) for discussion. Defining the companion matrix

B =

(
(A1, . . . , Ak−1) Ak

Ip(k−1) 0

)
,

we can express the restriction as follows.

Assumption 3.3. The explosive roots of B have geometric multiplicity unity. That is, for all
complex λ with |λ| > 1, rank(B− λIpk) ≥ pk − 1.

Additionally, we require that the innovations in the adl regression equation satisfy a further
martingale assumption.

Assumption 3.4. Let Gt be the sigma field over Ft and Zt. Then (εt,Gt) is a martingale
difference sequence, i.e. E(εt|Gt−1) = 0.

Finally, the 1-step statistic is such that a distributional assumption must be made in order
to derive the limiting distribution of the statistic (since the statistic is an estimate of a single
error term, we cannot take advantage of a central limit theorem). Similarly, since the analysis

4



of supremum statistic will rely on extreme value theory, we must impose distributional and
independence assumptions on the adl errors εt, in order to uniquely determine the norming
sequences applied in Lemma 4.4. We assume normality, which may result from joint normality
in the underlying var process, and is tested, in practice, under the above assumptions (see
Engler and Nielsen, 2009).

Assumption 3.5. εt
iid∼ N(0, σ2).

4 Main results

We must briefly examine the decomposition of the process used in the proofs in order to elucidate
the first main result in the explosive case (in the non-explosive case this decomposition becomes
trivial). Group the regressors by defining S′t−1 = (Yt−1, Z

′
t−1 . . . , Yt−k, Z

′
t−k, D

′
t−1), and then

write (3.2) in companion form, so that

St = SSt−1 + (ξ′t, 0
′)′.

Then there exists a regular real matrix M to block diagonalize S (see the elaboration in §3 of
Nielsen, 2005), so that the process can be decomposed into stationary, unit-root and explosive
components:

MSt = (MSM−1)MSt−1 + M(ξ′t, 0
′)′, ŨtQt

Wt

 =

U 0 0
0 Q 0
0 0 W

 Ũt−1

Qt−1

Wt−1

+

eŨ ,teQ,t
eW,t

 , (4.1)

where Ũ, Q and W have eigenvalues inside, on and outside the unit circle, respectively. For
convenience, we group the non-explosive components, so that

Rt =

(
Ũt
Qt

)
and R =

(
U 0
0 Q

)
. (4.2)

The first theorem states that the test statistic is almost surely close to a related process
in the innovations, q2

t , under multiple assumptions. This result, paired with a distributional
assumption such as 3.5, is sufficient to establish confidence intervals for a single application of
the Chow test. It also forms the basis of the supremum test developed below.

Theorem 4.1. Under Assumptions 3.1, 3.2, 3.3 and 3.4,

C2
1,t − (qt/σ)2 as→ 0 as t→∞ (4.3)

where

qt =
εt −

∑∞
s=1 εt−sW

′(W−s)′F−1
W W

(1 +W ′F−1
W W )1/2

(4.4)

W is as in (4.1), and as in Nielsen (2005, Corollaries 5.3 and 7.2), W = W0 +
∑∞

t=1 W
−teW,t

and FW =
∑∞

t=1 W
−tWW ′(W−t)′ with FW almost surely positive definite.

Having established pointwise convergence almost surely, we use an argument based on
Egorov’s Theorem to establish convergence of the supremum of a subsequence. Both the subse-
quence itself and the lead-in period must grow without bound, to allow the regression estimates
to converge.
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Lemma 4.2. Suppose C2
1,t − (qt/σ)2 as→ 0 as t→∞. Then

sup
g(T )<t≤T

∣∣C2
1,t − (qt/σ)2

∣∣ p→ 0 as T, g(T )→∞. (4.5)

where g(T ) is an arbitrary function of T such that g(T )→∞.

Now, if an appropriately normalised expression in the maximum over qt can be shown to
converge in distribution, then so will the supremum statistic, with the same normalisation, by
asymptotic equivalence. We show that, under the assumption of independent and identical
Gaussian innovations, max1≤s≤t qs does indeed converge to the Gumbel extremal distribution
(as t→∞), which has distribution function:

Pr(Λ < x) = exp[− exp(−x)] where x ∈ R. (4.6)

A useful property of the Gumbel distribution is the following simple monotonically decreasing
transformation to a χ2 variable, allowing standard distributions to be used:

Λ ∼ Gumbel iff 2e−Λ ∼ χ2
(2). (4.7)

In showing the above convergence we rely on Theorem 1 of Deo (1972), and its corollary,
showing that the extremal distribution of the absolute values of a Gaussian sequence is the
same in the stationary dependent and independent cases. However, Deo’s Lemma 1 gives an
incorrect statement of the norming sequences. The incorrect sequences are also quoted without
correction in Pakshirajan and Hebbar (1977). Here we state the correct sequences, adopting
the notation of Deo (proof in section A.5).

Lemma 4.3. Let {Xn} be independent Gaussian random variables with mean zero and variance
one. Let Zn = max1≤j≤n |Xj |. Then an(Zn − bn) converges in distribution to Λ where an =
2 log n and bn = (2 log n)1/2 − (8 log n)−1/2(log log n+ log π).

The original gives bn = (2 log n)1/2 − (8 log n)−1/2(log log n+ 4π − 4).

Deo’s result can then be applied to qt defined in (4.4).

Lemma 4.4. Under assumption 3.5,

qt/σ ∼ N(0, 1), and (4.8)

at( max
1≤s≤t

q2
s − bt)

d→ Λ (4.9)

where

at = 1/2 and bt = log t2 − log log t− log π (4.10)

and Λ is a random variable distributed according to the Gumbel (Type 1) law.

Combining these lemmas gives our main result, that with independent and identically Gaus-
sian innovations, an appropriate normalisation of the supremum 1-step Chow test converges in
distribution to the Gumbel extremal distribution.

Theorem 4.5. Under assumptions 3.1, 3.2, 3.3 and 3.5, and with some g(T )→∞,

SC2
T =

1

2

(
max

g(T )<t≤T
C2

1,t − dT,g(T )

)
d→ Λ as T →∞ (4.11)

where C2
1,t is the 1-step Chow statistic defined in (2.5) and

dT,g(T ) = 2

{
log[T − g(T )]− 1

2
log log[T − g(T )]− log π

}
(4.12)

and Λ is a random variable distributed according to the Gumbel distribution (4.6).
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As a simple corollary, we can transform the test using (4.7) so that it may be compared
against a more readily-available distribution.

Corollary 4.6. Under the same assumptions, expSC = 2 · exp(−SC2
T ) ∼ χ2

(2). The test based
on this result rejects for small values of expSC.

5 Simulation study

We present the results of two simulations, the first demonstrating similarity of the test, and the
second illustrating how the test may be used in conjunction with a test for normality.

In practice we find in simulations that the test as specified above is over-sized in small
samples. To minimise this, we suggest two corrections. For the first correction, we observe that
the 1-step statistics appear to be distributed close to F(1, t− k− 1) (as indeed they are exactly
in the classical case), and so use the following transform to bring the statistics closer to the
asymptotic chi-squared distribution:

C2∗
1,t = G−1[F (C2

1,t)] (5.1)

where F (·) and G(·) are the F(1, t − k − 1) and χ2
(1) distribution functions, respectively. This

first correction results in a test that tends to under-correct, largely a result of relatively slow
convergence to the limiting Gumbel distribution. In practice we find that for samples of less
than 1000, the test performs better if simply compared with the finite maximal distribution
assuming independence and identical distribution of the test statistics (the first assumption
holding only in the limit and in the absence of an explosive component, and the second holding
only in the limit). Then the maximum, maxg(T )<t≤T C2∗

1,t, would be distributed exactly as

Pr

{
max

g(T )<t≤T
C2∗

1,t ≤ x
}

= [G(x)]T−g(T ). (5.2)

This forms the basis of the finite adjusted sup-Chow test, with rejection in the right tail. Note
that in this case no centring or scaling is required, because the distribution itself depends on T .

In the first experiment, an AR(1) process was simulated with the autoregressive parameter
varying in the stationary, unit-root and explosive regions.

xt = αxt−1 + εt, εt ∼ N(0, 1), t = 1, . . . , T

x0 = 0

The finite adjusted sup-Chow was calculated as in (5.2), with g(T ) = T 1/2 and nominal size
of 5%. Results are presented in Table 1, and show that the size of the tests does not vary
according to the autoregressive parameter. As a consequence it is not necessary to know a
priori where the autoregressive parameter lies to use this test, avoiding a potential circularity in
model construction. The test is uniformly undersized, however for a misspecification test (used
to reject potential models) this seems preferable to the oversize of the uncorrected asymptotic
form. Further, since the test is approximately similar, it should be possible to apply very simple
finite sample corrections to eliminate this size discrepancy.

The second experiment uses a similar data generating process and testing procedure as the
first, but in addition to applying the finite adjusted sup-Chow test, the Ep test for normality
(Doornik and Hansen, 2008) is applied, and the size of the sup-Chow is calculated conditional
on not rejecting normality at the 5% level. This simulates the process a model builder may
follow, in using the sup-Chow test as part of a suite of misspecification tests including a test
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Autoregressive coefficient
T -1.03 -1.00 -0.50 0.00 0.50 1.00 1.03

50 2.62 2.61 2.54 2.54 2.50 2.61 2.61
100 3.47 3.49 3.37 3.39 3.42 3.52 3.55
200 3.99 4.00 3.94 3.94 3.93 4.00 4.11

Table 1: Simulated rejection frequency for finite adjusted sup-Chow under a Gaussian AR(1)
process, with nominal size 5%. Number of MC repetitions = 200,000 (all MC standard errors
are less than 0.05).

Error distribution
T Φ χ2

(1,centred) t2 t5 t10 t50

(a) Rejection rate
50 2.45 49.04 49.62 19.56 9.10 3.38

100 3.37 74.82 77.05 37.70 17.55 5.13
200 3.89 92.72 93.87 60.06 28.70 7.13

(b) Normality
acceptance rate

50 85.37 2.37 15.62 57.10 74.32 83.99
100 85.16 0.01 1.85 36.13 64.94 82.81
200 85.75 0.00 0.02 13.96 50.84 81.92

(c) Rejection rate
given normality
acceptance

50 1.6 *6.3 8.5 6.1 4.0 2.1
100 2.2 *8.0 8.2 5.9 2.8
200 2.6 8.8 7.6 4.0

Table 2: (a) Simulated rejection frequency for adjusted sup-Chow under AR(1) processes with
various innovation distributions and nominal size 5%. (b) Simulated non-rejection frequency
for normality test. (c) Simulated rejection frequency for adjusted sup-Chow given non-rejection
by normality test. Number of MC repetitions = 50,000 (all MC standard errors are less than
half the second-least significant digit, except those starred).
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for normality. In addition, the distribution of the AR(1) innovations is varied to evaluate the
sensitivity to the test, and the conditional test, to non-normality. These results are presented
in Table 2

As the table illustrates, the unconditional test is quite sensitive to departures from normality,
but used conditional upon non-rejection of a normality test, the size is closer to the nominal
size of 5%.

A Proofs

A.1 Notation

Define for any as, bs ∈ {xs, Rs−1,Ws−1, ξ2,s, Qs−1, Ũs−1}, the sum Sab =
∑t−1

s=1 asb
′
s, the corre-

lation Cab = S
−1/2
aa SabS

−1/2
bb , and the partial regressions quantities (a|b)t = at − SabS−1

bb bt and
Saa.b = Saa − SabS−1

bb Sba.

A.2 Preliminary Asymptotic Results

The ADL model (3.1) becomes

Yt = ρZt + θ′St−1 + εt t = 1, . . . , T.

where θ is the vector of coefficients. Then from (3.2) we have Zt = ΠSt−1 + ξ2,t, where ξt has
been partitioned conformably with Xt. Then, the residuals from regressing Yt on (Z ′t, S

′
t−1)′

could also be obtained by regressing Yt on (ξ′2,t, S
′
t−1)′, or as result of the decomposition above

at (4.1), on xt = (ξ′2,t, R
′
t−1,W

′
t−1)′—so we can analyse the test statistic (2.6) as if these were

the actual regressors.
Many results refer to Nielsen (2005), hereafter abbreviated N05.

Lemma A.1. Suppose Assumptions 3.1, 3.2 and 3.3 hold with α > 4 only. Then for all β > 1/α
and ζ < 1/8,

(i) CRW
a.s.
= o(t−ζ/2),

(ii) CξS
a.s.
= o(tβ−1/2),

(iii) S−1
RR·W

a.s.
= S

−1/2
RR · {1 + o(1)} · S−1/2

RR ,

(iv) S−1
ξξ·S

a.s.
= S

−1/2
ξξ · {1 + o(1)} · S−1/2

ξξ ,

(v) S
−1/2
RR Rt−1

a.s.
= o(t−ζ/2),

(vi) S
−1/2
WW Wt−1

a.s.
= O(1),

(vii) S
−1/2
RR (R|W )t

a.s.
= o(t−ζ/2), and

(viii) S
−1/2
ξξ (ξ2|S)t

a.s.
= o(tβ−1/2).

Proof. Result (i) is proven by decomposing the correlation to apply results from N05, so that

‖CRW ‖ = ‖S−1/2
RR SRWS

−1/2
WW ‖

≤

∥∥∥∥∥∥
(

1 CŨQ
CQŨ 1

)−1/2
∥∥∥∥∥∥
∥∥∥∥∥
(
S
−1/2

ŨŨ
0

0 S
−1/2
QQ

)(
SŨW
SQW

)
S
−1/2
WW

∥∥∥∥∥
a.s.
= O(1)

(
CŨW
CQW

)
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where the last line follows because with CŨQ is vanishing almost surely by N05 Theorem 9.4.

Then the result follows since CŨW
a.s.
= o(tβ−1/2) and CQW

a.s.
= o(t−ζ/2) by N05 Theorems 9.1 and

9.2 respectively. The latter term will dominate since α > 16/7 under Assumption 3.1.

Result (ii) is proved by noting that ‖CξS‖ ≤ ‖S
−1/2
ξξ ‖‖SξSS

−1/2
SS ‖, with the first normed term

O(t−1/2) by N05 Theorem 2.8 and the second o(tβ) by N05 Theorem 2.4.
Result (iii) follows by writing

S−1
RR.W = (SRR − SRWS−1

WWSWR)−1

= S
−1/2
RR (I − CRWCWR)−1S

−1/2
RR

and applying (i) to show that CRW is vanishing.
Result (iv) is exactly analagous but substitute (ii) for (i).
Result (v) follows by again decomposing Rt. Namely,

SRR =

(
S

1/2

ŨŨ
0

0 S
1/2
QQ

)(
1 CŨQ

CQŨ 1

)(
S

1/2

ŨŨ
0

0 S
1/2
QQ

)

so that

‖S−1/2
RR Rt−1‖ ≤

∥∥∥∥∥∥
(

1 CŨQ
CQŨ 1

)−1/2
∥∥∥∥∥∥
∥∥∥∥∥
(
S
−1/2

ŨŨ
0

0 S
−1/2
QQ

)(
Ũt−1

Qt−1

)∥∥∥∥∥
Then the first normed quantity on the right hand side is bounded since CŨQ is vanishing by

N05 Theorem 9.4. The second normed quantity comprises S
−1/2

ŨŨ
Ũt−1 stacked with S

−1/2
QQ Qt−1.

By N05 Theorem 8.3 we have S
−1/2

ŨŨ
= O(t−1/2) and by Lai and Wei (1985, Theorem 1(i)) we

have that Ũt−1 = o(tβ), so S
−1/2

ŨŨ
Ũt−1 = o(tβ−1/2).

We cannot bound S
−1/2
QQ independently in the same way, but since Qt contains only the unit-

root components (with eigenvalues on the unit circle), we can apply N05 Theorem 8.4, which

states that for some η, maxtη≤s<tQ
′
s

(∑t
s=1Qs−1Q

′
s−1

)−1
Qs = o(t−ζ) for all ζ < 1/8 and so

a fortiori Q′t−1

(∑t
s=1Qs−1Q

′
s−1

)−1
Qt−1 = o(t−ζ). But then ‖S−1/2

QQ Qt−1‖2 = Q′t−1S
−1
QQQt−1,

and we can then use the matrix identity b′(A + bb′)−1b = b′A−1b(1 + b′A−1b)−1 (Searle, 1982,
p. 151) to write:

Q′t−1S
−1
QQQt−1 =

Q′t−1

(∑t
s=1Qs−1Q

′
s−1

)−1
Qt−1

1−Q′t−1

(∑t
s=1Qs−1Q′s−1

)−1
Qt−1

which is o(t−ζ), so that S
−1/2
QQ Qt−1 = o(t−ζ/2).

Considering the maximum of these components, we have again that the latter dominates

and ‖S−1/2
RR Rt−1‖ = O(t−ζ/2) since α > 16/7 under Assumption 3.1.

Result (vi) follows directly from Lai and Wei (1985, Lemma 4(i)).
Result (vii) follows from (i), (v) and (vi). Write

‖S−1/2
RR (R|W )t‖ = ‖S−1/2

RR Rt−1 − S−1/2
RR SRWS

−1
WWWt−1‖

≤ ‖S−1/2
RR Rt−1‖+ ‖CRW ‖‖S−1/2

WW Wt−1‖

giving three normed quantities to bound. The first is o(t−ζ/2) by (v), as is the second by (i),
while the third is bounded by (vi).
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Result (viii) is proved in a similar fashion. Write

‖S−1/2
ξξ (ξ2|S)t‖ = ‖S−1/2

ξξ ξ2,t − S−1/2
ξξ SξSS

−1
SSSt−1‖

= ‖S−1/2
ξξ ξ2,t‖ − ‖CξS‖‖S

−1/2
SS St−1‖

Then the first of the normed quantities is o(tβ−1/2) by N05 Theorem 2.8 and the result that
ξt = o(tβ) (Lai and Wei, 1985, Theorem 1); the second is O(tβ−1/2) by (ii); and the third is
O(1) since we use a partial regression transformation to write

‖S−1/2
SS St−1‖2 = S′t−1S

−1
SSSt−1

= (R|W )′tS
−1
RR·W (R|W )t +W ′t−1S

−1
WWWt−1,

and then apply (iii) and (vii), and (vi), respectively.

Lemma A.2. Under Assumptions 3.1, 3.2 and 3.3 with α > 4; and with β > 1/α,

(i)
∑t−1

s=1 εsS
′
s−1S

−1/2
SS

a.s.
= o(tβ),

(ii)
∑t−1

s=1 εsR
′
s−1S

−1/2
RR

a.s.
= O[(log t)1/2],

(iii)
∑t−1

s=1 εsW
′
s−1S

−1/2
WW

a.s.
= o(tβ),

(iv)
∑t−1

s=1 εs(R|W )′sS
−1/2
RR

a.s.
= o(tβ−1/16), which vanishes if α > 16.

Proof. Results (i), (ii) and (iii) by N05 Theorem 2.4.
Result (iv) follows by writing

t−1∑
s=1

εs(R|W )′sS
−1/2
RR =

t−1∑
s=1

εsR
′
s−1S

−1/2
RR −

t−1∑
s=1

εsW
′
s−1S

−1/2
WW CWR

and then applying (ii), (iii) and Lemma A.1(i).

Lemma A.3. Under Assumptions 3.1, 3.2, 3.3 and 3.4,

(i)
∑t−1

s=1 εsξ
′
2,sS

−1/2
ξξ

a.s.
= O[(log t)1/2],

(ii)
∑t−1

s=1 εs(ξ2|S)′sS
−1/2
ξξ

a.s.
= o(t2β−1/2) + O[(log t)1/2], the latter term dominating when α > 4.

Proof. Result (i) by Lai and Wei (1982, Lemma 1(iii)) and Lai and Wei (1985, Corollary 1(iii)).
Result (ii) follows by writing

t−1∑
s=1

εs(ξ2|S)′sS
−1/2
ξξ =

t−1∑
s=1

εsξ
′
2,sS

−1/2
ξξ −

t−1∑
s=1

εsS
′
s−1S

−1/2
SS CSξ

and then applying (i), Lemma A.2(i) and Lemma A.1(ii).
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A.3 Proof of Theorem 4.1

We proceed by examining the behaviour of ε̃t, the one-step forecast residuals. From (2.6), we
can write these

ε̃t =
εt −

∑t−1
s=1 εsx

′
s

(∑t−1
s=1 xsx

′
s

)−1
xt[

1 + x′t

(∑t−1
s=1 xsx

′
s

)−1
xt

]1/2
(A.1)

We break the result into two lemmas, one describing denominator and one the numerator,
with similar reasoning in each case.

Lemma A.4. Under Assumptions 3.1, 3.2 and 3.3,

x′tS
−1
xx xt −W ′F−1

W W = o(t−ζ) a.s. (A.2)

for all ζ < 1/8 with W and FW as in Theorem 4.1.

Proof. Divide the statistic into two parts using that

‖x′tS−1
xx xt −W ′F−1

W W‖ ≤ ‖x′tS−1
xx xt −W ′t−1S

−1
WWWt−1‖+ ‖W ′t−1S

−1
WWWt−1 −W ′F−1

W W‖.

We use a partial regression transformation to divide the first part into two partial compo-
nents

‖x′tS−1
xx xt −W ′t−1S

−1
WWWt−1‖ ≤ ‖(ξ2|R,W )′tS

−1
ξξ.RW (ξ2|R,W )t‖+ ‖(R|W )′tS

−1
RR.W (R|W )t‖

The first normed term on the right hand side is o(t2β−1) and the second is o(t−ζ) by Lemma
A.1 parts (iv) and (viii); and (iii) and (vii), respectively. The second term will dominate since
α > 16/7 so ‖x′tS−1

xx xt −W ′t−1S
−1
WWWt−1‖ = o(t−ζ).

The lemma is then proven by rewriting the second step

W ′t−1S
−1
WWWt−1 −W ′F−1

W W =(W−(t−1)Wt−1)′[(Wt−1)′S−1
WWWt−1 − F−1

W ](W−(t−1)Wt−1)

+ (W−(t−1)Wt−1 −W )′F−1
W (W−(t−1)Wt−1)

+W ′F−1
W (W−(t−1)Wt−1 −W )

and noting that Wt−1Wt−1−W = O(λmin(W)−t) by N05 (Corollary 5.3(i)) and (Wt−1)′S−1
WWWt−1−

F−1
W = O(λmin(W)−2t) by N05 (Corollary 7.2), while all the other terms are bounded by the

same corollaries.

We next state a lemma concerning the main numerator term in (A.1).

Lemma A.5. Under Assumptions 3.1, 3.2, 3.3 and 3.4

t−1∑
s=1

εsx
′
sS
−1
xx xt −GtF−1

W W = o(tβ−1/8) a.s. (A.3)

for all β > 1/α, where W and FW are defined as in Theorem 4.1, and

Gt =

t−1∑
s=1

εt−sW
′(W−s)′ = o(tβ). (A.4)
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Proof. Once again we take the proof in two steps, using that∥∥∥∥∥
t−1∑
s=1

εsx
′
sS
−1
xx xt −GtF−1

W W

∥∥∥∥∥
≤

∥∥∥∥∥
t−1∑
s=1

εsx
′
sS
−1
xx xt −

t−1∑
s=1

εsW
′
s−1S

−1
WWWt−1

∥∥∥∥∥+

∥∥∥∥∥
t−1∑
s=1

εsW
′
s−1S

−1
WWWt−1 −GtF−1

W W

∥∥∥∥∥ .
For the first step, we again decompose using a partial regression transformation, so that∥∥∥∥∥

t−1∑
s=1

εsx
′
sS
−1
xx xt −

t−1∑
s=1

εsWs−1S
−1
WWWt−1

∥∥∥∥∥ ≤
∥∥∥∥∥
t−1∑
s=1

εs(ξ2|R,W )′sS
−1
ξξ·RW (ξ2|R,W )′t

∥∥∥∥∥
+

∥∥∥∥∥
t−1∑
s=1

εs(R|W )′sS
−1
RR·W (R|W )t

∥∥∥∥∥ (A.5)

and we consider each term on the right separately.
For the first term in (A.5) we use Lemma A.1(iv) to write∥∥∥∥∥
t−1∑
s=1

εs(ξ2|R,W )′sS
−1
ξξ·RW (ξ2|R,W )′t

∥∥∥∥∥ ≤
∥∥∥∥∥
t−1∑
s=1

εs(ξ2|R,W )′sS
−1/2
ξξ

∥∥∥∥∥O(1)
∥∥∥S−1/2

ξξ (ξ2|R,W )′t

∥∥∥
and then apply Lemma A.3(ii) and Lemma A.1(viii) to arrive at o(tβ−1/2).

For the second term in (A.5) we use Lemma A.1(iii) to write∥∥∥∥∥
t−1∑
s=1

εs(R|W )′sS
−1
RR·W (R|W )t

∥∥∥∥∥ ≤
∥∥∥∥∥
t−1∑
s=1

εs(R|W )′sS
−1/2
RR

∥∥∥∥∥O(1)
∥∥∥S−1/2

RR (R|W )t

∥∥∥
and then apply Lemma A.2(iv) and Lemma A.1(vii) to arrive at o(tβ−1/8). Overall then, the
first step is dominated by this second term.

For the second step we have to show the bounding rate for

t−1∑
s=1

εsW
′
s−1S

−1
WWWt−1 −GtF−1

W W

=

[
t−1∑
s=1

εsW
′
s−1(W−(t−1))′

] [
(Wt−1)′S−1

WWWt−1
]
W−(t−1)Wt−1 −GtF−1

W W

=

[
t−1∑
s=1

εsW
′
s−1(W−(t−1))′ −Gt

] [
(Wt−1)′S−1

WWWt−1
]
W−(t−1)Wt−1

+Gt
[
(Wt−1)′S−1

WWWt−1 − F−1
W

]
W−(t−1)Wt−1

+GtF
−1
W

[
W−(t−1)Wt−1 −W

]
Many of these terms are familiar from the analysis of (A.3), and the only new terms to bound
are

∑t−1
s=1 εsW

′
s−1(W−(t−1))′ −Gt and Gt. For the latter we have

‖Gt‖ =

∥∥∥∥∥
t−1∑
s=1

εt−sW
′(W−s)′

∥∥∥∥∥ ≤
∥∥∥∥max

1≤s<t
εs

∥∥∥∥ ‖W ′‖
∥∥∥∥∥
t−1∑
s=1

(W−s)′

∥∥∥∥∥
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which is o(tβ) since the latter two terms are bounded, while εs = o(sβ) by Lai and Wei (1985,
Theorem 1). For the former term we have∥∥∥∥∥

t−1∑
s=1

εsW
′
s−1(W−(t−1))′ −Gt

∥∥∥∥∥
=

∥∥∥∥∥
t−1∑
s=1

εs

[
W−(t−1)Ws−1 −W−(t−s)W

]′∥∥∥∥∥
=

∥∥∥∥∥
t−1∑
s=1

εs

[
Ws−t)

∞∑
p=s

W−peW,p

]′∥∥∥∥∥
≤
∥∥∥∥max

1≤s<t
εs

∥∥∥∥∥∥W−t∥∥ t−1∑
s=1

∥∥∥∥∥
∞∑
u=0

W−ueW,u+s

∥∥∥∥∥
=O(tβ)O(λmin(W)−t)o(t1+β)

=o(t2β+1λmin(W)−t)

where at the second last line we use that
∑∞

u=0 W
−ueW,u+s = o(sβ) by Nielsen (2008, Corollary

4.3). Combining these results, we see that this second step vanishes exponentially fast, and the
first step dominates the expression of interest, giving the result.

The order of Gt follows by writing

Gt =

t−1∑
s=1

εt−sW
′(W−s)′

≤
∥∥∥∥max

1≤s<t
εs

∥∥∥∥ ‖W‖
∥∥∥∥∥
t−1∑
s=1

(W−s)

∥∥∥∥∥ ,
and applying Lai and Wei (1985, Theorem 1).

Proof of Theorem 4.1. We aim to show that

C2
1,t − (qt/σ)2 a.s.

= o(1). (A.6)

Using (2.6) we can rewrite this expression as

ε̃2
t

(t− k − 1)−1RSS t−1
−
(qt
σ

)2
= ε̃2

t

[
(t− k − 1)

RSS t−1
− 1

σ2

]
+
ε̃2
t − q2

t

σ2
. (A.7)

We first consider the difference ε̃2
t − q2

t . We have from (A.1),

ε̃2
t − q2

t =
(εt −

∑t−1
s=1 εsx

′
sS
−1
xx xt)

2

1 + x′tS
−1
xx xt

−
(εt −GtF−1

W W )2

1 +W ′F−1
W W

=
(εt −A3)2

1 +A1
− (εt −A4)2

1 +A2
(A.8)

=
A2 −A1

(1 +A1)(1 +A2)
(εt −A3)2 +

1

1 +A2
(A4 −A3) (2εt −A4 −A3) , (A.9)

where

A1 = x′tS
−1
xx xt A2 = W ′F−1

W W A3 =
t−1∑
s=1

εsx
′
sS
−1
xx xt A4 = GtF

−1
W W. (A.10)
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Both denominators are bounded from below by unity, since A1 and A2 are non-negative. In the
first numerator, A1−A2 is o(t−ζ) by Lemma A.4. The factor εt−A3 = εt−A4 +A4−A3 is o(tβ)
since εt and A4 are both o(tβ) by Lai and Wei (1985, Theorem 1) and Lemma A.5 respectively,
while A4 −A3 is O(tβ−1/8) by Lemma A.5. So the first term of the sum is o(t2β−1/8).

In the second numerator, A4 − A3 is O(tβ−1/8) by Lemma A.5, while εt and A4 are each
o(tβ) as above, so that the whole second term is also o(t2β−1/8).

Thus the second term in (A.7) will vanish as long as 2β < 1/8 or α > 16 in Assumption
3.1, as required. To show the same for the first term, note that ε̃2

t = q2
t + (ε̃2

t − q2
t ), where the

difference vanishes as just proved, while

q2
t =

(εt −A4)2

1 +A2
= o(t2β)

since, as above, εt and A4 are both o(tβ) as above, while A2 is nonnegative. Then N05 (Corollary
2.9) implies that

(t− k − 1)

RSS t−1
− 1

σ2
= o(tγ)

for γ < 1/2. So the first term in (A.7) will vanish as long as 2β < 1/2, which is satisfied by
Assumption 3.1.

A.4 Proof of Lemma 4.2

Proof. Theorem 4.1 shows that C2
1,t − q2

t vanishes almost surely. Egorov’s theorem (Davidson,

1994, 18.4) then shows that C2
1,t − q2

t vanishes uniformly on a set with large probability. That
is,

∀ε > 0∃T0 : Pr(sup
t>T0

|C2
1,t − q2

t | < ε) > 1− ε.

This implies that for any sequence g(T ) which increases to infinity, then supg(T )<t≤T |C2
1,t−q2

t |
p→

0 as T →∞.

A.5 Proof of Lemma 4.3 (correction to Lemma 1 of Deo (1972))

Proof. The first part of Deo’s lemma, determining the domain of attraction as Λ, is correct.
The second part, determining the norming sequences, is in error. Deo cites Cramér (1946, p.
374) for this calculation. There Cramér calculates the norming sequences for a sequence of
independent standard normal random variables (with a right tail differing from the density of
interest in only a constant factor). We follow the slightly more direct approach of Leadbetter
et al. (1982, Theorem 1.5.3).

Since {Xn} are independent standard normal random variables, {|Xn|} are independent
random variables identically distributed with the half-normal density, that is, the normal density
folded around zero:

Pr{|X1| < x} = F (x) =
√

2/π

∫ x

0
e−t

2/2 dt = 2Φ(x), x ≥ 0 (A.11)

We are interested in probabilities of the form Pr{an(Zn − bn) < x}, which may be rewritten
Pr{Zn ≤ un}, where un(x) = x/an + bn. We seek an, bn such that the sequence un satisfies
(1.5.1) in Leadbetter et al. (1982, Theorem 1.5.1), namely

n(1− F (un))→ e−x as n→∞. (A.12)
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Apply a modified version of the well-known normal tail relation,

1− F (u) ∼ f(u)/u as u→∞, (A.13)

so that combining (A.12) and (A.13) we have that (1/n)e−xun/f(un) → 1. Taking logs and
substituting the density f , we have

− log n− x+ log un − 1
2 log(π/2) + u2

n/2→ 0. (A.14)

Dividing through by log n,

−1− x

log n
+

log un
log n

− log(π/2)

log n
+

u2
n

2 log n
→ 0, (A.15)

then for any fixed x, the second and fourth terms vanish trivially. The third term vanishes by

substituting (A.12) for n and twice applying L’Hôpital’s rule. It then follows that u2n
2 logn → 1,

or (taking logarithms again),

2 log un − log 2− log logn→ 0. (A.16)

Substituting this result into (A.14), we have that

− log n− x+ 1
2 log 2 + 1

2 log log n− 1
2 log(π/2) + u2

n/2→ 0. (A.17)

so that rearranging,

u2
n = 2 log n

{
1 +

x− 1
2 log π − 1

2 log log n

log n
+ o

(
1

log n

)}
,

and hence the maximum of n half-normal random variables has the form

un = (2 log n)1/2

{
1 +

x− 1
2 log π − 1

2 log log n

2 log n
+ o

(
1

log n

)}
.

It then follows from Leadbetter et al. (1982, Theorem 1.5.3) that Pr{Zn ≤ un} → exp(−e−x),
and rearranging gives the norming sequences.

A.6 Proof of Lemma 4.4

Proof. Consider the normalised linear process

qt/σ = (εt/σ)(1 +W ′F−1
W W )−1/2 −

∞∑
s=1

(εt−s/σ)W ′(W−s)′F−1
W W (1 +W ′F−1

W W )−1/2

In the case without explosive components, this reduces to

qt/σ = (εt/σ)

so that under Assumption 3.5 qt/σ is an independent standard normal sequence, and q2
t /σ

2 is
an independent χ2

(1) sequence. Then classical extreme value theory gives the lemma with the

norming sequences at and bt as stated (see, for instance p. 56 of Embrechts et al., 1997, noting
that the χ2 distribution is a special case of the gamma distribution).
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When an explosive component is present, qt/σ under Assumption 3.5 is still marginally
standard normal. However dependence between members of the sequence means that classical
extreme value theory cannot be applied. In particular, we have:

E(qt/σ) = 0

Var(qt/σ) = 1

Covar(qs/σ, qt/σ) = r(s, t) = r|t−s| = 2W ′(F−1
W )W−|t−s|W (1 +W ′F−1

W W )−1

The general approach to dealing with dependent sequences is outlined in Leadbetter and
Rootzen (1988); as long as the dependence is not too great, the same limiting results hold.

We take advantage of the relationship between the χ2
(1) and normal distributions to use

existing results on dependent normal sequences to analyse the limiting behaviour of q2
t /σ

2. In
particular, we have

max
t
q2
t /σ

2 < ut iff max
t
|qt/σ| <

√
ut (A.18)

where |qt/σ| has the half-normal distribution. Lemma 1 of Deo (1972) and its Corollary consider
just such processes, under a square-summability condition that holds here:

∑
r2
s = 4 <∞. Then

Deo’s result is

ct( max
1≤s≤t

|qs/σ| − dt)
d→ Λ

with

ct = (2 log t)1/2

dt = (2 log t)1/2 − (8 log t)−1/2(log log t+ log π).

(Note that the centring sequence—here dt, originally bn—is incorrect in the original. A cor-
rection is provided as Lemma 4.3) Taking

√
ut(z) = ctz + dt and using (A.18) and (A.19), we

have

Pr

{
ct

2dt

(
max
1≤s≤t

q2
t /σ

2 − d2
t

)}
d→ Λ

giving norming sequences

a′t =
ct

2dt
(scaling)

b′t = d2
t (centring).

The equivalence between a′t, b
′
t and at, bt is proved by showing that at/a

′
t → 1 and at(b

′
t− bt)→

0.

A.7 Proof of Theorem 4.5

By a property of inequalities we can establish a lower bound on the supremum statistic,

1

2

[
max

g(T )≤t≤T
(C2

1,t)− dT−g(T )

]
≤ 1

2
max

g(T )≤t≤T

(
C2

1,t − (qt/σ)2
)

+
1

2

[
max

g(T )≤t≤T
(qt/σ)2 − dT−g(T )

]
(A.19)

where the left term vanishes in probability by Lemma 4.2 and the right term converges in
distribution to by Lemma 4.4. We can establish a similar upper bound, so that the normalised
supremum statistic is bounded above and below by quantities that converge in distribution, and
the theorem is proved.
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