1. Documentation explaining the calculations for the example in Section 8
(how ERNs would have worked in the crisis) can be found at: http://bit.ly/1QBcg4e

2. A copy of

Bulow, J. and Klemperer, P. (2013). 'Market-based bank capital requirements', September 2013 Nuffield College Working Paper 2013-W12, can be found at: www.nuff.ox.ac.uk/users/klemperer/mbbcr.pdf

3. A copy of

Bulow, J. and Klemperer, P. (2014). `Equity recourse notes: creating counter-cyclical bank capital', CEPR Discussion Paper 10213, can be found at: www.nuff.ox.ac.uk/users/klemperer/DP10213.pdf
4. The remainder of this document contains notes by Dr. Antoine Lallour proving the results of appendices C and D by working directly with Appendix A^{\prime} s formula for equity holders' expected value. We are very grateful to Dr. Lallour for these.

Proof of proposition 1

This proof computes the shareholders' payoff without and with a new ERN issuance. It then assumes, for the sake of contradiction, that the issuance leaves them worse off. A consequence is that all old ERN holders are also worse off - and thus that value has been destroyed (a contradiction).

Let V denote the state of the world in which the value of the firm, keeping its current funding structure, is V.

Keeping the current funding structure, the payoff to shareholders in state V is given by $V_{0}(V)$ as defined in appendix A.

Let $H_{0}(V)=V_{0}((1+x) V)$ denote the payoff to current shareholders in state V if all components of the current balance sheet (funding and assets) are proportionally increased by a fraction x.
$H_{0}(V)$ and $V_{0}(V)$ are both continuous. $H_{0}(V)$ is everywhere steeper than $V_{0}(V)$ and greater, except at $V=0$ where they are equal. Thus, for any positive constant y, the function $H_{0}(V-y)$ would on its domain either (i) always lie below $V_{0}(V)$ or (ii) cross $V_{0}(V)$ only once, from below (i.e. with a steeper slope at the point where they are equal). Another way to express this single-crossing property is to say that their difference D is such that for all $\tilde{v} \geq v, D(v)>0 \Rightarrow D(\tilde{v})>0$.

Thus, this property holds in particular for $\tilde{G}_{0}(V):=H_{0}\left(V-D_{N+1}\right)$ where D_{N+1} is the face value of the new ERN.

Since $\frac{1}{\sum_{i=0}^{N+1} S_{i}}\left((1+x) V-\sum_{i=j}^{N+1} D_{i}\right) \leq V_{0}(V)$ for all V , this property also holds for

$$
G_{0}(V)=\max \left\{\tilde{G}_{0}(V), \frac{1}{\sum_{i=0}^{N+1} S_{i}}\left((1+x) V-\sum_{i=j}^{N+1} D_{i}\right)\right\}
$$

i.e. this function of V (whose domain is nonnegative real numbers) either (i) always lies below $V_{0}(V)$ or (ii) crosses $V_{0}(V)$ only once, from below.

Assume shareholders are worse off with the new issuance than without. This means that $E\left[G_{0}(V)-F_{0}(V)\right]<0$. Because of the single-crossing property, $E\left[G_{0}(V)-F_{0}(V) \mid V \leq \alpha\right]<0$ for all α.

We now prove that all old ERN holders are worse off.
Let $G_{K}(V):=\min \left(D_{K}, S_{K} . G_{0}(V)\right)$ and $F_{K}(V):=\min \left(D_{K}, S_{K} . F_{0}(V)\right)$. Let V^{*} denote the point where G_{0} and F_{0} cross. And let $T=G_{0}\left(V^{*}\right)=F_{0}\left(V^{*}\right)$. There are two cases.

Case 1: $D_{K}>T$. In this case, there exist two states V_{1} and V_{2} such that $S_{K} \cdot G_{0}\left(V_{1}\right)=D_{K}$ and $S_{K} \cdot F_{0}\left(V_{2}\right)=D_{K}$ and such that we can write:

$$
\begin{gathered}
E\left[G_{K}(V)-F_{K}(V)\right]=S_{K} \cdot P\left(V \leq V_{1}\right) \cdot E\left[G_{0}(V)-F_{0}(V) \mid V \leq V_{1}\right]+ \\
P\left(V_{1} \leq V \leq V_{2}\right) \cdot E\left[S_{K} \cdot G_{0}(V)-D_{K} \mid V_{1} \leq V \leq V_{2}\right]+ \\
P\left(V>V_{2}\right) \cdot E\left[D_{K}-D_{K} \mid V>V_{2}\right]
\end{gathered}
$$

The second term is negative (the function is negative point by point). The first one is negative as well (by the property established earlier). Thus, K-ERN holders are worse off.

Case 2: $D_{K} \leq T$. In this case there is a state V_{1} such that $S_{K} . G_{0}\left(V_{1}\right)=D_{K}$, and such that we can write:

$$
\begin{aligned}
& E\left[G_{K}(V)-F_{K}(V)\right]= P\left(V \leq V_{1}\right) \cdot E\left[\min \left(S_{K} \cdot G_{0}(V), D_{K}\right)-F_{0}(V) \mid V \leq V_{1}\right]+ \\
& P\left(V>V_{1}\right) \cdot E\left[D_{K}-D_{K} \mid V>V_{1}\right] \\
& \leq P\left(V \leq V_{1}\right) \cdot S_{K} \cdot E\left[G_{0}(V)-F_{0}(V) \mid V \leq V_{1}\right]<0
\end{aligned}
$$

Thus, all current stakeholders would be worse off. But this is clearly a contradiction.
This finishes the proof of proposition 1.

How much are the gains for current equity holders?

Using the notation and setup of appendix D, the expected value of equity is given by the following expression:

$$
W(x)=S(\infty) . E\left[\max \left\{\max _{j} \frac{1}{\sum_{i=0}^{j} S_{i}}\left(\tilde{V} \theta-\sum_{i=j+1}^{N} D_{i}-D_{N+1}\right), \frac{1}{\sum_{i=0}^{N+1} S_{i}} \tilde{V} \theta\right\}\right]
$$

where $\tilde{V}=V+m x, D_{N+1}=x$, and $S_{N+1}=\frac{x}{p(x)}$ with for instance $p(x)=25 \% \cdot \frac{W(x)}{S(\infty)}$.
Our goal is to compute the derivative of this expression with respect to x, at $x=0$.
The Leibniz rule implies that our result is the expectation (varying θ) of
$S(\infty) \cdot \frac{d}{d x} \max \left\{\max _{j} \frac{1}{\sum_{i=0}^{j} s_{i}}\left(\tilde{V} \theta-\sum_{i=j+1}^{N} D_{i}-D_{N+1}\right), \frac{1}{\sum_{i=0}^{N+1} s_{i}} \tilde{V} \theta\right\}$ at $\mathrm{x}=0$
The Leibniz rule applies if there exists an integrable function bounding the absolute value of (*). The expectation of θ is finite. For now, assume that the function $\left(^{*}\right)$ is continuously differentiable at $x=0$ and that it can be bounded by a function proportional to θ.

This problem is similar to finding
$\frac{d}{d x} \max \{f(x, \theta), g(x, \theta)\}$ at $\mathrm{x}=0$, for f and g continuous and differentiable.
The solution of that secondary problem is $\frac{d}{d x} f(x, \theta)$ if $f(0, \theta)>g(0, \theta)$;

$$
\frac{d}{d x} g(x, \theta) \text { if } g(0, \theta)>f(0, \theta)
$$

and whichever of the previous two results is greater, if $f(0, \theta)=g(0, \theta)$.
We can now solve our original problem.
We compute the derivative of the first term in (*) (using the secondary problem repeatedly):

$$
S(\infty) \cdot \frac{d}{d x} \max \left\{\frac{1}{\sum_{i=0}^{j} S_{i}}\left(\tilde{V} \theta-\sum_{i=j+1}^{N} D_{i}-D_{N+1}\right)\right\}=\frac{S(\infty)}{S(\theta)}[m \theta-1]
$$

Second, we compute the derivative of the second term in (*)

$$
S(\infty) \cdot \frac{d}{d x} \frac{1}{\sum_{i=0}^{N+1} S_{i}} \tilde{V} \theta=S(\infty) \cdot \frac{d}{d x} \frac{1}{S(0)+{ }^{x} / p(x)}(V+m x) \theta=\frac{S(\infty)}{S(0)}\left(m \theta-\frac{V \theta}{p . S(o)}\right)
$$

where $p(x)$ is the conversion price. As noted earlier, this price could in theory depend on x - for instance if regulators require that it be set equal to 25% of the current share price. In the right-hand side expression, $p:=p(0)$.

Finally, we use the solution of the second problem again and we find that the expression in (*) is equal to
$\frac{S(\infty)}{s(\theta)}[m \theta-1]$ if $\theta>\hat{\theta}$; and
$\frac{S(\infty)}{S(0)}\left(m \theta-\frac{V \theta}{p . S(o)}\right)$ otherwise. This is exactly what appendix D claims.
It is then easy at this point to check that ${ }^{(*)}$ is indeed continuously differentiable at $x=0$ and that it can be bounded by a function proportional to θ, thus completing the proof.

