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Abstract

This paper develops and implements a practical simulation-based method for estimating
dynamic discrete choice models. The method, which can accommodate lagged dependent
variables, serially correlated errors, unobserved variables, and many alternatives, builds on
the ideas of indirect inference. The main difficulty in implementing indirect inference in
discrete choice models is that the objective surface is a step function, rendering gradient-
based optimization methods useless. To overcome this obstacle, this paper shows how to
smooth the objective surface. The key idea is to use a smoothed function of the latent
utilities as the dependent variable in the auxiliary model. As the smoothing parameter goes
to zero, this function delivers the discrete choice implied by the latent utilities, thereby
guaranteeing consistency. We establish conditions on the smoothing such that our estimator
enjoys the same limiting distribution as the indirect inference estimator, while at the same
time ensuring that the smoothing facilitates the convergence of gradient-based optimization
methods. A set of Monte Carlo experiments shows that the method is fast, robust, and
nearly as efficient as maximum likelihood when the auxiliary model is sufficiently rich.

Note. An earlier version of this paper was circulated as the unpublished manuscript Keane
and Smith (2003). That paper proposed the method of generalized indirect inference (GII),
but did not formally analyze its asymptotic or computational properties. The present work,
under the same title but with two additional authors (Bruins and Duffy), rigorously establishes
the asymptotic and computational properties of GII. It is thus intended to subsume the 2003
manuscript. Notably, the availability of the 2003 manuscript allowed GII to be used in numerous
applied studies (see Section 3.3), even though the statistical foundations of the method had not
been firmly established. The present paper provides these foundations and fills this gap in the
literature.
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1 Introduction

Many economic models have the features that (i) given knowledge of the model parameters, it is
easy to simulate data from the model, but (ii) estimation of the model parameters is extremely
difficult. Models with discrete outcomes or mixed discrete/continuous outcomes commonly fall
into this category. A good example is the multinomial probit (MNP), in which an agent chooses
from among several discrete alternatives the one with the highest utility. Simulation of data
from the model is trivial: simply draw utilities for each alternative, and assign to each agent the
alternative that gives them the greatest utility. But estimation of the MNP, via either maximum
likelihood (ML) or the method of moments (MOM), is quite difficult.

The source of the difficulty in estimating the MNP, as with many other discrete choice models,
is that, from the perspective of the econometrician, the probability an agent chooses a particu-
lar alternative is a high-dimensional integral over multiple stochastic terms (unobserved by the
econometrician) that affect utilities the agent assigns to each alternative. These probability ex-
pressions must be evaluated many times in order to estimate the model by ML or MOM. For
many years econometricians worked on developing fast simulation methods to evaluate choice
probabilities in discrete choice models (see Lerman and Manski, 1981). It was only with the de-
velopment of fast and accurate smooth probability simulators that ML or MOM-based estimation
in these models became practical (see McFadden, 1989, and Keane, 1994).

A different approach to inference in discrete choice models is the method of “indirect infer-
ence.” This approach (see Smith, 1990, 1993; Gourieroux, Monfort, and Renault, 1993; Gallant
and Tauchen, 1996), circumvents the need to construct the choice probabilities generated by the
economic model, because it is not based on forming the likelihood or forming moments based on
choice frequencies. Rather, the idea of indirect inference (II) is to choose a statistical model that
provides a rich description of the patterns in the data. This descriptive model is estimated on
both the actual observed data and on simulated data from the economic model. Letting β de-
note the vector of parameters of the structural economic model, the II estimator is that β̂ which
makes the simulated data “look like” the actual data—in the sense (defined formally below) that
the descriptive statistical model estimated on the simulated data “looks like” that same model
estimated on the actual data. (The method of moments is thus a special case of II, in which the
descriptive statistical model corresponds to a vector of moments.)

Indirect inference holds out the promise that it should be practical to estimate any economic
model from which it is practical to simulate data, even if construction of the likelihood or
population moments implied by the model is very difficult or impossible. But this promise
has not been fully realized because of limitations in the II procedure itself. It is very difficult
to apply II to models that include discrete (or discrete/continuous) outcomes for the following
reason: small changes in the structural parameters of such models will, in general, cause the data
simulated from the model to change discretely. Such a discrete change causes the parameters
of a descriptive model fit to the simulated data to jump discretely, and these discontinuities are
inherited by the criterion function minimized by the II estimator.

Thus, given discrete (or discrete/continuous) outcomes, the II estimator cannot be imple-
mented using gradient-based optimization methods. One instead faces the difficult computa-
tional task of optimizing a dβ-dimensional step function using much slower derivative-free meth-

1



generalized indirect inference

ods. This is very time-consuming and puts severe constraints on the size of the structural models
that can be feasibly estimated. Furthermore, even if estimates can be obtained, one does not
have derivatives available for calculating standard errors.

In this paper we propose a “generalized indirect inference” (GII) procedure to address this
important problem (Sections 3 and 4). The key idea is to generalize the original II method by
applying two different descriptive statistical models to the simulated and actual data. As long
as the two descriptive models share the same vector of pseudo-true parameter values (at least
asymptotically), the GII estimator based on minimizing the distance between the two models is
consistent, and will enjoy the same asymptotic distribution as the II estimator.

While the GII idea has wider applicability, here we focus on how it can be used to resolve the
problem of non-smooth objective functions of II estimators in the case of discrete choice models.
Specifically, the model we apply to the simulated data does not fit the discrete outcomes in
that data. Rather, it fits a “smoothed” version of the simulated data, in which discrete choice
indicators are replaced by smooth functions of the underlying continuous latent variables that
determine the model’s discrete outcomes. In contrast, the model we apply to the actual data is
fit to observed discrete choices (obviously, the underlying latent variables that generate actual
agents’ observed choices are not seen by the econometrician).

As the latent variables that enter the descriptive model applied to the simulated data are
smooth functions of the model parameters, the non-smooth objective function problem is obvi-
ously resolved. However, it remains to show that the GII estimator based on minimizing the
distance between these two models is consistent and asymptotically normal. We show that, under
certain conditions on the parameter regulating the smoothing, the GII estimator has the same
limiting distribution as the II estimator, permitting inferences to be drawn in the usual manner
(Section 5).

Our theoretical analysis goes well beyond merely deriving the limiting distribution of the
minimizer of the GII criterion function. Rather, in keeping with computational motivation
of this paper, we show that the proposed smoothing facilitates the convergence of derivative-
based optimizers, in the sense that the smoothing leads to a sample optimization problem that
is no more difficult than the corresponding population problem, where the latter involves the
minimization of a necessarily smooth criterion (Section 5). We also provide a detailed analysis of
the convergence properties of selected line-search and trust-region methods. Our results on the
convergence of these derivative-based optimizers seem to be new to the literature. (While our
work here is in some respects related to the theory of k-step estimators, we depart significantly
from that literature, for example by dropping the usual requirement that the optimizations
commence from the starting values provided by some consistent initial estimator.)

Finally, we provide Monte Carlo evidence indicating that the GII procedure performs well on
a set of example models (Section 6). We look at some cases where simulated maximum likelihood
(SML) is also feasible, and show that efficiency losses relative to SML are small. We also show
how judicious choice of the descriptive (or auxiliary) model is very important for the efficiency
of the estimator. This is true not only here, but for II more generally.

Proofs of the theoretical results stated in the paper are given in Appendices B–E. An index
of key notation appears in Appendix F. All limits are taken as n→∞.
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2 The model

We first describe a class of discrete choice models that we shall use as test cases for the estimation
method that we develop in this paper. As will become clear, however, the ideas underlying the
method could be applied to almost any conceivable model of discrete choice, including models
with mixed discrete/continuous outcomes, and even models in which individuals’ choices solve
forward-looking dynamic programming problems.

We henceforth focus mainly on panel data models with n individuals, each of whom selects
a choice from a set of J discrete alternatives in each of T time periods. Let uitj be the (latent)
utility that individual i attaches to alternative j in period t. Without loss of generality, set the
utility of alternative J in any period equal to 0. In each period, each individual chooses the
alternative with the highest utility. Let yitj be equal to 1 if individual i chooses alternative j in
period t and be equal to 0 otherwise. Define uit := (uit1, . . . , uit,J−1) and yit := (yit1, . . . , yit,J−1).
The econometrician observes the choices {yit} but not the latent utilities {uit}.

The vector of latent utilities uit is assumed to follow a stochastic process

uit = f(xit, yi,t−1, . . . , yi,t−l, εit;β), t = 1, . . . , T, (2.1)

where xit is a vector of exogenous variables.1 For each individual i, the vector of disturbances
εit := (εit1, . . . , εit,J−1) follows a Markov process εit = g(εi,t−1, ηit;β), where {ηit}Tt=1 is a sequence
of i.i.d. random vectors (of dimension J − 1) having a specified distribution (which does not
depend on β). The functions f and g depend on a set of k structural parameters β ∈ B. The
sequences {ηit}Tt=1, i = 1, . . . , n, are independent across individuals and independent of xit for
all i and t. The initial values εi0 and yit, t = 0,−1, . . . , 1− l, are fixed exogenously.

Although the estimation method proposed in this paper can (in principle) be applied to
any model of this form, we focus on four special cases of the general model. Three of these
cases (Models 1, 2, and 4 below) can be feasibly estimated using simulated maximum likelihood,
allowing us to compare its performance with that of the proposed method.

Model 1. J = 2, T > 1, and uit = bxit + εit, where xit is a scalar, εit = rεi,t−1 + ηit, ηit ∼i.i.d.

N [0, 1], and εi0 = 0. This is a two-alternative dynamic probit model with serially correlated
errors; it has two unknown parameters b and r.

Model 2. J = 2, T > 1, and uit = b1xit + b2yi,t−1 + εit, where xit is a scalar and εit follows
the same process as in Model 1. The initial value yi0 is set equal to 0. This is a two-alternative
dynamic probit model with serially correlated errors and a lagged dependent variable; it has
three unknown parameters b1, b2, and r.

Model 3. Identical to Model 2 except that the econometrician does not observe the first s < T

of the individual’s choices. Thus there is an “initial conditions” problem (see Heckman, 1981).

1The estimation method proposed in this paper can also accommodate models in which the latent utilities in
any given period depend on lagged values of the latent utilities.
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Model 4. J = 3, T = 1, and the latent utilities obey:

ui1 = b10 + b11xi1 + b12xi2 + ηi1

ui2 = b20 + b21xi1 + b22xi3 + c1ηi1 + c2ηi2,

where (ηi1, ηi2) ∼i.i.d. N [0, I2]. (Since T = 1 in this model, the time subscript has been omit-
ted.) This is a static three-alternative probit model; it has eight unknown parameters {b1k}2k=0,
{b2k}2k=0, c1, and c2.

The techniques developed in this paper may also be applied to models with a mixture of
discrete and continuous outcomes. A leading example is the Heckman selection model:

Model 5. A selection model with two equations: The first equation determines an individual’s
wage and the second determines his/her latent utility from working:

wi = b10 + b11x1i + c1η1i + c2ηi2

ui = b20 + b21x2i + b22wi + ηi2,

Here x1i and x2i are exogenous regressors and (ηi1, ηi2) ∼i.i.d. N [0, I2]. The unknown parameters
are {b1k}1k=0, {b2k}2k=0, c1, and c2. Let yi := I(ui ≥ 0) be an indicator for employment status.
The econometrician observes the outcome yi but not the latent utility ui. In addition, the
econometrician observes a person’s wage wi if and only if he/she works (i.e. if yi = 1).

3 Generalized indirect inference

We propose to estimate the model in Section 2 via a generalization of indirect inference. First,
in Section 3.1 we exposit the method of indirect inference as originally formulated. In Section
3.2 we explain the difficulty of applying the original approach to discrete choice models. Then,
Section 3.3 presents our generalized indirect inference estimator that resolves this difficulty.

3.1 Indirect inference

Indirect inference exploits the ease and speed with which one can typically simulate data from
even complex structural models. The basic idea is to view both the observed data and the
simulated data through the “lens” of a descriptive statistical (or auxiliary) model characterized
by a set of dθ auxiliary parameters θ. The dβ ≤ dθ structural parameters β are then chosen so as
to make the observed data and the simulated data look similar when viewed through this lens.

To formalize these ideas, assume the observed choices {yit}, i = 1, . . . , n, t = 1, . . . , T , are
generated by the structural discrete choice model described in (2.1), for a given value β0 of the
structural parameters. An auxiliary model can be estimated using the observed data to obtain
parameter estimates θ̂n. Formally, θ̂n solves:

θ̂n := argmax
θ∈Θ

Ln(y, x; θ) = argmax
θ∈Θ

1

n

n∑
i=1

`(yi, xi; θ), (3.1)
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where Ln(y, x; θ) is the average log-likelihood function (or more generally, some statistical crite-
rion function) associated with the auxiliary model, y := {yit} is the set of observed choices, and
x := {xit} is the set of observed exogenous variables.

Let ηm := {ηmit } denote a set of simulated draws for the values of the unobservable components
of the model, with these draws being independent across m ∈ {1, . . . ,M}. Then given x and
a parameter vector β, the structural model can be used to generate M corresponding sets of
simulated choices, ym(β) := {ymit (β)}. (Note that the same values of x and {ηm} are used for all
β.) Estimating the auxiliary model on the mth simulated dataset thus yields

θ̂mn (β) := argmax
θ∈Θ

Ln(ym(β), x; θ). (3.2)

Let θn(β) := 1
M

∑M
m=1 θ̂

m
n (β) denote the average of these estimates. Under appropriate regularity

conditions, as the observed sample size n grows large (holding M and T fixed), θn(β) converges
uniformly in probability to a non-stochastic function θ(β), which Gourieroux, Monfort, and
Renault (1993) term the binding function.

Loosely speaking, indirect inference generates an estimate β̂n of the structural parameters
by choosing β so as to make θ̂n and θn(β) as close as possible, with consistency following from
θ̂n and θn(β0) both converging to the same pseudo-true value θ0 := θ(β0). To implement the
estimator we require a formal metric of the distance between θ̂n and θn(β). There are three
approaches to choosing such a metric, analogous to the three classical approaches to hypothesis
testing: the Wald, likelihood ratio (LR), and Lagrange multiplier (LM) approaches.2

The Wald approach to indirect inference chooses β to minimize the weighted distance between
θn(β) and θ̂n,

QW
n (β) := ‖θn(β)− θ̂n‖2Wn

,

where ‖x‖2A := xTAx, and Wn is a sequence of positive-definite weight matrices.
The LR approach forms a metric implicitly by using the average log-likelihood Ln(y, x; θ)

associated with the auxiliary model. In particular, it seeks to minimize

QLR
n (β) := −Ln(y, x; θn(β)) = − 1

n

n∑
i=1

`(yi, xi; θn(β))

Finally, the LM approach does not work directly with the estimated auxiliary parameters
θn(β) but instead uses the score vector associated with the auxiliary model.3 Given the estimated
auxiliary model parameters θ̂ from the observed data, the score vector is evaluated using each of
the M simulated data sets. The LM estimator then minimizes a weighted norm of the average

2This nomenclature is due to Eric Renault. The Wald and LR approaches were first proposed in Smith (1990,
1993) and later extended by Gourieroux, Monfort, and Renault (1993). The LM approach was first proposed in
Gallant and Tauchen (1996).

3When the LM approach is implemented using an auxiliary model that is (nearly) correctly specified in the
sense that it provides a (nearly) correct statistical description of the observed data, Gallant and Tauchen (1996)
refer to this approach as efficient method of moments (EMM).
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score vector across these datasets,

QLM
n (β) :=

∥∥∥∥∥ 1

M

M∑
m=1

L̇n(ym(β), x; θ̂n)

∥∥∥∥∥
2

Vn

,

where L̇n denotes the gradient of Ln with respect to θ, and Vn is a sequence of positive-definite
weight matrices.

All three approaches yield consistent and asymptotically normal estimates of β0, and are
first-order asymptotically equivalent in the exactly identified case in which dβ = dθ. In the
over-identified case, when the weight matrices Wn and Vn are chosen optimally (in the sense
of minimizing asymptotic variance) both the Wald and LM estimators are more efficient than
the LR estimator. However, if the auxiliary model is correctly specified, all three estimators are
asymptotically equivalent not only to each other but also to maximum likelihood (provided that
M is sufficiently large).

3.2 Indirect inference for discrete choice models

Step functions arise naturally when applying indirect inference to discrete choice models because
any simulated choice ymit (β) is a step function of β (holding fixed the set of random draws {ηmit }
used to generate simulated data from the structural model). Consequently, the sample binding
function θn(β) is discontinuous in β. Obviously, this discontinuity is inherited by the criterion
functions minimized by the II estimators in Section 3.1.

Thus, given discrete outcomes, II cannot be implemented using gradient-based optimization
methods. One must instead rely on derivative-free methods (such as the Nelder-Mead simplex
method); random search algorithms (such as simulated annealing); or abandon optimization
altogether, and instead implement a Laplace-type estimator, via Markov Chain Monte Carlo
(MCMC; see Chernozhukov and Hong, 2003). But convergence of derivative-free methods is often
very slow; while MCMC, even when it converges, may produce (in finite samples) an estimator
substantially different from the optimum of the statistical criterion to which it is applied (see
Kormiltsina and Nekipelov, 2012). Thus, the non-smoothness of the criterion functions that
define II estimators render them very difficult to use in the case of discrete data.

Despite the difficulties in applying II to discrete choice models, the appeal of the II approach
has led some authors to push ahead and apply it nonetheless. Some notable papers that apply
II by optimizing non-smooth objective functions are Magnac, Robin, and Visser (1995), An and
Liu (2000), Nagypál (2007), Eisenhauer, Heckman, and Mosso (2015), Li and Zhang (2015) and
Skira (2015). Our work aims to make it much easier to apply II in these and related contexts.

3.3 A smoothed estimator (GII)

Here we propose a generalization of indirect inference that is far more practical in the context
of discrete outcomes. The fundamental idea is that the estimation procedures applied to the ob-
served and simulated data sets need not be identical, provided that they both provide consistent
estimates of the same binding function. (Genton and Ronchetti, 2003, use a similar insight to
develop robust estimation procedures in the context of indirect inference.) We exploit this idea
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to smooth the function θn(β), obviating the need to optimize a step function when using indirect
inference to estimate a discrete choice model.

Let umitj(β) denote the latent utility that individual i attaches to alternative j ∈ {1, . . . ,J−1}
in period t of the mth simulated data set, given structural parameters β (recall that the utility
of the Jth alternative is normalized to 0). Rather than use the simulated choice ymitj(β) when
computing θn(β), we propose to replace it by the following smooth function of the latent utilities,

ymitj(β, λ) := Kλ[umitj(β)− umit1(β), . . . , umitj(β)− umit,J−1(β)],

where K : RJ−1 → R is a smooth, mean-zero multivariate cdf, and Kλ(v) := K(λ−1v). As
the smoothing parameter λ goes to 0, the preceding converges to ymitj(β, 0) = ymitj(β). Defining
θn(β, λ) := 1

M

∑M
m=1 θ̂

m
n (β, λ), where

θ̂mn (β, λ) := argmax
θ∈Θ

Ln(ym(β, λ), x; θ), (3.3)

we may regard θn(β, λ) as a smoothed estimate of θ(β), for which it is consistent so long as
λ = λn → 0 as n → ∞. Accordingly, an indirect inference estimator based on θn(β, λn), which
we shall henceforth term the generalized indirect inference (GII) estimator, ought to be consistent
for β0.

Each of the three approaches to indirect inference can be generalized simply by replacing
each simulated choice ymitj(β) with its smoothed counterpart ymitj(β, λn). For the Wald and LR
estimators, this entails using the smoothed sample binding function θn(β, λn) in place of the
unsmoothed estimate θn(β). (See Section 4.2 below for the exact forms of the criterion functions.)
The remainder of this paper is devoted to studying the properties of the resulting estimators,
both analytically (Section 5) and through a series of simulation exercises (Section 6).

The GII approach was first suggested in an unpublished manuscript by Keane and Smith
(2003), but they did not derive the asymptotic properties of the estimator. Despite this, GII
has proven to be popular in practice, and has already been applied in a number of papers, such
as Gan and Gong (2007), Cassidy (2012), Altonji, Smith, and Vidangos (2013), Morten (2013),
Ypma (2013), Lopez-Mayan (2014) and Lopez Garcia (2015). Given the growing popularity of
the method, a careful analysis of its asymptotic properties is obviously needed.

3.4 Related literature

Our approach to smoothing in a discrete choice model bears a superficial resemblance to that used
by Horowitz (1992) to develop a smoothed version of Manski’s (1985) maximum score estimator
for a binary response model. As here, the smooth version of maximum score is constructed by
replacing discontinuous indicators with smooth cdfs in the sample criterion function.

However, there is a fundamental difference in the statistical properties of the minimiza-
tion problems solved by Manski’s estimator, and the (unsmoothed) indirect inference estimator.
Specifically, n−1/2-consistent estimators are available for the unsmoothed problem considered in
this paper (see Theorem 5.1 below, or Pakes and Pollard, 1989); whereas, in the case of Manski’s
(1985) maximum score estimator, only n−1/3-consistency is obtained without smoothing (see Kim
and Pollard, 1990), and smoothing yields an estimator with an improved rate of convergence.
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A potentially more relevant analogue for the present paper is smoothed quantile regression.
This originates with Horowitz’s (1998) work on the smoothed least absolute deviation estimator,
extended to more general quantile regression and quantile-IV models by Whang (2006), Otsu
(2008) and Kaplan and Sun (2012). The latter papers do not smooth the criterion function,
but rather the estimating equations (approximate first-order conditions) that equivalently define
the estimator. These first-order conditions involve indicator-type discontinuities like those in our
problem, smoothed in the same way. Insofar as the problem of solving the estimating equations is
analogous to the minimum-distance problem solved by the II estimator, the effects of smoothing
are similar: in each case smoothing (if done appropriately) affects neither the rate of convergence
nor the limiting distribution of the estimator, relative to its unsmoothed counterpart.

The motivation for smoothing in the quantile regression case involves the potential for higher-
order asymptotic improvements.4 In contrast, in the present setting, which involves structural
models of possibly great complexity, the potential for higher-order improvements is limited.5 The
key motivation for smoothing in our case is computational.

Accordingly, much of this paper is devoted to a formal analysis of the potential computational
gains from smoothing. In particular, Sections 5.4–5.6 are devoted to providing a theoretical
foundation for our claim that smoothing facilitates the convergence of standard derivative-based
optimization that are widely used to solve (smooth) optimization problems in practice.

For the class of models considered in this paper, two leading alternative estimation methods
that might be conisidered are simulated maximum likelihood (SML) in conjunction with the
Geweke, Hajivassiliou and Keane (GHK) smooth probability simulator (see Section 4 in Geweke
and Keane, 2001), and the nonparametric simulated maximum likelihood (NPSML) estimator
(Diggle and Gratton, 1984; Fermanian and Salanié, 2004; Kristensen and Shin, 2012). However,
the GHK simulator can only be computed in models possessing a special structure – which is
true for Models 1, 2 and 4 above, but not for Model 3 – while in models that involve a mixture of
discrete and continuous outcomes, NPSMLmay require the calculation of rather high-dimensional
kernel density estimates in order to construct the likelihood, the accuracy of which may require
simulating the model a prohibitively large number of times.

Finally, an alternative approach to smoothing the II estimator is importance sampling, as in
Keane and Sauer (2010) and Sauer and Taber (2013). The basic idea is to simulate data from
the structural model only once (at the initial estimate of β). One holds these simulated data
fixed as one iterates. Given an updated estimate of β, one re-weights the original simulated data
points, so those initial simulations that are more (less) likely under the new β (than under the
initial β) get more (less) weight in forming the updated objective function.

In our view the GII and importance sampling approaches both have virtues. The main
limitation of the importance sampling approach is that in many models the importance sample
weights may themselves be computationally difficult to construct. Keane and Sauer (2010),

4While potential computational benefits have been noted in passing, we are not aware of any attempt to
demonstrate these formally, in the manner of Theorems 5.3–5.5 below.

5This is particularly evident when the auxiliary model consists of a system of regression equations, as per
Section 4.4 below. For while smoothing does indeed reduce the variability of the simulated (discrete) outcomes
ymit (β, λ), this may increase the variance with which some parameters of the auxiliary model are estimated, if yit
appears as a regressor in that model: as will be the case for Models 2 and 3 (see Sections 6.2 and 6.3 below). (Note
that any such increase, while certainly possible, is of only second-order importance, and disappears as λn → 0.)
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when working with models similar to those in Section 2, assume that all variables are measured
with error, which gives a structure that impies very simple weights. In many contexts such a
measurement error assumption may be perfectly sensible. But the GII method can be applied
directly to the models of Section 2 without adding any auxillary assumptions (or parameters).

4 Further refinements and the choice of auxiliary model

4.1 Smoothing in dynamic models

For models in which latent utilities depend on past choices (as distinct from past utilities, which
are already smooth), such as Models 2 and 3 above, the performance of GII may be improved
by making a further adjustment to the smoothing proposed in Section 3.3. The nature of this
adjustment is best illustrated in terms of the example provided by Model 2. In this case, it is
clear that setting

ymit (β, λ) := Kλ[b1xit + b2y
m
i,t−1(β) + εmit ],

where ymi,t−1(β) denotes the unsmoothed choice made at date t − 1, will yield unsatisfactory
results, insofar as the ymit (β, λ) so constructed will remain discontinuous in β. To some extent,
this may be remedied by modifying the preceding to

ymit (β, λ) := Kλ[b1xit + b2y
m
i,t−1(β, λ) + εmit ], (4.1)

with ymi0(β, λ) := 0, as per the specification of the model. However, while the ymit (β, λ)’s generated
through this recursion will indeed be smooth (i.e., twice continuously differentiable), the nesting
of successive approximations entailed by (4.1) implies that for large t, the derivatives of ymit (β, λ)

may be highly irregular unless a relatively large value of λ is employed.
This problem may be avoided by instead computing ymit (β, λ) as follows. Defining vmitk(β) :=

b1xit + b21{k = 1}+ εmit , we see that the unsmoothed choices satisfy

yit(β) = 1{vmit0(β) ≥ 0} · [1− yi,t−1(β)] + 1{vmit1(β) ≥ 0} · yi,t−1(β),

which suggests using the following recursion for the smoothed choices,

ymit (β, λ) := Kλ[vmit0(β)] · [1− ymi,t−1(β, λ)] +Kλ[vmit1(β)] · ymi,t−1(β, λ), (4.2)

with ymi0(β, λ) := 0. This indeed yields a valid approximation to yit(β), as λ→ 0. The smoothed
choices computed using (4.2) involve no nested approximations, but merely sums of products
involving terms of the form Kλ[vmisk(β)]. The derivatives of these are well-behaved with respect
to λ, even for large t, and are amenable to the theoretical analysis of Section 5.

Nonetheless, we find that even if smoothing is done by simply using (4.1), GII appears to
work well in practice. This will be shown in the simulation exercises reported in Section 6.
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4.2 Bias reduction via jackknifing

As we noted in Section 3.3, GII inherits the consistency of the II estimator, provided that λn → 0

as n → ∞. However, as smoothing necessarily imparts a bias to the sample binding function
θn(β, λn), and thence to the GII estimator, we need λn to shrink to zero at a sufficiently fast
rate if GII is to enjoy the same limiting distribution as the unsmoothed estimator. On the other
hand, if λn → 0 too rapidly, derivatives of the GII criterion function will become highly irregular,
impeding the ability of derivative-based optimization routines to locate the minimum.

Except for certain special cases, the smoothing bias is of the order ‖θ(β0, λ)−θ(β0, 0)‖ = O(λ)

and no smaller. Thus, it is only dominated by the estimator variance if n1/2λn = op(1). On the
other hand, it follows from Proposition 5.1 below that n1−1/p0λ2l−1

n →∞ is necessary to ensure
that the lth order derivatives of the GII criterion function converge, uniformly in probability,
to their population counterparts. Here p0 ∈ (1,∞] depends largely on the order of moments
possessed by the exogenous covariates x (see Assumption L below). Thus, even in the most
favorable case of p0 = ∞, one can only ensure asymptotic negligibility of the bias (relative to
the variance) at the cost of preventing second derivatives of the sample criterion function from
converging to their population counterparts, a convergence that is necessary to ensure the good
performance of at least some derivative-based optimization routines (see Section 5.6 below).

Fortunately, these difficulties can easily be overcome by applying Richardson extrapolation
– commonly referred to as “jackknifing” in the statistics literature – to the smoothed sample
binding function. Provided that the population binding function is sufficiently smooth, a Taylor
series expansion gives θl(β, λ) = θl(β, 0) +

∑s
r=1 αrl(β)λr + o(λs) as λ → 0, for l ∈ {1, . . . , dθ}.

Then, for a fixed choice of δ ∈ (0, 1), we have the first-order extrapolation,

θ1
l (β, λ) :=

θl(β, δλ)− δθl(β, λ)

1− δ
= θl(β, 0) + δ

s∑
r=2

(δr−1 − 1)αrl(β)λr + o(λs),

for every l ∈ {1, . . . , dθ}. By an iterative process, for k ≤ s − 1 we can construct a kth order
extrapolation of the binding function, which satisfies

θk(β, λ) :=
k∑
r=0

γrkθ(β, δ
rλ) = θ(β, 0) +O(λk+1), (4.3)

where the weights {γrk}kr=0 (which can be negative) satisfy
∑k

r=0 γrk = 1, and may be calculated
using Algorithm 1.3.1 in Sidi (2003). It is immediately apparent that the kth order jackknifed
sample binding function,

θ
k
n(β, λn) :=

k∑
r=0

γrkθn(β, δrλn) (4.4)

will enjoy an asymptotic bias of order Op(λk+1
n ), whence only n1/2λk+1

n = op(1) is necessary for
the bias to be asymptotically negligible.

In the case where θ̂mn (β, λ) = g(Tmn (β, λ)), for some differentiable transformation g of a vector
Tmn of sufficient statistics (as in Section 5 below), jackknifing could be applied directly to these
statistics. Thus, if we were to set θ̂mkn (β, λn) := g(

∑k
r=0 γrkT

m
n (β, λn)), then 1

M

∑M
m=1 θ̂

mk
n (β, λn)

would also have an asymptotic bias of order Op(λk+1
n ). This approach may have computational
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advantages if the transformation g is relatively costly to compute (e.g. when it involves matrix
inversion). Note that since Tmn will generally involve averages of nonlinear transformations of
kernel smoothers, it will not generally be possible to achieve the same bias reduction through the
use of higher-order kernels; whereas if only linear transformations were involved, both jackknifing
and higher-order kernels would yield identical estimators (see, e.g., Jones and Foster, 1993).

Jackknifed GII estimators of order k ∈ N0 may now be defined as the minimizers of:

Qenk(β, λn) :=


‖θkn(β, λn)− θ̂n‖2Wn

if e = W

−Ln(y;x, θ
k
n(β, λn)) if e = LR

‖ 1
M

∑M
m=1 L̇mkn (β, λn; θ̂n)‖2Vn if e = LM

(4.5)

where L̇mkn (β, λ; θ̂n) :=
∑k

r=0 γrkL̇n(ym(β, λ), x; θ̂n) denotes the jackknifed score function; the
un-jackknifed estimators may be recovered by taking k = 0. Let Qek(β, λ) denote the large-
sample limit of Qenk(β, λ); note that β 7→ Qek(β, 0) is smooth and does not depend on k.

4.3 Bias reduction via a Newton-Raphson step

By allowing the number of simulations M to increase with the sample size, we can accelerate the
rate at which θkn converges to the binding function. The convergence of the smoothed derivatives
of θkn should then follow under less restrictive conditions on λn. That is, it may be possible for
the derivatives to converge, while still ensuring that the bias is o(n−1/2), even with k = 0. Since
the evaluation of Qnk is potentially costly when M is very large, one possible approach would
be to minimize Qnk using a very small initial value of M (e.g. M = 1). One could then increase
M to an appropriately large value, and then compute a new estimate by taking at least one
Newton-Raphson step (applied to the new criterion).

A rigorous analysis of this estimator is beyond the scope of this paper; we assume that M is
fixed throughout Section 5. Heuristically, since θkn is computed using nM observations, it should
be possible to show that ifM = Mn →∞, then the conditions specified in Proposition 5.1 below
would remain the same, except with nMn replacing every appearance of n in (5.7).

4.4 Choosing an auxiliary model

Efficiency is a key consideration when choosing an auxiliary model. As discussed in Section 3.1,
indirect inference (generalized or not) has the same asymptotic efficiency as maximum likelihood
when the auxiliary model is correctly specified in the sense that it provides a correct statistical
description of the observed data (Gallant and Tauchen, 1996). Thus, from the perspective of
efficiency, it is important to choose an auxiliary model (or a class of auxiliary models) that is
flexible enough to provide a good description of the data.

Another important consideration is computation time. For the Wald and LR approaches
to indirect inference, the auxiliary parameters must be estimated repeatedly using different
simulated data sets. For this reason, it is critical to use an auxiliary model that can be estimated
quickly and efficiently. This consideration is less important for the LM approach, as it does not
work directly with the estimated auxiliary parameters, but instead uses the first-order conditions
(the score vector) that defines these estimates.

11
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To meet the twin criteria of statistical and computational efficiency, in Section 6 we use linear
probability models (or, more accurately, sets of linear probability models) as the auxillary model.
This class of models is flexible in the sense that an individual’s current choice can be allowed to
depend on polynomial functions of lagged choices and of current and lagged exogenous variables.
These models can also be very quickly and easily estimated using ordinary least squares. Section 6
describes in detail how we specify the linear probability models for each of Models 1–4. For
Model 5, the Heckman selection model, the auxillary model would be a set of OLS regressions
with mixed discrete/continuous dependent variables.

5 Asymptotic and computational properties

While GII could in principle be applied to any model of the form (2.1) – and others besides –
in order to keep this paper to a manageable length, the theoretical results of this section will
require that some further restrictions be placed on the structure of the model. Nonetheless,
these restrictions are sufficiently weak to be consistent with each of Models 1–5 from Section 2.
We shall only provide results for the Wald and LR estimators, when these are jackknifed as per
(4.4) above; but it would be possible to extend our arguments so as to cover the LM estimator,
and the alternative jackknifing procedure (in which the statistics Tmn are jackknifed) outlined in
Section 4.2.

5.1 A general framework

Individual i is described by vectors xi ∈ Rdx and ηi ∈ Rdη of observable and unobservable
characteristics; xi includes all the covariates appearing in either the structural model or the
auxiliary model (or both). ηi is a vector of independent variates that are also independent of
xi, and normalized to have unit variance. Their marginal distributions are fully specified by the
model, allowing these to be simulated. Collect zi := (xTi , η

T
i )T ∈ Rdz , and define the projections

[x(·), η(·)] so that (xi, ηi) = [x(zi), η(zi)]. Individual i has a vector y(zi;β, λ) ∈ Rdy of smoothed
outcomes, parametrized by (β, λ) ∈ B × Λ, with λ = 0 corresponding to true, unsmoothed
outcomes under β. At this level of abstraction, we need not make any notational distinction
between choices made by an individual at the same date (over competing alternatives), vs.
choices made at distinct dates; we note simply that each corresponds to some element of y(·).
With this notation, the mth simulated choices may be written as y(zmi ;β, λ); since the same xi’s
are used across all simulations, we have x(zmi ) = x(zm

′
i ) but η(zmi ) 6= η(zm

′
i ) for m′ 6= m.

In line with the discussion in Section 4.4, we shall assume that the auxiliary model takes the
form of a system of seemingly unrelated regressions (SUR; see e.g. Section 10.2 in Greene, 2008)

yr(zi;β, λ) = αT
xrΠxrx(zi) + αT

yrΠyry(zi;β, λ) + ξri, (5.1)

where ξi := (ξ1i, . . . , ξdyi)
T ∼i.i.d. N [0,Σξ], and Πxr and Πyr are selection matrices (i.e. matrices

that take at most one unit value along each row, and have zeros everywhere else); let αr :=

(αT
xr, α

T
yr)

T. Typically, Σξ will be assumed block diagonal: for example, we may only allow those
ξri’s pertaining to alternatives from the same period to be correlated. The auxiliary parameter
vector θ collects a subset (or possibly all) of the elements of (αT

1 , . . . , α
T
dy

)T and the (unrestricted)

12
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elements of Σ−1
ξ . (For the calculations involving the score vector in Appendix C, it shall be more

convenient to treat the model as being parametrized in terms of Σ−1
ξ .)

Several estimators of θ are available, most notably OLS, feasible GLS, and maximum likeli-
hood, all of which agree only under certain conditions.6 For concreteness, we shall assume that
both the data-based and simulation-based estimates of θ are produced by maximum likelihood.
However, the results of this paper could be easily extended to cover the case where either (or
both) of these estimates are computed using OLS or feasible GLS. (In those cases, the auxiliary
estimator can be still be written as a function of a vector of sufficient statistics, a property that
greatly facilitates the proofs of our results.)

We shall also need to restrict the manner in which y(·) is parametrized. To that end, we
introduce the following collections of linear indices

νr(z;β) := zTΠνrγ(β) r ∈ {1, . . . , dν} (5.2a)

ωr(z;β) := zTΠωrγ(β) r ∈ {1, . . . , dω}, (5.2b)

where γ : B → Γ, and Πν
l and Πω

l are selection matrices. We shall generally suppress the z
argument from ν and ω, and other quantities constructed from them, throughout the sequel.
Our principal restriction on y(·) is that it should be constructed from (ν, ω) as follows. Let
dc ≥ dω; for each r ∈ {1, . . . , dc}, let Sr ⊆ {1, . . . , dv} and define

ỹr(β, λ) := ωr(β) ·
∏
s∈Sr

Kλ[νs(β)] (5.3)

collecting these in the vector ỹ(β, λ); where now K : R→ [0, 1] is a smooth univariate cdf, and
Kλ(v) := K(λ−1v).7 Note that dc ≥ dω, and that we have defined

ωr(z;β) := 1 r ∈ {dω + 1, . . . , dc}. (5.4)

Let ηω := Πηωη select the elements of η upon which ω actually depends (as determined by the
Πωr matrices), and let Wr ≥ 1 denote an envelope for ωr, in the sense that |ωr(z;β)| ≤ Wr(z)

for all β ∈ B. Let %min(A) denote the smallest eigenvalue of a symmetric matrix A.

Our results rely on the following low-level assumptions on the structural model:

Assumption L (low-level conditions).

L1 (yi, xi) is i.i.d. over i, and ηmi = η(zmi ) is independent of xi and i.i.d. over i and m;

L2 y(β, λ) = Dỹ(β, λ) for some D ∈ Rdy×dc , for ỹ as in (5.3);

L3 γ : B→ Γ in (5.2) is twice continuously differentiable;
6In Section 6, exact numerical agreement between these estimators is ensured by requiring the auxiliary model

equations referring to alternatives from the same period to have the same set of regressors.
7Keane and Smith (2003) suggested using the multivariate logistic cdf, L(v) := 1/(1+

∑J−1
j=1 e−vj ), and this is

used in the simulation exercises presented in Section 6. But L has no particular advantages over other choices of
K, and, for the theoretical results work we shall in fact assume that the smoothing is implemented using suitable
products of univariate cdfs. This assumption eases some of our arguments (but it is unlikely that it is necessary
for our results).
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L4 for each k ∈ {1, . . . , dη}, var(ηki) = 1, and ηki has a density fk with

sup
u∈R

(1 + |u|4)fk(u) <∞;

L5 there exists an ε > 0 such that, for every for every r ∈ {1, . . . , dν} and β ∈ B,

var(νr(zi;β) | ηωi, xi) ≥ ε;

L6 there exists a p0 ≥ 2 such that for each r ∈ {1, . . . , dc}, E(W 4
r +‖zi‖4) <∞, E|Wr‖zi‖3|p0 <

∞ and E|W 2
r ‖zi‖2|p0 <∞;

L7 inf(β,λ)∈B×Λ %min[Ey(zi;β, λ)y(zi;β, λ)T] > 0, where y(β, λ) := [y(β, λ)T, xT]T; and

L8 the auxiliary model is a Gaussian SUR, as in (5.1).

Remark 5.1. (5.2) entails that the estimator criterion function Qn depends on β only through
γ(β), i.e. Qn(β) = Q̃n(γ(β)) for some Q̃n. Since the derivatives of Q̃n with respect to γ take a
reasonably simple form, we shall establish the convergence of ∂lβQn to ∂lβQ, for l ∈ {1, 2}, by first
proving the corresponding result for ∂lγQ̃n and then applying the chain rule. Here, as elsewhere
in the paper, ∂βf denotes the gradient of f : B → Rd (the transpose of the Jacobian), and ∂2

βf

the Hessian; see Section 6.3 of Magnus and Neudecker, 2007, for a definition of the latter when
k ≥ 2.

Remark 5.2. Assumption L is least restrictive in models with purely discrete outcomes, for which
we may take dω = 0. In particular, L6 reduces to the requirement that E‖zi‖3p0 <∞.

Remark 5.3. As the examples discussed in Section 5.2 illustrate, except in the case where current
(discrete) choices depend on past choices, it is generally possible to take D = Idy in L2, so that
y(β, λ) = ỹ(β, λ).

Consistent with the notation adopted in the previous sections of this paper, let ηm denote
the mth set of simulated unobservables, and ym(β, λ) the associated smoothed outcomes, for
m ∈ {1, . . . ,M}. We may set Λ = [0, 1] below without loss of generality. Let F denote a σ-field
with respect to which the observed data and simulated variables are measurable, for all n, and
recall the definition of ` given in (3.1) above. We then have the following:

Assumption R (regularity conditions).

R1 The structural model is correctly specified: yi = y(z0
i ;β0, 0) for some β0 ∈ int B;

R2 θ0 := θ(β0, 0) ∈ int Θ;

R3 the binding function θ(β, λ) is single-valued, and is (k0 + 1)-times differentiable in β for all
(β, λ) ∈ (int B)× Λ;

R4 β 7→ θ(β, 0) is injective;

R5 {λn} is an F-measurable sequence with λn
p→ 0;

R6 the order k ∈ {1, . . . , k0} of the jackknifing is chosen such that n1/2λk+1
n = op(1);
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R7 K in (5.3) is a twice continuously differentiable cdf, for a distribution having integer mo-
ments of all orders, and density K̇ symmetric about the origin; and

R8 Wn
p→W , for some positive definite W .

Remark 5.4. R4 formalizes the requirement that the auxiliary model be “sufficiently rich” to
identify the parameters of the structural model; dθ ≥ dβ evidently is necessary for R4 to be
satisfied.

Remark 5.5. R5 permits the bandwidth to be sample-dependent, as distinct from assuming it
to be a “given” deterministic sequence. This means our results hold uniformly in smoothing
parameter sequences satisfying certain growth rate conditions: see Remark 5.7 below for details.
R6 ensures that, in conjunction with the choice of λn, the jackknifing is such as to ensure that
the bias introduced by the smoothing is asymptotically negligible. R7 will be satisfied for many
standard choices ofK, such as the Gaussian cdf, and many smooth, compactly supported kernels.

Assumptions L and R are sufficient for all of our main results. But to allow these to be
stated at a higher level of generality – and thus permitting their application to a broader class of
structural and auxiliary models than are consistent with Assumption L – we shall find it useful
to phrase our results as holding under Assumption R and the following high-level conditions. To
state these, define Ln(θ) := Ln(y, x; θ), L(θ) := ELn(θ) and `mi (β, λ; θ) := `(ymi (β, λ), xi; θ). ˙̀m

i

and L̈n respectively denote the gradient of `mi and the Hessian of Ln with respect to θ, while for
a metric space (Q, d), `∞(Q) denotes the space of bounded and measurable real-valued functions
on Q.

Assumption H (high-level conditions).

H1 Ln is twice continuously differentiable on int Θ;

H2 for l ∈ {0, 1, 2}, ∂lθLn(θ)
p→ ∂lθL(θ), and

1

n

n∑
i=1

˙̀m1
i (β1, λ1; θ1) ˙̀m2

i (β2, λ2; θ2)T
p→ E ˙̀m1

i (β1, λ1; θ1) ˙̀m2
i (β2, λ2; θ2)T

uniformly on B× Λ and compact subsets of int Θ, for every m1,m2 ∈ {0, 1, . . . ,M};

H3 ψm is a mean-zero, continuous Gaussian process on B× Λ such that

ψmn (β, λ) := n1/2[θ̂mn (β, λ)− θ(β, λ)] ψm(β, λ)

in `∞(B× Λ), jointly in m ∈ {0, 1, . . . ,M};

H4 for any (possibly) random sequence βn = β0 + op(1) and λn as in R5,

ψmn (βn, λn) = −H−1 1

n1/2

n∑
i=1

˙̀m
i (β0, 0; θ0) + op(1) =: −H−1φmn + op(1) −H−1φm, (5.5)

jointly in m ∈ {0, 1, . . . ,M},8 where H := EL̈n(θ) = L̈(θ) and {φm}Mm=0 is jointly Gaussian
8The first equality in (5.5) is only relevant for m ≥ 1.
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with

Σ := Eφm1φm1T = Eφm1
n φm1T

n R := Eφm1φm2T = Eφm1
n φm2T

n (5.6)

for every m1,m2 ∈ {0, 1, . . . ,M}; and

H5 {λn} is such that for some l ∈ {0, 1, 2},

sup
β∈B
‖∂lβ θ̂mn (β, λn)− ∂lβθ(β, 0)‖ = op(1).

The sufficiency of our low-level conditions for the preceding may be stated formally follows.

Proposition 5.1. Suppose Assumptions L and R hold. Then Assumption H holds with l = 0 in
H5. Further, if λn > 0 for all n, with

n1−1/p0λ2l′−1
n / log(λ−1

n ∨ n)
p→∞ (5.7)

for some l′ ∈ {1, 2}, then H5 holds with l = l′.

Remark 5.6. It is evident from (5.7) that – as noted in Section 4.2 above – the convergence of
the higher-order derivatives of the sample binding function requires more stringent conditions on
the smoothing sequence {λn}. We shall be accordingly careful, in stating our results below, to
identify the weakest form of H5 (and correspondingly, of (5.7)) that is required for each of these.

Remark 5.7. Let {λn} and {λn} be deterministic sequences satisfying (5.7) and λn = o(1)

respectively, and set Λn := [λn, λn]. Then, as indicated in Remark 5.5 above, F-measurability of
{λn} entails that the convergence in H5 holds uniformly over λ ∈ Λn, in the sense that

sup
(β,λ)∈B×Λn

‖∂lβ θ̂mn (β, λ)− ∂lβθ(β, λ)‖ = op(1).

A similar interpretation applies to Theorems 5.3–5.5 below.

Proposition 5.1 is proved in Appendix C.

5.2 Application to examples

We may verify that each of the models from Section 2 satisfy L2–L6. In all cases, xi collects
all the (unique) elements of {xit}Tt=1, together with any additional exogenous covariates used to
estimate the auxiliary model; while ηi collects the elements of {ηit}Tt=1. Note that for the discrete
choice Models 1–4, since the ηi are Gaussian L6 will be satisfied if E‖xi‖3p0 <∞. L7 is a standard
non-degeneracy condition.

Model 1. uit = bxit +
∑t

s=1 r
t−sηis by backward substitution. So we set (dν , dω) = (T, 0), with

νt(zi;β) = xt(zi)b(β) +

t∑
s=1

ηs(zi)dts(β),

where β = (b, r), b(β) = b and dts(β) = rt−s; while xt(zi) and ηs(zi) select the appropriate
elements of zi, which collects {xit}, {ηit}, and any other exogenous covariates used in the auxiliary
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model. Thus L2 and L3 hold (formally, take γ(β) = (b(β), {dts(β)})). L5 follows from the ηt(zi)’s
being standard Gaussian.

Model 2. As per the discussion in Section 4.1, and (4.2) in particular, we define

νtk(zi;β) := xt(zi)b1(β) + b2(β)1{k = 1}+
t∑

s=1

ηs(zi)dts(β)

where the right-hand side quantities are defined by analogy with the preceding example. Setting

yt(β, λ) := Kλ[νt0(β)] · [1− yt−1(β, λ)] +Kλ[νt1(β)] · yt−1(β, λ) (5.8)

with y0(β, λ) := 0 thus yields smoothed choices having the form required by L2 and L3, as may
be easily verified by backwards substitution. L5 again follows from Gaussianity of ηt(zi).

An identical recursion to (5.8) also works for Model 3. Model 4 may be handled in a similar
way to Model 1, but it is in certain respects simpler, because the errors are not serially dependent.
Finally, it remains to consider:

Model 5. From the preceding examples, it is clear that ω(zi;β) = wi and ν(zi;β) = ui can be
written in the linear index form (5.2). The observable outcomes are the individual’s decision to
work, and also his wage if he decides to work. These may be smoothly approximated by:

y1(β, λ) := Kλ[ν(β)] y2(β, λ) := ω(β) ·Kλ[ν(β)].

respectively. Thus L2–L5 hold just as in the other models. L6 holds, in this case, if E‖zi‖4p0 <∞.

5.3 Limiting distributions of GII estimators

We now present our asymptotic results. Note that Assumptions R and H are maintained through-
out the following (even if not explicitly referenced), though in accordance with Remark 5.6 above,
we shall always explicitly state the order of l in H5 that is required for each of our theorems.

Our first result concerns the limiting distributions of the minimizers of the Wald and LR
criterion functions, as displayed in (4.5) above. For e ∈ {W,LR}, let β̂enk be a near-minimizer of
Qenk, in the sense that

Qenk(β̂
e
nk, λn) ≤ inf

β∈B
Qenk(β, λn) + op(n

−1). (5.9)

The limiting variance of both estimators will have the familiar sandwich form. To allow the next
result to be stated succinctly, define

Ω(U, V ) := (GTUG)−1GTUH−1V H−1UG(GTUG)−1 (5.10)

where G := [∂βθ(β0, 0)]T denotes the Jacobian of the binding function at (β0, 0), H = EL̈n(θ),
and U and V are symmetric matrices.

Theorem 5.1 (limiting distributions). Suppose H5 holds with l = 0. Then

n1/2(β̂enk − β0) N [0,Ω(Ue, Ve)],
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where

Ue :=

W if e = W

H if e = LR
Ve :=

(
1 +

1

M

)
(Σ− R) (5.11)

Remark 5.8. In view of Proposition 5.1 and the remark that follows it, Theorem 5.1 does not
restrict the rate at which λn

p→ 0 from below ; indeed, it continues to hold even if λn = 0 for all n,
in which case the estimation problem is closely related to that considered by Pakes and Pollard
(1989). Thus, while the theorem provides the “desired” limiting distribution for our estimators,
it fails to provide a justification (or motivation) for the smoothing proposed in this paper, and
is in this sense unsatisfactory (or incomplete).

Remark 5.9. Note that the order of jackknifing does not affect the limiting distribution of the
estimator: this has only a second-order effect, which vanishes as λn → 0.

Remark 5.10. It is possible to define the LR estimator as the minimizer of

QLR
n (β) := −L̃n(y;x, θ

k
n(β, λn)),

where the average log-likelihood L̃n need not correspond to that maximized by θ̂mn , provided
that the maximizers of both Ln and L̃n are consistent for the same parameters. For example,
θ̂mn might be OLS (and the associated residual covariance estimators), whereas L̃n is the average
log-likelihood for a SUR model. Suppose that the maximizer θ̃n of L̃n satisfies the following
analogue of (5.5),

n1/2(θ̃n − θ0) = −H̃−1 1

n1/2

n∑
i=1

˙̃
`mi (β0, 0; θ0) + op(1) −H̃−1φ̃0,

and define Σ̃ := Eφ̃0φ̃0T, and R̃ := Eφ̃0φmT for m ≥ 1. Then the conclusions of Theorem 5.1
continue to hold, except that the H−1V H−1 appearing in (5.10) must be replaced by

H̃−1Σ̃H̃−1 − (H̃−1R̃H−1 +H−1R̃TH̃−1) +H−1

[
1

M
Σ +

(
1− 1

M

)
R

]
H−1 (5.12)

and ULR = H̃, where H̃ := E ¨̃Ln(y, x; θ0). Regarding the estimation of these quantities, see
Remark 5.11 below. (Note that (5.12) reduces to H−1V H−1 when H̃ = H, Σ̃ = Σ and R̃ = R.)

The proofs of Theorem 5.1 and all other theorems in this paper are given in Appendix B.

5.4 Convergence of smoothed derivatives and variance estimators

Theorem 5.1 fails to indicate the possible benefits of smoothing, because it simply posits the
existence of a near-minimizer of Qnk, and thus entirely ignores how such a minimizer might
be computed in practice. Ideally, smoothing should be shown to facilitate the convergence of
derivative-based optimization procedures, when these are applied to the problem of minimizing
Qnk, while still yielding an estimator having the same limit distribution as in Theorem 5.1.

For the analysis of these procedures, the large-sample behavior of the derivatives of Qnk
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will naturally play an important role.9 The uniform convergence of the derivatives of the sample
binding function – and hence those ofQnk – follows immediately from H5, and sufficient conditions
for this convergence are provided by Proposition 5.1 above. Notably, when l′ ∈ {1, 2}, (5.7)
imposes exactly the sort of lower bound on λn that is absent from Theorem 5.1.

H5, with l = 1, implies that the derivatives of the smoothed criterion function can be used
to estimate the Jacobian matrix G that appears in the limiting variances in Theorem 5.1. The
remaining components, H and Ve, can be respectively estimated using the data-based auxiliary
log-likelihood Hessian, and an appropriate transformation of the joint sample variance of all the
auxiliary log-likelihood scores (i.e. using both the data- and simulation-based models). Define

AT :=
[
Idθ −

1
M Idθ · · · −

1
M Idθ

]
sTni :=

[
˙̀0
i (θ̂n)T ˙̀1

i (β̂
e
nk, λn; θ̂1

n)T · · · ˙̀M
i (β̂enk, λn; θ̂Mn )T

]
,

where θ̂mn := θ̂mn (β̂enk, λn), and ˙̀0
i (θ) denotes the gradient of `(yi, xi; θ). Then we have

Theorem 5.2 (variance estimation). Suppose H5 holds with l = 0. Then

(i) Ĥn := L̈n(θ̂n)
p→ H;

(ii) V̂n := AT
(

1
n

∑n
i=1 snis

T
ni

)
A

p→ V ; and

if H5 holds with l = 1, then

(iii) Ĝn := ∂βθn(β̂enk, λn)
p→ G, for e ∈ {W,LR}.

Remark 5.11. For the situation envisaged in Remark 5.10, so long as the auxiliary model corre-
sponding to L̃n satisfies Assumptions R and H, a consistent estimate of (5.12) can be produced
in the manner of (ii) above, if we replace sni by

s̃Tni :=
[

˙̃
`0i (θ̃n)TĤ−1

n
˙̀1
i (β̂

LR
nk , λn; θ̂1

n)TH̃−1
n · · · ˙̀M

i (β̂LR
nk , λn; θ̂Mn )TH̃−1

n

]
,

where H̃n := ¨̃Ln(θ̃n) is consistent for ULR.

5.5 Performance of derivative-based optimization procedures

The potential gains from smoothing may be assessed by comparing the performance of derivative-
based optimization procedures, as they are applied to each of the following:

P1 the smoothed sample problem, of minimizing β 7→ Qnk(β, λn); and

P2 its population counterpart, of minimizing β 7→ Qk(β, 0).

Since Qk is automatically smooth (even when λ = 0, owing to the smoothing effected by the
expectation operator), derivative-based methods ought to be particularly suited to solving P2,
and we may regard their performance when applied to this problem as representing an upper
bound for their performance when applied to P1.

9Here, as throughout the remainder of this paper, we are concerned exclusively with the limiting behavior of
the exact derivatives of Qnk, ignoring any errors that might be introduced by numerical differentiation.
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In the following section, we shall discuss in detail the convergence properties of three popular
optimization routines: Gauss-Newton; quasi-Newton with BFGS updating; and a trust-region
method. But before coming to these, we first provide a result that is of relevance to a broader
range of derivative-based optimization procedures. Since such procedures will typically be de-
signed to terminate at (near) roots of the first-order conditions,

∂βQ
e
nk(β, λn) = 0 in P1 ∂βQ

e(β, 0) = 0 in P2

for e ∈ {W,LR}, we shall provide conditions on λn, under which, for some cn = op(1),

(i) the set Renk := {β ∈ B | ‖∂βQenk(β, λn)‖ ≤ cn} of near roots is “consistent” for subsets of
Re := {β ∈ B | ∂βQe(β, 0) = 0}; and

(ii) if cn = op(n
−1/2), then any β̃n ∈ Renk with β̃n

p→ β0 has the limiting distribution given by
Theorem 5.1.

We interpret (i) as saying that smoothing yields a sample problem P1 that is “no more difficult”
than the population problem P2, in the sense that the set of points to which derivative-based
optimizers may converge to in P1 approximates its counterpart in P2, as n → ∞. This is the
strongest consistency result we can hope to prove here: as Q may have multiple stationary points,
only one of which coincides with its (assumed interior) global minimum, it cannot generally be
true that the whole of Renk will be consistent for β0. On the other hand, if we can select a
consistent sequence of (near) roots from Renk, as in (ii), then we may reasonably hope that this
estimator sequence will enjoy the same limiting distribution as a (near) minimizer of Qnk.

For A,B ⊆ B, let dL(A,B) := supa∈A d(a,B) denote the one-sided distance from A to B,
which has the property that dL(A,B) = 0 if and only if A ⊆ B. Recall the definition of β̂enk
given in (5.9) above. Properties (i) and (ii) above can be more formally expressed as follows.

Theorem 5.3 (near roots). Suppose H5 holds with l = 1. Then

(i) Renk is nonempty w.p.a.1., and dL(Renk, R
e)

p→ 0;

(ii) if cn = op(n
−1/2), β̃n ∈ Renk and β̃n

p→ β0, then n1/2(β̃n − β̂enk) = op(1), and so β̃n has the
limiting distribution given by Theorem 5.1; and

(iii) any β̃n ∈ Renk satisfying Qenk(β̃n) ≤ infβ∈Renk Q
e
nk(β) + op(1) has β̃n

p→ β0.

Remark 5.12. Of course, the requirement that β̃n
p→ β0 cannot be verified in practice; but one

may hope to satisfy it by running the optimization routine from L different starting points located
throughout B, obtaining a collection of terminal values {βnl}Ll=1, and then setting β̃n = βnl such
that Qnk(β̃n) ≤ Qnk(βnl′) for all l′ ∈ {1, . . . , L}.

Some optimization routines, such as the trust-region method considered in the next section,
may only be allowed to terminate when the second-order conditions for a minimum are also
satisfied. Defining

Senk := {β ∈ Renk | %min[∂2
βQ

e
nk(β, λn)] ≥ 0} Se := {β ∈ Re | %min[∂2

βQ
e(β, 0)] ≥ 0}, (5.13)

we have the following
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Theorem 5.4 (near roots satisfying second-order conditions). Suppose H5 holds with l = 2.
Then parts (i) and (ii) of Theorem 5.3 hold with Senk and Se in place of Renk and Re respectively.

Remark 5.13. The utility of this result may be seen by considering a case in which Q has
many stationary points, but only a single local minimum at β0. Then while Theorem 5.3 only
guarantees convergence to one of these stationary points, Theorem 5.4 ensures consistency for β0

– at a cost of requiring that the routine also check the second-order conditions for a minimum.
This is why stronger conditions must be imposed on λn in Theorem 5.4; we now need the second
derivatives of Qnk to provide reliable information about the curvature of Qk in large samples.

5.6 Convergence results for specific procedures

Our final result concerns the question of whether certain optimization routines, if initialized
from within an appropriate region of the parameter space and iterated to convergence, will
yield the maximizer of Qnk, and thus an estimator having the limiting distribution displayed in
Theorem 5.1. In some respects, our work here is related to previous work on k-step estimators,
which studies the limiting behavior of estimators computed as the outcome of a sequence of
quasi-Newton iterations (see e.g. Robinson, 1988). However, we shall depart from that literature
in an important respect, by not requiring that our optimization routines be initialized by a
sequence of starting values β(0)

n that are assumed consistent for β0 (often at some rate). Rather,
we shall require only that β(0)

n ∈ B0 ⊂ B for a fixed region B0 satisfying the conditions noted
below.

We consider two popular line-search optimization methods – Gauss-Newton, and quasi-
Newton with BFGS updating – as well as a trust-region algorithm. When applied to the problem
of minimizing an objective Q, each of these routines proceed as follows: given an iterate β(s),
locally approximate Q by the following quadratic model,

f(s)(β) := Q(β(s)) +∇T
(s)(β − β

(s)) + 1
2(β − β(s))T∆(s)(β − β(s)), (5.14)

where ∇(s) := ∂βQ(β(s)). A new iterate β(s+1) is then generated by approximately minimizing
f(s) with respect to β. The main differences between these procedures concern the choice of
approximate Hessian ∆(s), and the manner in which f(s) is (approximately) minimized. A com-
plete specification of each of the methods considered here is provided in Appendix A (see also
Fletcher, 1987, and Nocedal and Wright, 2006); note that the Gauss-Newton method can only
be applied to the Wald criterion function, since only this criterion has the least-squares form
required by that method.

We shall impose the following conditions on the population criterion Q, which are sufficient
to ensure that each of these procedures, once started from some β(0) ∈ B0, will converge to the
global minimizer of Q. As noted above, since Q may have many other stationary points, B0

must be chosen so as to exclude these (except when the trust region method is used); hence
our convergence results are of an essentially local character. (Were we to relax this condition
on B0, then the arguments yielding Theorem 5.5 below could be modified to establish that
these procedures always converge to some stationary point of Q.) To state our conditions, let
σmin(D) := %

1/2
min(DTD) denote the smallest singular value of a (possibly non-square) matrix D,
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and recall G(β) = [∂βθ(β, 0)]T, the Jacobian of the binding function.

Assumption O (optimization routines). Let Q ∈ {QW
k , Q

LR
k }. Then B0 = B0(Q) may be chosen

as any compact subset of int B for which β0 ∈ int B0 and B0 = {β ∈ B | Q(β) ≤ Q(β1)} for some
β1 ∈ B; and either

GN ‖G(β)TWg(β)‖ 6= 0 for all β ∈ B0\{β0} and infβ∈B0 σmin[G(β)] > 0;

QN Q is strictly convex on B0; or

TR for every β ∈ B0\{β0}, ‖∂βQ(β)‖ = 0 implies %min[∂2
βQ(β)] < 0.

Remark 5.14. Note that ‖G(β)TWg(β)‖ 6= 0 is equivalent to ‖∂βQW
k (β)‖ 6= 0. Both GN and

QN thus imply that Q has no stationary points in B0, other than that which corresponds to the
minimum at β0. TR, on the other hand, permits such points to exist, provided that they are
not local minima. In this respect, it places the weakest conditions on Q, and does so because
the trust-region method utilizes second-derivative information in a manner that the other two
methods do not.

Before analyzing the convergence properties of these optimization routines, we must first
specify the conditions governing their termination. Let {β(s)} denote the sequence of iterates
generated by a given routine r, from some starting point β(0). When r ∈ {GN,QN}, we shall
allow the optimization to terminate at the first s – denoted s∗ – for which a near root is located,
in the sense that ‖∂βQenk(β(s))‖ ≤ cn, where cn = op(n

−1/2). That is, s∗ is the smallest s for
which β(s) ∈ Renk. This motivates the definition, for r ∈ {GN,QN}, of

β
e
nk(β

(0), r) :=

β(s∗) if β(s) ∈ Renk for some s ∈ N

β(0) otherwise,
(5.15)

which describes the terminal value of the optimization routine, with the convention that this is
set to β(0) if a near root is never located. In the case that r = TR, we shall allow the routine
to terminate only at those near roots at which the second-order sufficient conditions for a local
minimum are also satisfied. In this way, s∗ now becomes the smallest s for which β(s) ∈ STR

nk ,
and βenk(β(0),TR) may be defined exactly as in (5.15), except with STR

nk in place of RTR
nk .

10

For the purposes of the next result, let β̂enk denote the exact minimizer of Qenk.

Theorem 5.5 (derivative-based optimizers). Suppose r ∈ {GN,QN,TR} and e ∈ {W,LR}, and
that the corresponding part of Assumption O holds for some B0. Then

sup
β(0)∈B

‖βenk(β(0), r)− β̂enk‖ = op(n
−1/2)

holds if either
10It may be asked why we do not also propose checking the second-order conditions upon termination when

r ∈ {GN,QN}. Such a modification is certainly possible, but is perhaps of doubtful utility. Consider the problem
of minimizing some (deterministic) criterion function that has multiple roots, only one of which corresponds to a
local (and also global) minimum, a scenario envisaged in TR. In this case, the best we can hope to prove is that
the Gauss-Newton and quasi-Newton routines will have some of those roots as points of accumulation, but they
might never enter the vicinity of the local minimum (see Theorems 6.5 and 10.1 in Nocedal and Wright, 2006).
On the other hand, the trust-region algorithm considered here is guaranteed to have the local minimum as a point
of accumulation, under certain conditions (see Moré and Sorensen, 1983, Theorem 4.13).
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(i) (r, e) = (GN,W) and H5 holds with l = 1; or

(ii) r ∈ {QN,TR} and H5 holds with l = 2.

Remark 5.15. Convergence of the Gauss-Newton method requires the weakest conditions on λn of
all three algorithms. This is because the Hessian approximation ∆n,(s) := Gn(β(s))TWnGn(β(s))

used by Gauss-Newton is valid for criteria having the same minimum-distance structure as QW
n ;

here Gn(β) := ∂βθ
k
n(β, λn). Thus the uniform convergence of Gn is sufficient to ensure that

∆n,(s) behaves suitably in large samples, whence only H5 with l = 1 is required.

6 Monte Carlo results

This section conducts a set of Monte Carlo experiments to assess the performance of the GII
estimator, in terms of bias, efficiency, and computation time. The parameters of Models 1–4
(see Section 2) are estimated a large number of times using “observed” data generated by the
respective models. For each model, the Monte Carlo experiments are conducted for several sets
of parameter configurations. For Models 1, 2, and 4, the parameters are estimated in each Monte
Carlo replication using both GII and simulated maximum likelihood (SML) in conjunction with
the GHK smooth probability simulator (cf. Lee, 1997). Model 3, which cannot easily be estimated
via SML, is estimated using only GII. We omit Model 5, as Altonji, Smith, and Vidangos (2013)
already present results showing that GII performs well for Heckman selection-type models.

In all cases, we use the LR approach to (generalized) indirect inference to construct our
estimates. We do this for two reasons. First, unlike the Wald and LM approaches, the LR
approach does not require the estimation of a weight matrix. In this respect, the LR approach is
easier to implement than the other two approaches. Furthermore, because estimates of optimal
weight matrices often do not perform well in finite samples (see e.g. Altonji and Segal, 1996),
the LR approach is likely to perform better in small samples. Second, because the LR approach
is asymptotically equivalent to the other two approaches when the auxiliary model is correctly
specified, the relative inefficiency of the LR estimator is likely to be small when the auxiliary
model is chosen judiciously.

To optimize the criterion functions, we use a version of the Davidon-Fletcher-Powell algorithm
(as implemented in Chapter 10 of Press, Flannery, Teukolsky, and Vetterling, 1993), which is
closely related to the quasi-Newton routine analyzed in Section 5.6. The initial parameter vector
in the hillclimbing algorithm is the true parameter vector. Most of the computation time in
generalized indirect inference lies in computing ordinary least squares (OLS) estimates. The main
cost in computing OLS estimates lies, in turn, in computing the XTX part of (XTX)−1XTY .
We use blocking and loop unrolling techniques to speed up the computation of XTX by a factor
of 2 to 3 relative to a “naive” algorithm.11

6.1 Results for Model 1

Model 1 is a two-alternative panel probit model with serially correlated errors and one exogenous
11To avoid redundant calculations, we also precompute and store for later use those elements of XTX that

depend only on the exogenous variables. We are grateful to James MacKinnon for providing code that implements
the blocking and loop unrolling techniques.
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regressor. It has two unknown parameters: the regressor coefficient b, and the serial correlation
parameter r. We set b = 1 and consider r ∈ {0, 0.40, 0.85}. In the Monte Carlo experiments,
n = 1000 and T = 5. As in all of the simulation exercises carried out in this paper, we compute
the GII estimator via the two-step approach described in Section 4.3, using (λ,M) = (0.03, 10)

in the first step, and (λ,M) = (0.003, 300) in the second. The exogenous variables (the xit’s) are
i.i.d. draws from a N [0, 1] distribution, drawn anew for each Monte Carlo replication.

The auxiliary model consists of T linear probability models of the form

yit = zTitαt + ξit

where ξit ∼i.i.d. N [0, σ2
t ], zit denotes the vector of regressors for individual i in time period t, and

αt and σ2
t are parameters to be estimated. We include in zit both lagged choices and polynomial

functions of current and lagged exogenous variables; the included variables change over time, so as
to allow the auxiliary model to incorporate the additional lagged information that is available in
later time periods. (When estimating the model on simulated data, the simulated lagged choices
are of course replaced by their smoothed counterparts, as per the discussion in Section 4.1 above.)
The auxiliary model is thus characterized by the parameters θ = {αt, σ2

t }Tt=1; these are estimated
by maximum likelihood (which corresponds to OLS here, under the distributional assumptions
on ξit).

It is worth emphasizing that we include lagged choices (and lagged x’s) in the auxiliary model
despite the fact that the structural model does not exhibit true state dependence. But in Model
1 it is well-know that lagged choices are predictive of current choices (termed “spurious state
dependence” by Heckman). This is a good illustration of how a good auxiliary model should be
designed to capture the correlation patterns in the data, as opposed to the true structure.

To examine how increasing the “richness” of the auxiliary model affects the efficiency of the
structural parameter estimates, we conduct Monte Carlo experiments using four nested auxiliary
models. In all four, we impose the restrictions αt = αq and σ2

t = σ2
q , t = q + 1, . . . , T , for some

q < T . This is because the time variation in the estimated coefficients of the linear probability
models comes mostly from the non-stationarity of the errors in the structural model, and so it is
negligible after the first few time periods (we do not assume that the initial error is drawn from
the stationary distribution implied by the law of motion for the errors).

In auxiliary model #1, q = 1 and the regressors in the linear probability model are given by:
zit = (1, xit, yi,t−1), t = 1, . . . , T , where the unobserved yi0 is set equal to 0. We use this very
simple auxiliary model to illustrate how GII can produce very inefficient estimates if one uses a
poor auxiliary model. In auxiliary model #2, q = 2 and the regressors are zi1 = (1, xi1), and

zit = (1, xit, yi,t−1, xi,t−1), t ∈ {2, . . . , T},

giving a total of 18 parameters. Auxiliary model #3 has q = 4, regressors

zi1 = (1, xi1, x
3
i1) zi3 = (1, xi3, yi2, xi2, yi1, xi1)

zi2 = (1, xi2, yi1, xi1) zit = (1, xit, yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3), t ∈ {4, . . . , T},
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and 24 parameters. Finally, auxiliary model #4 has the same regressors as #3, except that

zi4 = (1, xi4, yi3, xi3, yi2, xi2, yi1, xi1)

zit = (1, xit, yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3, xi,t−3, yi,t−4), t ∈ {5, . . . , T}

so q = 5 and there are 35 parameters.
Table 1 presents the results of six sets of Monte Carlo experiments, each with 2000 replica-

tions. The first two sets of experiments report the results for simulated maximum likelihood,
based on GHK, using 25 draws (SML #1) and 50 draws (SML #2). The remaining four sets
of experiments report the results for generalized indirect inference, where GII #i refers to gen-
eralized indirect inference using auxiliary model #i. In each case, we report the average and
the standard deviation of the parameter estimates. We also report the efficiency loss of GII #i
relative to SML #2 in the columns labelled σGII/σSML, where we divide the standard deviations
of the GII estimates by the standard deviations of the estimates for SML #2. Finally, we report
the average time (in seconds) required to compute estimates (we use the Intel Fortran Compiler
Version 7.1 on a 2.2GHz Intel Xeon processor running Red Hat Linux).

Table 1 contains several key findings:
First, both SML and GII generate estimates with very little bias.
Second, GII is less efficient than SML, but the efficiency losses are small provided that the

auxiliary model is sufficiently rich. For example, auxiliary model #1 leads to large efficiency
losses, particularly for the case of high serial correlation in the errors (r = 0.85). For models
with little serial correlation (r = 0), however, auxiliary model #2 is sufficiently rich to to make
GII almost as efficient as SML. When there is more serial correlation in the errors, auxiliary model
#2 leads to reasonably large efficiency losses (as high as 30% when r = 0.85), but auxiliary model
#3, which contains more lagged information in the linear probability models than does auxiliary
model #2, reduces the worst efficiency loss to 13%. Auxiliary model #4 provides almost no
efficiency gains relative to auxiliary model #3.

Third, GII is faster than SML: computing a set of estimates using GII with auxiliary model
#3 takes about 30% less time than computing a set of estimates using SML with 50 draws.

For generalized indirect inference, we also compute (but do not report in Table 1) estimated
asymptotic standard errors, using the estimators described in Theorem 5.2. In all cases, the
averages of the estimated standard errors across the Monte Carlo replications are very close to
(within a few percent of) the actual standard deviations of the estimates, suggesting that the
asymptotic results provide a good approximation to the behavior of the estimates in samples of
the size that we use.

6.2 Results for Model 2

Model 2 is a panel probit model with serially correlated errors, a single exogenous regressor, and
a lagged dependent variable. It has three unknown parameters: b1, the coefficient on the exoge-
nous regressor, b2, the coefficient on the lagged dependent variable, and r, the serial correlation
parameter. We set b1 = 1, b2 = 0.2, and consider r ∈ {0, 0.4, 0.85}; n = 1000 and T = 10.

Table 2 presents the results of six sets of Monte Carlo experiments, each with 1000 replica-
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tions; the labels SML #i and GII #i are to be interpreted exactly as for Table 1. The results are
similar to those for Model 1. Both SML and GII generate estimates with very little bias. SML
is more efficient than GII, but the efficiency loss is small when the auxiliary model is sufficiently
rich (i.e., 17% at most for model #3, 15% at most for model #4). However, auxiliary model
#1 can lead to very large efficiency losses, as can auxiliary model #2 if there is strong serial
correlation.

Again, average asymptotic standard errors are close to the standard deviations obtained
across the simulations (not reported). Finally, GII using auxiliary model #3 is about 25% faster
than SML using 50 draws.

6.3 Results for Model 3

Model 3 is identical to Model 2, except there is an “initial conditions” problem: the econometrician
does not observe individuals’ choices in the first s periods. This is an excellent example of the
type of problem that motivates this paper: SML is extremely difficult to implement, due to the
problem of integrating over the initial conditions. But II is appealing, as it is still trivial to
simulate data from the model. However, we need GII to deal with the discrete outcomes.

To proceed, our Monte Carlo experiments are parametrized exactly as for Model 2, except
that we set T = 15, with choices in the first s = 5 time periods being unobserved (but note that
exogenous variables are observed in these time periods).

Auxiliary model #1 is as for Models 1 and 2: q = 1 and the regressors are zit = (1, xit, yi,t−1),
t = s + 1, . . . , T , where the unobserved yis is set equal to 0. In auxiliary model #2, q = 2 and
the regressors are:

zi,s+1 = (1, xi,s+1, xis) zit = (1, xit, yi,t−1, xi,t−1), t ∈ {s+ 2, . . . , T},

for a total of 19 parameters. In auxiliary model #3, q = 4 and there are 27 parameters:

zi,s+1 = (1, xi,s+1, x
3
i,s+1, xis, xi,s−1)

zi,s+2 = (1, xi,s+2, yi,s+1, xi,s+1, xis)

zi,s+3 = (1, xi,s+3, yi,s+2, xi,s+2, yi,s+1, xi,s+1)

zit = (1, xit, yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3), t ∈ {s+ 4, . . . , T}

Finally, in auxiliary model #4, q = 5 and there are 41 parameters: relative to #3, zi,s+1, zi,s+2

and zi,s+3 are augmented by an additional lag of xis, and

zi,s+4 = (1, xi,s+4, yi,s+3, xi,s+3, yi,s+2, xi,s+2, yi,s+1, xi,s+1)

zit = (1, xit, yi,t−1, xi,t−1, yi,t−2, xi,t−2, yi,t−3, xi,t−3, yi,t−4), t ∈ {s+ 5, . . . , T}.

Table 3 presents the results of four sets of Monte Carlo experiments, each with 1000 repli-
cations. There are two key findings: First, as with Models 1 and 2, GII generates estimates
with very little bias. Second, increasing the “richness” of the auxiliary model leads to large effi-
ciency gains relative to auxiliary model #1, particularly when the errors are persistent. However,
auxiliary model #4 provides few efficiency gains relative to auxiliary model #3.
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6.4 Results for Model 4

Model 4 is a (static) three-alternative probit model with eight unknown parameters: three co-
efficients in each of the two equations for the latent utilities ({b1i}2i=0} and {b2i}2i=0) and two
parameters governing the covariance matrix of the disturbances in these equations (c1 and c2).
We set b10 = b20 = 0, b11 = b12 = b21 = b22 = 1, c2 = 1, and consider c1 ∈ {0, 1.33} (implying
that the disturbances in the latent utilities are respectively independent, or have a correlation of
0.8). We set n = 2000.

The auxiliary model is a pair of linear probability models, one for each of the first two
alternatives:

yi1 = zTi α1 + ξi1

yi2 = zTi α2 + ξi2,

where zi consists of polynomial functions of the exogenous variables {xij}3j=1, and ξi ∼i.i.d.

N [0,Σξ]. The auxiliary model parameters θ = (α1, α2,Σξ) are estimated by OLS; this corre-
sponds to maximum likelihood – even though Σξ is not diagonal – because the same regressors
appear in both equations.

We conduct Monte Carlo experiments using four nested versions of the auxiliary model. In
auxiliary model #1, zi = (1, xi1, xi2, xi3), giving a total of 11 parameters. Auxiliary model #2
adds all the second-order products of these variables, as well as one third-order product to zi,
i.e.

zi = (1, xi1, xi2, xi3, x
2
i1, x

2
i2, x

2
i3, xi1xi2, xi1xi3, xi2xi3, xi1xi2xi3),

for a total of 25 parameters. In auxiliary model #3, zi contains all third-order products (for a
total of 43 parameters) and in auxiliary model #4, zi contains all fourth-order products (for a
total of 67 parameters).

Tables 4 and 5 present the results of six sets of Monte Carlo experiments, each with 1000
replications; the labels SML #i and GII #i are to be interpreted exactly as for Table 1. The
key findings are qualitatively similar to those for Models 1, 2, and 3. First, both SML and GII
generate estimates with very little bias. Second, auxiliary model #1, which contains only linear
terms, leads to large efficiency losses relative to SML (as large as 50%). But auxiliary model #2,
which contains terms up to second order, reduces the efficiency losses substantially (to no more
than 15% when the errors are uncorrelated, and to no more than 26% when c = 1.33). Auxiliary
model #3, which contains terms up to third order, provides additional small efficiency gains (the
largest efficiency loss is reduced to 20%), while auxiliary model #4, which contains fourth-order
terms, provides few, if any, efficiency gains relative to auxiliary model #3. Finally, computing
estimates using GII with auxiliary model #3 takes about 30% less time than computing estimates
using SML with 50 draws.

7 Conclusion

Discrete choice models play an important role in many fields of economics, from labor economics
to industrial organization to macroeconomics. Unfortunately, these models are usually quite
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challenging to estimate (except in special cases like MNL where choice probabilities have closed
forms). Simulation-based methods like SML and MSM have been developed that can be used
for more complex models like MNP. But in many important cases (models with initial conditions
problems and Heckman selection models being leading cases) even these methods are very difficult
to implement.

In this paper we develop and implement a new simulation-based method for estimating models
with discrete or mixed discrete/continuous outcomes. The method is based on indirect inference.
But the traditional II approach is not easily applicable to discrete choice models because one
must deal with a non-smooth objective surface. The key innovation here is that we develop a
generalized method of indirect inference (GII), in which the auxiliary models that are estimated
on the actual and simulated data may differ (provided that the estimates from both models share
a common probability limit). This allows us to chose an auxiliary model for the simulated data
such that we obtain an objective function that is a smooth function of the structural parameters.
This smoothness renders GII practical as a method for estimating discrete choice models.

Our theoretical analysis goes well beyond merely deriving the limiting distribution of the
minimizer of the GII criterion function. Rather, in keeping with computational motivation
of this paper, we show that the proposed smoothing facilitates the convergence of derivative-
based optimizers, in the sense that the smoothing leads to a sample optimization problem that
is no more difficult than the corresponding population problem, where the latter involves the
minimization of a necessarily smooth criterion. This provides a rigorous justification for using
standard derivative-based optimizers to compute the GII estimator, which is also shown to inherit
the limiting distribution of the (unsmoothed) II estimator. Inferences based on the GII estimates
may thus be drawn in the standard manner, via the usual Wald statistics. Our results on the
convergence of derivative-based optimizers seem to be new to the literature.

We also provide a set of Monte Carlo experiments to illustrate the practical usefulness of GII.
In addition to being robust and fast, GII yields estimates with good properties in small samples.
In particular, the estimates display very little bias and are nearly as efficient as maximum like-
lihood (in those cases where simulated versions of maximum likelihood can be used) provided
that the auxiliary model is chosen judiciously.

GII could potentially be applied to a wide range of discrete and discrete/continuous outcome
models beyond those we consider in our Monte Carlo experiments. Indeed, GII is sufficiently flex-
ible to accommodate almost any conceivable model of discrete choice, including, discrete choice
dynamic programming models, discrete dynamic games, etc. We hope that applied economists
from a variety of fields find GII a useful and easy-to-implement method for estimating discrete
choice models.

8 References

Altonji, J. G., and L. M. Segal (1996): “Small-sample bias in GMM estimation of covariance
structures,” Journal of Business and Economic Statistics, 14(3), 353–66.

Altonji, J. G., A. A. Smith, and I. Vidangos (2013): “Modeling earnings dynamics,” Econo-
metrica, 81(4), 1395–1454.

28



bruins, duffy, keane, and smith

An, M. Y., and M. Liu (2000): “Using indirect inference to solve the initial-conditions problem,”
Review of Economics and Statistics, 82(4), 656–67.

Billingsley, P. (1968): Convergence of Probability Measures. Wiley, New York (USA).

Cassidy, H. (2012): “Skills, tasks, and occupational choice,” University of Western Ontario.

Chernozhukov, V., and H. Hong (2003): “An MCMC approach to classical estimation,”
Journal of Econometrics, 115(2), 293–346.

Diggle, P. J., and R. J. Gratton (1984): “Monte Carlo methods of inference for implicit
statistical models,” Journal of the Royal Statistical Society. Series B (Methodological), 46(2),
193–227.

Einmahl, U., and D. M. Mason (2005): “Uniform in bandwidth consistency of kernel-type
function estimators,” The Annals of Statistics, 33(3), 1380–1403.

Eisenhauer, P., J. J. Heckman, and S. Mosso (2015): “Estimation of dynamic discrete
choice models by maximum likelihood and the simulated method of moments,” International
Economic Review, 56(2), 331–357.

Engle, R. F., and D. L. McFadden (eds.) (1994): Handbook of Econometrics, vol. IV.
Elsevier.

Fermanian, J.-D., and B. Salanié (2004): “A nonparametric simulated maximum likelihood
estimation method,” Econometric Theory, 20(4), 701–34.

Fletcher, R. (1987): Practrical Methods of Optimization. Wiley, Chichester (UK), 2nd edn.

Gallant, A. R., and G. Tauchen (1996): “Which moments to match?,” Econometric Theory,
12(4), 657–81.

Gan, L., and G. Gong (2007): “Estimating interdependence between health and education in
a dynamic model,” Working Paper 12830, National Bureau of Economic Research.

Genton, M. G., and E. Ronchetti (2003): “Robust indirect inference,” Journal of the Amer-
ican Statistical Association, 98(461), 67–76.

Geweke, J., and M. P. Keane (2001): “Computationally intensive methods for integration
in econometrics,” in Handbook of Econometrics, ed. by J. J. Heckman, and E. Leamer, vol. 5.
Elsevier.

Gourieroux, C., A. Monfort, and E. Renault (1993): “Indirect inference,” Journal of
Applied Econometrics, 8(S1), S85–S118.

Greene, W. H. (2008): Econometric Analysis. Pearson Prentice Hall, New Jersey (USA), 6th
edn.

Heckman, J. J. (1981): “The incidental parameters problem and the problem of initial condi-
tions in estimating a discrete time–discrete data stochastic process,” in Manski and McFadden
(1981), pp. 179–95.

Horowitz, J. L. (1992): “A smoothed maximum score estimator for the binary response model,”
Econometrica, 60(3), 505–31.

(1998): “Bootstrap methods for median regression models,” Econometrica, 66(6), 1327–
51.

29



generalized indirect inference

Jones, M. C., and P. J. Foster (1993): “Generalized jackknifing and higher order kernels,”
Journal of Nonparametric Statistics, 3(1), 81–94.

Kaplan, D. M., and Y. Sun (2012): “Smoothed estimating equations for instrumental variables
quantile regression,” University of California, San Diego.

Keane, M., and A. A. Smith (2003): “Generalized indirect inference for discrete choice mod-
els,” Yale University.

Keane, M. P. (1994): “A computationally practical simulation estimator for panel data,” Econo-
metrica, 62, 95–116.

Keane, M. P., and R. M. Sauer (2010): “A computationally practical simulation estima-
tion algorithm for dynamic panel data models with unobserved endogenous state variables,”
International Economic Review, 51(4), 925–958.

Kim, J., and D. Pollard (1990): “Cube root asymptotics,” Annals of Statistics, 18(1), 191–
219.

Kormiltsina, A., and D. Nekipelov (2012): “Approximation properties of Laplace-type
estimators,” UC Berkeley.

Kosorok, M. R. (2008): Introduction to Empirical Processes and Semiparametric Inference.
Springer.

Kristensen, D., and Y. Shin (2012): “Estimation of dynamic models with nonparametric
simulated maximum likelihood,” Journal of Econometrics, 167(1), 76–94.

Lee, L.-F. (1997): “Simulated maximum likelihood estimation of dynamic discrete choice sta-
tistical models: some Monte Carlo results,” Journal of Econometrics, 82(1), 1–35.

Lerman, S., and C. F. Manski (1981): “On the use of simulated frequencies to approximate
choice probabilities,” in Manski and McFadden (1981), pp. 305–319.

Li, T., and B. Zhang (2015): “Affiliation and entry in first-price auctions with heterogeneous
bidders: an analysis of merger effects,” American Economic Journal: Microeconomics, 7(2),
188–214.

Lopez Garcia, I. (2015): “Human capital and labor informality in Chile: a life-cycle approach,”
Working Paper WR-1087, RAND Corporation.

Lopez-Mayan, C. (2014): “Microeconometric analysis of residential water demand,” Environ-
mental and Resource Economics, 59(1), 137–166.

Magnac, T., J.-M. Robin, and M. Visser (1995): “Analysing incomplete individual employ-
ment histories using indirect inference,” Journal of Applied Econometrics, 10(1), S153–S169.

Magnus, J. R., and H. Neudecker (2007): Matrix Differential Calculus with Applications in
Statistics and Econometrics. Wiley, Chichester (UK), 3rd edn.

Manski, C. F. (1985): “Semiparametric analysis of discrete response: Asymptotic properties of
the maximum score estimator,” Journal of Econometrics, 27(3), 313–33.

Manski, C. F., and D. McFadden (eds.) (1981): Structural Analysis of Discrete Data with
Econometric Applications. MIT Press, Cambridge, MA.

McFadden, D. L. (1989): “A method of simulated moments for estimation of discrete response
models without numerical integration,” Econometrica, 57, 995–1026.

30



bruins, duffy, keane, and smith

Moré, J. J., and D. C. Sorensen (1983): “Computing a trust region step,” SIAM Journal on
Scientific and Statistical Computing, 4(3), 553–72.

Morten, M. (2013): “Temporary migration and endogenous risk sharing in village india,” Stan-
ford University.

Nagypál, É. (2007): “Learning by doing vs. learning about match quality: Can we tell them
apart?,” Review of Economic Studies, 74(2), 537–66.

Newey, W. K., and D. L. McFadden (1994): “Large sample estimation and hypothesis
testing,” in Engle and McFadden (1994), pp. 2111–2245.

Nocedal, J., and S. J. Wright (2006): Numerical Optimization. Springer, 2nd edn.

Nolan, D., and D. Pollard (1987): “U -processes: rates of convergence,” Annals of Statistics,
15(2), 780–99.

Otsu, T. (2008): “Conditional empirical likelihood estimation and inference for quantile regres-
sion models,” Journal of Econometrics, 142(1), 508–38.

Pakes, A., and D. Pollard (1989): “Simulation and the asymptotics of optimization estima-
tors,” Econometrica, 57(5), 1027–57.

Pollard, D. (1984): Convergence of Stochastic Processes. Springer, New York (USA).

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1993): Numer-
ical Recipes: the art of scientific computing. Cambridge University Press, Cambridge (UK),
2nd edn.

Robinson, P. M. (1988): “The stochastic difference between econometric statistics,” Economet-
rica, 56(3), 531–548.

Sauer, R. M., and C. Taber (2013): “Indirect inference with importance sampling,” Royal
Holloway, University of London.

Sidi, A. (2003): Practical Extrapolation Methods: Theory and Applications. Cambridge Univer-
sity Press, Cambridge (UK).

Skira, M. M. (2015): “Dynamic wage and employment effects of elder parent care,” Interna-
tional Economic Review, 56(1), 63–93.

Smith, Jr., A. A. (1990): “Three Essays on the Solution and Estimation of Dynamic Macroe-
conomic Models,” Ph.D. thesis, Duke University.

(1993): “Estimating nonlinear time-series models using simulated vector autoregres-
sions,” Journal of Applied Econometrics, 8(S1), S63–S84.

van der Vaart, A. W., and J. A. Wellner (1996): Weak Convergence and Empirical
Processes: with applications to statistics. Springer, New York (USA).

Whang, Y.-J. (2006): “Smoothed empirical likelihood methods for quantile regression models,”
Econometric Theory, 22(2), 173–205.

Ypma, J. Y. (2013): “Dynamic models of continuous and discrete outcomes; methods and
applications,” Ph.D. thesis, University College London.

31



generalized indirect inference

Table 1
Monte Carlo Results for Model 1

Mean Std. dev. σGII/σSML Time
b r b r b r (sec.)

b = 1, r = 0

SML #1 1.000 −0.002 0.0387 0.0454 — — 0.76
SML #2 1.001 −0.000 0.0373 0.0468 — — 1.53
GII #1 0.998 0.002 0.0390 0.0645 1.05 1.37 0.67
GII #2 0.993 0.001 0.0386 0.0490 1.03 1.05 0.72
GII #3 0.992 0.001 0.0393 0.0490 1.05 1.05 0.91
GII #4 0.988 0.001 0.0390 0.0485 1.05 1.04 0.99

b = 1, r = 0.4

SML #1 0.995 0.385 0.0400 0.0413 — — 0.78
SML #2 0.999 0.392 0.0390 0.0410 — — 1.54
GII #1 0.998 0.399 0.0454 0.0616 1.16 1.50 0.70
GII #2 0.993 0.396 0.0410 0.0456 1.05 1.11 0.72
GII #3 0.991 0.395 0.0417 0.0432 1.07 1.05 0.91
GII #4 0.987 0.392 0.0416 0.0432 1.07 1.05 0.97

b = 1, r = 0.85

SML #1 0.984 0.833 0.0452 0.0333 — — 0.74
SML #2 0.993 0.842 0.0432 0.0316 — — 1.47
GII #1 0.994 0.846 0.0791 0.0672 1.83 2.13 0.71
GII #2 0.991 0.845 0.0511 0.0412 1.18 1.30 0.74
GII #3 0.992 0.846 0.0492 0.0357 1.14 1.13 0.93
GII #4 0.988 0.841 0.0490 0.0357 1.13 1.13 1.00
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Table 2
Monte Carlo Results for Model 2

Mean Std. dev. σGII/σSML Time
b1 r b2 b1 r b2 b1 r b2 (sec.)

b1 = 1, r = 0, b2 = 0.2

SML #1 1.000 0.001 0.200 0.0274 0.0357 0.0355 — — — 2.47
SML #2 1.002 0.002 0.199 0.0273 0.0362 0.0365 — — — 4.89
GII #1 0.999 0.001 0.199 0.0267 0.0571 0.0437 0.98 1.58 1.20 2.72
GII #2 0.996 0.000 0.199 0.0267 0.0379 0.0379 0.98 1.05 1.04 2.80
GII #3 0.995 0.001 0.199 0.0269 0.0377 0.0376 0.99 1.04 1.03 3.66
GII #4 0.993 0.000 0.198 0.0270 0.0377 0.0375 0.99 1.04 1.03 4.06

b1 = 1, r = 0.4, b2 = 0.2

SML #1 0.994 0.379 0.214 0.0278 0.0314 0.0397 — — — 2.42
SML #2 0.999 0.389 0.206 0.0287 0.0316 0.0397 — — — 4.82
GII #1 0.997 0.397 0.198 0.0339 0.0587 0.0544 1.18 1.86 1.37 2.73
GII #2 0.994 0.396 0.198 0.0293 0.0386 0.0462 1.02 1.22 1.16 2.82
GII #3 0.993 0.396 0.197 0.0289 0.0343 0.0431 1.01 1.09 1.09 3.64
GII #4 0.991 0.395 0.196 0.0289 0.0348 0.0434 1.01 1.10 1.09 4.02

b1 = 1, r = 0.85, b2 = 0.2

SML #1 0.974 0.831 0.220 0.0321 0.0174 0.0505 — — — 2.78
SML #2 0.987 0.840 0.208 0.0327 0.0159 0.0507 — — — 5.47
GII #1 1.000 0.854 0.183 0.0952 0.0633 0.1185 2.91 3.98 2.34 3.01
GII #2 0.992 0.852 0.190 0.0417 0.0266 0.0721 1.28 1.67 1.42 2.92
GII #3 0.992 0.851 0.191 0.0383 0.0179 0.0547 1.17 1.13 1.08 3.68
GII #4 0.990 0.850 0.188 0.0379 0.0175 0.0548 1.15 1.10 1.09 4.06
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Table 3
Monte Carlo Results for Model 3

Mean Std. dev. Time
b1 r b2 b1 r b2 (sec.)

b1 = 1, r = 0, b2 = 0.2

GII #1 0.997 −0.000 0.200 0.0272 0.0532 0.0387 3.91
GII #2 0.994 −0.001 0.200 0.0271 0.0387 0.0347 4.01
GII #3 0.993 −0.001 0.199 0.0272 0.0385 0.0345 4.81
GII #4 0.991 −0.001 0.199 0.0275 0.0389 0.0347 5.38

b1 = 1, r = 0.4, b2 = 0.2

GII #1 0.994 0.397 0.198 0.0361 0.0518 0.0493 3.99
GII #2 0.991 0.397 0.197 0.0309 0.0363 0.0430 4.00
GII #3 0.990 0.396 0.196 0.0306 0.0317 0.0399 4.80
GII #4 0.987 0.395 0.196 0.0302 0.0318 0.0400 5.35

b1 = 1, r = 0.85, b2 = 0.2

GII #1 0.993 0.851 0.184 0.0936 0.0403 0.1289 4.41
GII #2 0.986 0.851 0.191 0.0546 0.0249 0.0905 4.37
GII #3 0.987 0.850 0.189 0.0430 0.0140 0.0598 4.93
GII #4 0.984 0.849 0.185 0.0411 0.0136 0.0597 5.56
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Table 4
Monte Carlo Results for Model 4

(b10 = 0, b11 = 1, b12 = 1, b20 = 0, b21 = 1, b22 = 1, c1 = 0, c2 = 1)

SML GII σGII/σSML

#1 #2 #1 #2 #3 #4 #1 #2 #3 #4

Mean
b10 0.007 0.005 0.003 0.002 0.002 0.002 — — — —
b11 1.000 1.001 0.995 0.994 0.992 0.990 — — — —
b12 1.000 1.003 0.998 0.997 0.995 0.992 — — — —
b20 −0.001 −0.003 −0.006 −0.004 −0.004 0.004 — — — —
b21 1.006 1.007 1.001 0.999 0.997 0.996 — — — —
b22 1.005 1.007 1.004 1.000 0.998 0.996 — — — —
c1 0.020 0.010 0.007 0.005 0.005 0.006 — — — —
c2 1.004 1.003 1.006 1.001 1.001 1.002 — — — —

Std. dev.
b10 0.0630 0.0628 0.0720 0.0666 0.0656 0.0665 1.15 1.06 1.04 1.06
b11 0.0686 0.0686 0.0872 0.0764 0.0741 0.0743 1.27 1.11 1.08 1.08
b12 0.0572 0.0574 0.0719 0.0667 0.0632 0.0646 1.25 1.16 1.10 1.13
b20 0.0663 0.0657 0.0745 0.0686 0.0677 0.0676 1.13 1.04 1.04 1.03
b21 0.1065 0.1050 0.1395 0.1128 0.1095 0.1099 1.33 1.07 1.04 1.05
b22 0.1190 0.1174 0.1593 0.1285 0.1249 0.1244 1.36 1.09 1.06 1.06
c1 0.1091 0.1107 0.1303 0.1276 0.1224 0.1265 1.18 1.15 1.11 1.14
c2 0.1352 0.1325 0.1991 0.1509 0.1439 0.1421 1.50 1.14 1.09 1.07

Time 11.5 23.1 7.1 10.4 16.4 34.1 — — — —
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Table 5
Monte Carlo Results for Model 4

(b10 = 0, b11 = 1, b12 = 1, b20 = 0, b21 = 1, b22 = 1, c1 = 1.33, c2 = 1)

SML GII σGII/σSML

#1 #2 #1 #2 #3 #4 #1 #2 #3 #4

Mean
b10 −0.031 −0.017 0.000 −0.001 −0.000 −0.001 — — — —
b11 0.998 1.000 0.993 0.993 0.991 0.989 — — — —
b12 1.016 1.011 0.998 0.998 0.996 0.994 — — — —
b20 −0.011 −0.010 −0.011 −0.007 −0.007 −0.006 — — — —
b21 0.992 0.999 1.000 0.997 0.995 0.991 — — — —
b22 1.004 1.008 1.006 1.001 0.999 0.995 — — — —
c1 1.269 1.306 1.347 1.338 1.335 1.330 — — — —
c2 1.025 1.011 0.993 0.993 0.995 0.997 — — — —

Std. dev.
b10 0.0693 0.0698 0.0789 0.0776 0.0758 0.0757 1.13 1.11 1.09 1.08
b11 0.0587 0.0588 0.0696 0.0658 0.0632 0.0636 1.18 1.12 1.07 1.08
b12 0.0745 0.0737 0.0883 0.0801 0.0781 0.0782 1.20 1.09 1.06 1.06
b20 0.0766 0.0764 0.0900 0.0801 0.0786 0.0780 1.18 1.05 1.03 1.02
b21 0.0884 0.0886 0.1140 0.0969 0.0952 0.0943 1.29 1.09 1.07 1.06
b22 0.1106 0.1103 0.1471 0.1204 0.1176 0.1153 1.34 1.09 1.07 1.05
c1 0.1641 0.1707 0.2454 0.2152 0.2049 0.2041 1.44 1.26 1.20 1.20
c2 0.1229 0.1206 0.1599 0.1387 0.1338 0.1311 1.33 1.15 1.11 1.09

Time 12.7 25.6 7.4 10.8 17.1 34.4 — — — —
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A Details of optimization routines

Both line-search methods (Gauss-Newton and quasi-Newton) involve the use of a positive definite
Hessian ∆(s) in the approximating model (5.14), and so the problem solved at step s+ 1 reduces
to that of “approximately” solving

min
α∈R

Q(β(s) + αp(s)), (A.1)

where p(s) := −∆−1
(s)∇(s). We do not require that α(s) solve (A.1) exactly; we shall require only

that it satisfy the strong Wolfe conditions,

Q(β(s) + α(s)p(s)) ≤ Q(β(s)) + c1α(s)∇T
(s)p(s)

|Q̇(β(s) + α(s)p(s))
Tp(s)| ≤ c2|∇T

(s)p(s)|

for 0 < c1 < c2 < 1, where Q̇ := ∂βQ (cf. (3.7) in Nocedal and Wright, 2006). For some such
α(s), we set β(s+1) = β(s) + α(s)p(s). For the Hessians ∆(s), the Gauss-Newton method is only
applicable to criteria of the form Q(β) = ‖g(β)‖2W , and uses

∇(s) := −(GT
(s)WG(s))

TGT
(s)Wg(β(s)),

where G(s) := [∂βg(β(s))]T. The Quasi-Newton method with BFGS updating starts with some
initial positive definite ∆(0), and updates it according to,

∆(s+1) = ∆(s) −
∆(s)x(s)x

T
(s)∆(s)

xT(s)∆(s)x(s)

+
d(s)d

T
(s)

dT(s)x(s)

,

where x(s) := α(s)p(s) and d(s) = ∇(s+1) −∇(s) (cf. (6.19) in Nocedal and Wright, 2006).
The trust region method considered here sets ∆(s) = ∂2

βQ(β(s)), which need not be positive
definite. The procedure then attempts to approximately minimize (5.14), subject to the con-
straint that ‖β‖ ≤ δ(s), where δ(s) defines the size of the trust region, which is adjusted at each
iteration depending on the value of

ρ(s) :=
Q(β(s))−Q(β(s+1)

f(s)(0)− f(s)(β(s+1))
,

which measures the proximity of the true reduction in Q at step s, with that predicted by the
approximating model (5.14); the adjustment is made in accordance with Algorithm 4.2 in Moré
and Sorensen (1983). Various algorithms are available for approximately solving (5.14) in this
case, but we shall assume that Algorithm 3.14 from that paper is used.

B Proofs of theorems under high-level assumptions

Assumptions R and H are assumed to hold throughout this section, including H5 with l = 0.
Whenever we require H5 to hold for some l ∈ {1, 2}, this will be explicitly noted. The relationships
between the theorems and the auxiliary results (Propositions B.1–B.5) is illustrated in Figure B.1.
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Figure B.1: Proofs of theorems

B.1 Preliminary results

Let βn := β0 + n−1/2δn for a (possibly) random δn = op(n
1/2). Define

∆k
n(β) := n1/2[θ

k
n(β, λn)− θkn(β0, λn)]

and recall that Gn(β) := ∂βθ
k
n(β, λn) and G := [∂βθ(β0, 0)]T. As in R5, λn = op(1) is an

F-measurable sequence. As per R6, we fix the order of jackknifing k ∈ {0, . . . , k0} such that
n1/2λk+1

n = op(1). Let Ln(θ) := Ln(y, x; θ) and L(θ) := ELn(θ). L̇n and L̈n respectively denote
the gradient and Hessian of Ln, with H := EL̈n(θ) = L(θ); N(θ, ε) denotes an open ball of radius
ε, centered at θ.

Proposition B.1.

(i) supβ∈B‖θ
k
n(β, λn)− θk(β, λn)‖ p→ 0;

(ii) θk(β0, λn)− θ(β0, 0) = Op(λ
k+1
n );

(iii) ∆k
n(βn) = Gδn + op(1 + ‖δn‖);

Proposition B.2. For V = (1 + 1
M )(Σ− R),

Zn := n1/2[θ
k
n(β0, λn)− θk(β0, λn)]− n1/2(θ̂n − θ0) N [0, H−1V H−1]. (B.1)

Proposition B.3.

(i) Qenk(β, λn)
p→ Qek(β, 0) =: Qe(β) uniformly on B;

(ii) for every ε > 0, infβ∈B\N(β0,ε)Q
e(β) > Q(β0); and

Proposition B.4. If H5 holds for l = 1, then

(i) Gn(βn)
p→ G; and

if H5 holds for l ∈ {1, 2} then, uniformly on B,

(ii) supβ∈B‖∂lβθ
k
n(β, λn)− ∂lβθ(β, 0)‖ = op(1); and
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(iii) ∂lβQ
e
nk(β, λn)

p→ ∂lβQ
e
k(β, 0) = ∂lβQ(β).

For the next result, let U : Γ→ R be twice continuously differentiable with a global minimum
at γ∗. Let RU := {γ ∈ Γ | ‖∂γU(γ)‖ < ε} for some ε > 0, and SU := {γ ∈ RU | %min[∂2

γU(γ)] ≥
0}. Applying a routine r ∈ {GN,QN,TR} to U yields the iterates {γ(s)}; let

γ(γ(0), r) :=

γ(s∗) if γ(s) ∈ RU for some s ∈ N

γ(0) otherwise,

where s∗ denotes the smallest s for which γ(s) ∈ RU . When r = TR, the definition of γ(γ(0),TR)

is analogous, but with SU in place of RU . In the statement of the next result, Γ0 := {γ ∈
Γ | U(γ) ≤ U(γ1)} for some γ1 ∈ Γ, and is a compact set with γ∗ ∈ int Γ0. For a function
m : Γ 7→ Rdm , let M(γ) := [∂γm(γ)]T denote its Jacobian.

Proposition B.5. Let r ∈ {QN,TR}, and suppose that in addition to the preceding, either

(i) r = GN and U(γ) = ‖m(γ)‖2, with infγ∈Γ0 σmin[M(γ)] > 0; or

(ii) r = QN and U is strictly convex on Γ0;

then γ(γ(0), r) ∈ RU ∩ Γ0 for all γ(0) ∈ Γ0. Alternatively, if r = TR, then γ(γ(0), r) ∈ SU ∩ Γ0

for all γ(0) ∈ Γ0.

B.2 Proofs of Theorems 5.1–5.5

Throughout this section, βn := β0+n−1/2δn for a (possibly) random δn = op(n
1/2). Let QW

n (β) :=

QW
nk(β, λn), QLR

n (β) := QLR
nk (β, λn), and θn(β) := θ

k
n(β, λn).

Proof of Theorem 5.1. We first consider the Wald estimator. We have

n[QW
n (βn)−QW

n (β0)] = 2n1/2[θ
k
n(β0)− θ̂n]TWn∆k

n(βn) + ∆k
n(βn)TWn∆k

n(βn).

For Zn as defined in (B.1), we see that by Proposition B.1(ii) and R6

n1/2[θ
k
n(β0)− θ̂] = Zn + n1/2[θk(β0, λn)− θ0] = Zn + op(1), (B.2)

whence by Proposition B.1(iii),

n[QW
n (βn)−QW

n (β0)] = 2ZT
nWGδn + δTnG

TWGδn + op(1 + ‖δn‖+ ‖δn‖2). (B.3)

Now consider the LR estimator. Twice continuous differentiability of the likelihood yields

n[QLR
n (β)−QLR

n (β0)] = −n[Ln(θ
k
n(βn))− Ln(θ

k
n(β0))]

= −n1/2L̇n(θ
k
n(β0))T∆k

n(βn)− 1

2
∆k
n(βn)TL̈n(θ

k
n(β0))∆k

n(βn)

+ op(‖∆k
n(βn)‖2)
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where by Proposition B.1(ii) and H4,

n1/2L̇n[θ
k
n(β0)] = n1/2L̇n(θ0) + L̈n(θ0)n1/2[θ

k
n(β0)− θ0] + op(1)

= H[Zn + n1/2(θk(β0, λn)− θ0)]

= HZn + op(1) (B.4)

for Zn as in (B.1). Thus by Proposition B.1(iii),

n[QLR
n (βn)−QLR

n (βn)] = −ZT
nHGδn −

1

2
δTnG

THGδn + op(1 + ‖δn‖+ ‖δn‖2). (B.5)

Consistency of β̂enk follows from parts (i) and (ii) of Proposition B.3 and Corollary 3.2.3 in
van der Vaart and Wellner (1996). Thus by applying Theorem 3.2.16 in van der Vaart and
Wellner (1996) – or more precisely, the arguments following their (3.2.17) – to (B.3) and (B.5),
we have

n1/2(β̂enk − β0) = −(GTUeG)−1GTUeZn + op(1) (B.6)

for Ue as in (5.11); the result now follows by Proposition B.2.

Proof of Theorem 5.2. We first note that, in consequence of H3 and Theorem 5.1, β̂enk
p→ β0,

θ̂n
p→ θ0, and θ̂mn := θ̂mn (βenk, λn)

p→ θ0. Part (i) then follows from R2, H2, and Lemma 2.4 in
Newey and McFadden (1994). Defining ˙̀m

i (θ0) := ˙̀m
i (β0, 0; θ0) for m ∈ {1, . . . ,M} and

ςTi :=
[

˙̀0
i (θ0)T ˙̀1

i (β0, 0; θ0)T · · · ˙̀M
i (β0, 0; θ0)T

]
,

H2 and H4 further imply that

AT

(
1

n

n∑
i=1

snis
T
ni

)
A

p→ AT(EςiςTi )A = AT


Σ R · · · R

R Σ · · · R
...

...
. . .

...
R R · · · Σ

A = V.

Part (iii) is an immediate consequence of Proposition B.4(i).

Proof of Theorem 5.3. We first prove part (i). Let Q̇en(β) := ∂βQ
e
n(β) and Q̇e(β) := ∂βQ

e(β, 0).
Since β0 ∈ int B and Qen(β)

p→ Q(β) uniformly on B, the global minimum of Qen is interior to
B, w.p.a.1., whence Renk is non-empty w.p.a.1. Letting {β̃n} denote a (random) sequence with
β̃n ∈ Renk for all n sufficiently large, we have by Proposition B.4(iii) that

Q̇e(β̃n) = Q̇en(β̃n) + op(1) = op(1 + cn) = op(1). (B.7)

Since Q̇e is continuous and B compact, it follows that d(β̃n, R
e)

p→ 0, whence dL(Renk, R
e)

p→ 0.
We now turn to part (ii). Recall βn = β0 + n1/2δn for some δn = op(n

1/2). For the Wald
criterion, taking δn such that βn ∈ RW

nk gives

op(1) = n1/2Q̇W
n (βn)T = 2[n1/2(θ

k
n(βn)− θ̂n)]TWGn(βn)
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where, for Zn as in (B.1),

n1/2(θ
k
n(βn)− θ̂n) = n1/2(θ

k
n(β0)− θ̂n) + ∆k

n(βn) = Zn +Gδn + op(1 + ‖δn‖)

by (B.2), R6, and parts (ii) and (iii) of Proposition B.1. Hence, using Proposition B.4(i),

op(1) = 2[δTnG
TWG+ ZT

nWG] + op(1 + ‖δn‖). (B.8)

Similarly, for the LR criterion, taking βn ∈ RLR
nk in this case gives

op(1) = n1/2∂βQ
LR
n (βn)T = n1/2L̇n[θ

k
n(βn)]TGn(βn)

where by the twice continuous differentiability of the likelihood, Proposition B.1(iii) and (B.4),

n1/2L̇n[θ
k
n(βn)] = n1/2L̇n[θ

k
n(β0)] + L̈n(θ

k
n(β0))∆k

n(βn) + op(‖∆k
n(βn)‖)

= HZn +HGδn + op(1 + ‖δn‖).

Thus by Proposition B.4(i),

op(1) = δTnG
THG+ ZT

nHG+ op(1 + ‖δn‖). (B.9)

By specializing (B.8) and (B.9) to the case where δn = n1/2(β̃enk − β0), for β̃enk satisfying the
requirements of part (ii) of the theorem, we see that for Ue as in (5.11),

n1/2(β̃enk − β0) = −(GTUeG)−1GTUeZn + op(1) = n1/2(β̂enk − β0) + op(1)

for e ∈ {W,LR}, in consequence of (B.6).
Finally, we turn to part (iii). Let β̂n denote the minimizer of Qen(β), which lies in Rnk

w.p.a.1., by part (i), and β̃n another (random) sequence satisfying the requirements of part (iii).
By Proposition B.3 and the consistency of β̂n (Theorem 5.1),

Qe(β0) + op(1) = Qen(β̂n) + op(1) ≥ Qen(β̃n) ≥ Qen(β̂n) = Qe(β0) + op(1).

Thus Qe(β̃n) = Qen(β̃n) + op(1)
p→ Qe(β0), also by Proposition B.3; whence β̃n

p→ β0, since Qe

has a well-separated minimum at β0.

Proof of Theorem 5.4. Let Q̈en(β) := ∂2
βQ

e
n(β), Q̈e(β) := ∂2

βQ
e(β, 0), and {β̃n} be a (random)

sequence with β̃n ∈ Senk for all n sufficiently large. Then by Proposition B.4(iii),

P{%min[Q̈e(β̃n)] < −ε} = P{%min[Q̈en(β̃n)] + op(1) < −ε} ≤ P{op(1) < −ε} → 0

for any ε > 0. Hence by Theorem 5.3(i), the continuity of Q̇e and Q̈e, d(β̃n, S
e)

p→ 0. Part (ii)
follows immediately from the corresponding part of Theorem 5.3 and the fact that Senk ⊆ Renk.

Proof of Theorem 5.5. For each r ∈ {GN,QN,TR}, suppose that there exists a B0 ⊆ B such that
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U = Qen(β) := Qenk(β, λn) satisfies the corresponding part of Proposition B.5, w.p.a.1. Then

P{βenk(β(0), r) ∈ Renk ∩ B0, ∀β(0) ∈ B0}
p→ 0

for r ∈ {GN,QN}, and also for r = TR with Senk in place of Renk; we may take cn = op(n
−1/2)

in the definition Renk. Further, Re ∩ B0 = {β0} under GN and QN, while Se ∩ B0 = {β0} under
TR. Thus, when r ∈ {GN,QN} we have w.p.a.1,

sup
β(0)∈B0

d(β
e
nk(β

(0), r), β0) ≤ dL(Renk ∩ B0, {β0}) = op(n
−1/2)

with the final estimate following by Theorem 5.3. When r = TR, the preceding holds with Senk
in place of Renk, in this case via Theorem 5.4.

It thus remains to verify that the requirements of Proposition B.5 hold w.p.a.1. When
r = GN, it follows from Proposition B.4(i), the continuity of σmin(·) and GN that

0 < inf
β∈B0

σmin[G(β)] = inf
β∈B0

σmin[Gn(β)] + op(1),

whence infβ∈B0 σmin[Gn(β)] > 0 w.p.a.1. When r = QN, it follows from Proposition B.4(iii) and
QN that

0 < inf
β∈B0

%min[∂2
βQ

e(β)] = inf
β∈B0

%min[∂2
βQ

e
n(β)] + op(1)

whence Qen is strictly convex on B0 w.p.a.1. When r = TR, there are no additional conditions
to verify.

B.3 Proofs of Propositions B.1–B.5

Proof of Proposition B.1. Part (i) follows by H3 and the continuous mapping theorem. Part (ii)
is immediate from (4.3). For part (iii), we note that for βn = β0 + n1/2δn with δn = op(n

1/2) as
above,

∆k
n(βn) = n1/2[θ

k
n(βn, λn)− θk(βn, λn)]

− n1/2[θ
k
n(β0, λn)− θk(β0, λn)] + n1/2[θk(βn, λn)− θk(β0, λn)].

Since θkn is a linear combination of the θ̂mn ’s, it is clear from H3 that the first two terms con-
verge jointly in distribution to identical limits (since βn

p→ β0). For the final term, continuous
differentiability of θk (R3 above) entails that

n1/2[θk(βn, λn)− θk(β0, λn)] = [∂βθ
k(β0, λn)]T(βn − β0) + op(‖βn − β0‖)

= Gδn + op(1 + ‖δn‖).

Proof of Proposition B.2. Note first that
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n1/2[θ
k
n(β0, λn)− θk(β0, λn)] =

k∑
r=0

γrk · n1/2[θn(β0, δ
rλn)− θ(β0, δ

rλn)]

=
1

M

M∑
m=1

k∑
r=0

γrkψ
m
n (β0, δ

rλn) 
1

M

M∑
m=1

ψm(β0, 0),

by (4.3), (4.4), H3 and
∑k

r=0 γrk = 1. By H3, this holds jointly with

n1/2(θ̂n − θ0) ψ0(β0, 0).

Since H4 implies that ψm(β0, 0) = H−1φm, the limiting variance of Zn is equal to

var

[
ψ0(β0, 0)− 1

M

M∑
m=1

ψm(β0, 0)

]
= H−1 var

[
φ0 − 1

M

M∑
m=1

φm

]
H−1 = H−1V H−1

where the final equality follows from H4 and straightforward calculations.

Proof of Proposition B.3. We first prove part (i). For the Wald estimator, this is immediate
from Proposition B.1(i). For the LR estimator, it follows from Proposition B.1(i), H2 and the
continuous mapping theorem (arguing as on pp. 144f. of Billingsley, 1968), that

QLR
nk (β) = (Ln ◦ θ

k
n)(β, λn)

p→ (L ◦ θk)(β, 0) = QLR(β),

uniformly on B.
For part (ii), we note that β 7→ θk(β, 0) is continuous by R3, while the continuity of L is

implied by H2, since Ln is continuous. Thus Qe is continuous for e ∈ {W,LR}, and by R4 is
uniquely minimized at β0. Hence β 7→ Qe(β) has a well-separated minimum, which by R1 is
interior to B.

Proof of Proposition B.4. Part (ii) is immediate from H5, (4.4) and the continuous mapping theo-
rem; it further implies part (i). For part (iii), recall Q̇en(β) = ∂βQ

e
n(β), and Gn(β) = [∂βθ

k
n(β)]T.

Then we have

Q̇W
n (β) = Gn(β)TWn[θn(β)− θ̂n] Q̇LR

n (β) = Gn(β)TL̇n[θ
k
n(β)].

Part (i), and similar arguments as were used are used in the proof of part (i) of Proposition B.3,
yield that Q̇en(β)

p→ ∂βQ
e(β, 0) =: Q̇e(β) uniformly on B. The proof that the second derivatives

converge uniformly is analogous.

Proof of Proposition B.5. For r = GN, the result follows by Theorem 10.1 in Nocedal and Wright
(2006); for r = QN, by their Theorem 6.5; and for r = TR, by Theorem 4.13 in Moré and Sorensen
(1983).
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Figure C.1: Proof of Proposition 5.1

C Sufficiency of the low-level assumptions

We shall henceforth maintain both Assumptions L and R, and address the question of whether
these are sufficient for Assumption H; that is, we shall prove Proposition 5.1. The main steps
leading to the proof are displayed in Figure C.1.

Recall that, as per L8, the auxiliary model is the Gaussian SUR displayed in (5.1) above. For
simplicity, we shall consider only the case where Σξ is unrestricted, but our arguments extend
straightforwardly to the case where Σξ is block diagonal (as would typically be imposed when
T > 1). Recall that θ collects the elements of α and Σ−1

ξ . Fix an m ∈ {0, 1, . . .M}, and define

ξri(α) := yr(zi;β, λ)− αT
xrΠxrx(zi)− αT

yrΠyry(zi;β, λ),

temporarily suppressing the dependence of y (and hence ξri) onm. Collecting ξi := (ξ1i, . . . , ξdyi)
T,

the average log-likelihood of the auxiliary model can be written as

Ln(y, x; θ) =
1

n

n∑
i=1

`(yi, xi; θ) = −1

2
log 2π − 1

2
log det Σξ −

1

2
tr

[
Σ−1
ξ

1

n

n∑
i=1

ξi(α)ξi(α)T

]
.

Deduce that there are functions L and l, which are three times continuously differentiable in
both arguments (at least on int Θ), such that

Ln(y, x; θ) = L(Tn; θ) `(yi, xi; θ) = l(ti; θ) (C.1)

where

tmi (β, λ) =

[
y(zmi ;β, λ)

x(zmi )

] [
y(zmi ;β, λ)T x(zmi )T

]
and Tmn := vech(T mn ), for

T mn (β, λ) :=
1

n

n∑
i=1

tmi (β, λ)tmi (β, λ)T. (C.2)

Further, direct calculation gives

∂αxr`i(θ) =

dy∑
s=1

σrsξsi(α)Πxrx(zi) ∂αyr`i(θ) =

dy∑
s=1

σrsξsi(α)Πyry(zi;β, λ) (C.3)

and
∂σrs`i(θ) =

1

2
σrs −

1

2
ξri(α)ξsi(α). (C.4)
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Since the elements of the score vector ˙̀
i(θ) = ∂θ`i(θ) necessarily take one of the forms displayed

in (C.3) or (C.4), we may conclude that, for any compact subset A ⊂ Θ, there exists a CA such
that

E sup
θ∈A
‖ ˙̀
i(θ)‖2 ≤ CAE‖zi‖4 <∞ (C.5)

with the second inequality following from L6.
Regarding the maximum likelihood estimator (MLE), we note that the concentrated average

log-likelihood is given by

Ln(y, x;α) = −dy
2

(log 2π + 1)− 1

2
log det

[
1

n

n∑
i=1

ξi(α)ξi(α)T

]
= Lc(Tn;α)

which is three times continuously differentiable in α and Tn, so long as Tn is non-singular. By
the implicit function theorem, it follows that α̂n may be regarded as a smooth function of Tn.
Noting the usual formula for the ML estimates of Σξ, this holds also for the components of θ
referring to Σ−1

ξ , whence
θ̂mn (β, λ) = h[Tmn (β, λ)] (C.6)

for some h that is twice continuously differentiable on the set where T mn has full rank. Under
L7, this occurs uniformly on B × Λ w.p.a.1., and so to avoid tiresome circumlocution, we shall
simply treat h as if it were everywhere twice continuously differentiable throughout the sequel.
Letting T (β, λ) := ET 0

n(β, λ), we note that the population binding function is given by

θ(β, λ) = h[T (β, λ)]. (C.7)

Define ϕmn (β, λ) := n1/2[Tmn (β, λ) − T (β, λ)], and let [ϕm(β, λ)]Mm=0 denote a vector-valued
continuous Gaussian process on B× Λ with covariance kernel

cov(ϕm1(β1, λ1), ϕm2(β2, λ2)) = cov(Tm1
n (β1, λ1), Tm2

n (β2, λ2)).

Note that L6, in particular the requirement that E‖zi‖4 <∞, ensures that this covariance exists
and is finite.

Lemma C.1.

(i) ϕmn (β, λ) ϕm(β, λ) in `∞(B× Λ), jointly for m ∈ {0, . . . ,M}; and

(ii) if (5.7) holds for l′ = l ∈ {1, 2}, then

sup
β∈B
‖∂lβTmn (β, λn)− ∂lβT (β, 0)‖ = op(1) (C.8)

By an application of the delta method, we thus have

Corollary C.1. For ḣ(β, λ) := ∂βh[T (β, λ)],

ψmn (β, λ) := n1/2[θ̂mn (β, λ)− θ(β, λ)] ḣ(β, λ)ϕm(β, λ) =: ψm(β, λ) (C.9)

in `∞(B× Λ), jointly for m ∈ {0, . . . ,M}.
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The proof of Lemma C.1 appears in Appendix D.

Proof of Proposition 5.1. H1 follows from the twice continuous differentiability of L in (C.1).
The first part of H2 is an immediate consequence of Lemma C.1(i) and the smoothness of L;
the second part is implied by (C.5) and Lemma 2.4 in Newey and McFadden (1994). H3 follows
from Corollary C.1, and immediately entails that, for βn = β0 + op(1) and m ∈ {1, . . . ,M},
ψmn (βn, λn) = ψmn (β0, 0) + op(1), where

ψmn (β0, 0) = n1/2[θ̂mn (β0, 0)− θ(β0, 0)] = −H−1 1

n1/2

n∑
i=1

˙̀m
i (β0, 0; θ0) + op(1)

for m ∈ {0, 1, . . . ,M}; the final equality follows from the consistency of θ̂n (as implied by
Corollary C.1) and the arguments used to prove Theorem 3.1 in Newey and McFadden (1994).
By definition, φmn := n−1/2

∑n
i=1

˙̀m
i (β0, 0; θ0) whereupon the rest of H4 follows by the central

limit theorem, in view of L1 and (C.5). Finally, H5 follows from (C.6), (C.7), Lemma C.1(ii) and
the chain rule.

D Proof of Lemma C.1

For the purposes of the proofs undertaken in this section, we may suppose without loss of
generality that D̃ = Idy in L2, γ(β) = β in L3, and ‖K‖∞ ≤ 1. Recalling (5.3) above, we have

yr(β, λ) = ωr(β) ·
∏
s∈Sr

Kλ[νs(β)] =: ωr(β) ·K(Sr;β, λ). (D.1)

Let K̇ and K̈ respectively denote the first and second derivatives of K. For future reference, we
here note that

∂βyr(β, λ) = zwr ·K(Sr;β, λ) + λ−1wr(β)
∑
s∈Sr

zvs ·Ks(Sr;β, λ) (D.2)

=: Dr1(β, λ) + λ−1Dr2(β, λ)

where zvr := ΠT
vrz, zwr := ΠT

wrz and Ks(S;β, λ) := K̇λ[vs(β)] ·K(S\{s};β, λ); and

∂2
βyr(β, λ) = λ−1

∑
s∈Sr

[zwrz
T
vs + zvsz

T
wr] ·Ks(Sr;β, λ) (D.3)

+ λ−2wr(β)
∑
s∈Sr

∑
t∈Sr

zvsz
T
vt ·Kst(Sr;β, λ)

=: λ−1Hr1(β, λ) + λ−2Hr2(β, λ)

for

Kst(S;β, λ) :=

K̈λ[vs(β)] ·K(S\{s};β, λ) if s = t,

K̇λ[vs(β)] · K̇λ[vt(β)] ·K(S\{s, t};β, λ) if s 6= t.
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D.1 Proof of part (ii)

In view of (C.2), the scalar elements of Tn(β, λ) that depend on (β, λ) take either of the following
forms:

τn1(β, λ) := En[yr(β, λ)ys(β, λ)] τn2(β, λ) := En[yr(β, λ)xt] (D.4)

for some r, s ∈ {1, . . . , dy}, or t ∈ {1, . . . , dx}, where Enf(β, λ) := 1
n

∑n
i=1 f(zi;β, λ). (Through-

out the following, all statements involving r, s and t should be interpreted as holding for all
possible values of these indices.) For k ∈ {1, 2} and l ∈ {0, 1, 2}, define τk(β, λ) := Eτnk(β, λ) –
a typical scalar element of T (β, λ) – and τ [l]

k (β, λ) := E∂lβτnk(β, λ). Thus part (ii) of Lemma C.1
will follow once we have shown that

∂lβτnk(β, λn) = τ
[l]
k (β, λn) + op(1) = ∂lβτk(β, 0) + op(1) (D.5)

uniformly in β ∈ B. The second equality in (D.5) is implied by

Lemma D.1. τ [l]
k (β, λn)

p→ ∂lβτk(β, 0), uniformly on B, for k ∈ {1, 2} and l ∈ {0, 1, 2}.

The proof appears at the end of this section. We turn next to the first equality in (D.5).
We require the following definitions. A function F : Z 7→ R is an envelope for the class
F if supf∈F |f(z)| ≤ F (z). For a probability measure Q and a p ∈ (1,∞), let ‖f‖p,Q :=

(EQ|f(zi)|p)1/p. F is Euclidean for the envelope F if

sup
Q
N(ε‖F‖1,Q,F , L1,Q) ≤ C1ε

−C2

for some C1 and C2 (depending on F), where N(ε,F , L1,Q) denotes the minimum number of
L1,Q-balls of diameter ε needed to cover F . For a parametrized family of functions g(β, λ) =

g(z;β, λ) : Z 7→ Rd1×d2 , let F(g) := {g(β, λ) | (β, λ) ∈ B × Λ}. Since B is compact, we may
suppose without loss of generality that B ⊆ {β ∈ Rdβ | ‖β‖ ≤ 1}, whence recalling (5.2) and
(5.4) above,

|wr(z;β)| ≤Wr ≤

‖z‖ if r ∈ {1, . . . dw}

1 if r ∈ {dw + 1, . . . dy}.

Thus by Lemma 22 in Nolan and Pollard (1987)

D1 for L ∈ {K,Ks,Kst}, s, t ∈ {1, . . . , dy} and S ⊆ {1, . . . , dv}, the class

F(L,S) := {L(S;β, λ) | (β, λ) ∈ B× Λ}

is Euclidean with constant envelope; and

D2 for r ∈ {1, . . . , dy}, F(wr) is Euclidean for Wr.

It therefore follows by a slight adaptation of the proof of Theorem 9.15 in Kosorok (2008) that

D3 F(yr) is Euclidean for Wr;

D4 F(yrDs1) and F(yrDs2) are Euclidean for WrWs‖z‖
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D5 F(xtDs1) and F(xtDs2) are Euclidean for Ws‖z‖2;

D6 F(Ds1D
T
r1), F(Ds1D

T
r2), F(Ds2D

T
r1) and F(Ds2D

T
r2) are Euclidean for WrWs‖z‖2;

D7 F(ysHr1) and F(ysHr2) are Euclidean for WrWs‖z‖2; and

D8 F(xtHr1) and F(xtHr2) are Euclidean for Ws‖z‖3.

Let µnf := 1
n

∑n
i=1[f(zi) − Ef(zi)]. Using the preceding facts, and the uniform law of large

numbers given as Proposition E.1 below, we may prove

Lemma D.2. The convergence

sup
β∈B

µn|∂lβ[ys(β, λn)yr(β, λn)]|+ sup
β∈B

µn|xt∂lβyr(β, λn)| = op(1). (D.6)

holds for l = 0, and also for l ∈ {1, 2} if (5.7) holds with l′ = l.

The first equality in (C.8) now follows, and thus part (ii) of Lemma C.1 is proved.

Proof of Lemma D.1. Suppose l = 2; the proof when l = 1 is analogous (and is trivial when
l = 0). Noting that

∂2
β(yrys) = ys∂

2
βyr + (∂βyr)(∂βys)

T + (∂βys)(∂βyr)
T + yr∂

2
βys, (D.7)

it follows from (D.2), (D.3), D6 and D7 that for every λ ∈ (0, 1],

‖∂2
β(yrys)‖ . λ−2WrWs(‖z‖2 ∨ 1),

which does not depend on β, and is integrable by L6. (Here a . b denotes that a ≤ Cb for
some constant C not depending on b.) Thus by the dominated derivatives theorem, the second
equality in

τ
[2]
1 (β, λ) = E∂2

βτn1(β, λ) = ∂2
βEτn1(β, λ) = ∂2

βτ1(β, λ)

holds for every λ ∈ (0, 1]; the other equalities follow from the definitions of τ [l]
k and τk. Deduce

that, so long as λn > 0 (as per the requirements of Proposition 5.1 above),

τ
[2]
1 (β, λn) = ∂2

βτ1(β, λn)
p→ ∂2

βτ1(β, 0)

by the uniform continuity of ∂2
βτ1 on B× Λ. A similar reasoning – but now using D8 – gives the

same result for τ [2]
2 .

The proof of Lemma D.2 requires the following result. Let Gω,x denote the σ-field generated
by ηω(zi) and x(zi), and let ην denote those elements of η that are not present in ηω. Recall that
ην ⊥⊥ Gω,x.

Lemma D.3. For every p ∈ {0, 1, 2}, s, t ∈ {1, . . . , dv}, S ⊆ {1, . . . , dv} and L ∈ {Ks,Kst}

E[‖zνs‖p‖zνt‖pL(S;β, λ)2 | Gω,x] . λE[‖zνs‖p‖zνt‖p | Gω,x]. (D.8)
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Proof. Note that for any L ∈ {Ks,Kst},

L(S;β, λ) . Lλ[νs(β)]

where L(x) = max{|K̇(x)|, |K̈(x)|}. Let d denote the dimensionality of ην , and fix a β ∈ B. By
L4 and L5, there is a k ∈ {1, . . . d}, possibly depending on β, and an ε > 0 which does not, such
that

νs(β) = ν∗s (β) + β∗kηνk

with |β∗k| ≥ ε and ν∗s (β) ⊥⊥ ηνk. Let G∗ω,x := Gω,x ∨ σ({ηνl}l 6=k), so that ν∗s (β) is G∗ω,x-measurable,
and let fk denote the density of ηνk. Then for any q ∈ {0, . . . , 4},

E
[
|ηνk|qL(S;β, λ)2 | G∗ω,x

]
. E

[
|ηνk|qL2

λ(ν∗s (β) + β∗kηνk) | G∗ω,x
]

=

ˆ
R
|u|qL2

λ(ν∗s (β) + β∗ku)fk(u) du

. (β∗k)−1λ

ˆ
R
L2(u) du · sup

u∈R
|u|qfk(u)

. ε−1λ, (D.9)

since supu∈R|u|qfk(u) < ∞ under L4. Finally, we may partition zνs = (z∗Tνs , ηνk)
T and zνt =

(z∗Tνt , ηνk)
T, with the possibility that zνs = z∗νs and zνt = z∗νt. Then by (D.9),

E
[
‖zνs‖p‖zνt‖pL(S;β, λ)2 | G∗ω,x

]
. λ‖z∗νs‖p‖z∗νt‖p ≤ λ‖zνs‖p‖zνt‖p.

The result now follows by the law of iterated expectations.

Proof of Lemma D.2. We shall only provide the proof for first term on the left side of (D.6),
when l = 2; the proof in all other cases are analogous, requiring appeal only to Proposition E.1
(or Theorem 2.4.3 in van der Vaart and Wellner, 1996, when l = 0) and the appropriate parts of
D3–D8.

Recalling the decomposition of ∂2
β(yrys) given in (D.7) above, we are led to consider

(∂βyr)(∂βys)
T = Ds1D

T
r1 + λ−1Ds2D

T
r1 + λ−1Ds1D

T
r2 + λ−2Ds2D

T
r2 (D.10)

and
ys∂

2
βyr = λ−1ysHr1 + λ−2ysHr2. (D.11)

Note that by Lemma D.3, and L6

E‖ysHr2‖2 . E

[
|ωs(β)|2|ωr(β)|2

∑
s∈Sr

∑
t∈Sr

E
[
‖zvs‖2‖zvt‖2|Kst(Sr;β, λ)|2 | Gω,x

]]

. λE

[
W 2
sW

2
r

∑
s∈Sr

∑
t∈Sr

E‖zvs‖2‖zvt‖2
]

. λ

and analogously for each of Hr1, Ds1D
T
r1, Ds2D

T
r1, Ds1D

T
r2 and Ds2D

T
r2. By D6 and D7, the classes
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formed from these parametrized functions are Euclidean, with envelopes that are p0-integrable
under L6 (p0 ≥ 2).

Application of Proposition E.1 to each of the terms in D6 and D7, with λ playing the role of
δ−1 there, thus yields the result. Negligibility of the final terms in (D.10) and (D.11) entail the
most stringent conditions on the rate at which λn may shrink to zero, due to the multiplication
of these by λ−2.

D.2 Proof of part (i)

The typical scalar elements of Tn are as displayed in (D.4) above, i.e. they are averages of random
functions of the form ζ1(β, λ) := yr(β, λ)ys(β, λ) or ζ2(β, λ) := xtyr(β, λ), for r, s ∈ {1, . . . , dy}
and t ∈ {1, . . . , dx}. It follows from D3 that F(ζ1) and F(ζ2) are Euclidean, with envelopes
F1 := WrWs and F2 := ‖z‖Wr respectively. Since both envelopes are square integrable under L6,
we have

sup
Q
N(ε‖Fk‖2,Q,F(ζk), L2,Q) ≤ C ′1ε−C

′
2

for k ∈ {1, 2}. Hence (C.9) follows by Theorem 2.5.2 in van der Vaart and Wellner (1996).

E A uniform-in-bandwidth law of large numbers

This section provides a uniform law of large numbers (ULLN) for certain classes of parametrized
functions, broad enough to cover products involving Kλ[νs(β)], and such generalizations as ap-
pear in Lemma D.3 above. Our ULLN holds uniformly in the inverse ‘bandwith’ parameter
δ = λ−1; in this respect, it is related to some of the results proved in Einmahl and Mason (2005).
However, while their arguments could be adapted to our problem, these would lead to stronger
conditions on the bandwidth: in particular, p would have to be replaced by 2p in Proposition E.1
below. (On the other hand, their results yield explicit rates of uniform convergence, which are
not of concern here.)

Consider the (pointwise measurable) function class

F∆ := {z 7→ f(γ,δ)(z) | (γ, δ) ∈ Γ×∆},

and put F := F[1,∞). The functions f(γ,δ) : Z → Rd satisfy:

E1 supγ∈Γ E‖f(γ,δ)(z0)‖2 . δ−1 for every δ > 0.

Let F : Z → R denote an envelope for F , in the sense that

sup
(γ,δ)∈Γ×[1,∞)

‖f(γ,δ)(z)‖ ≤ F (z)

for all z ∈ Z . We will suppose that F may be chosen such that, additionally,

E2 E|F (z0)|p <∞; and

E3 supQN(ε‖F‖1,Q,F , L1,Q) ≤ Cε−d for some d ∈ (0,∞).

Let {δn} denote a real sequence with δn ≥ 1, and ∆n := [1, δn].
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Proposition E.1. Under E1–E3, if n1−1/p/δ
2m−1
n log(δn ∨ n)→∞ for some m ≥ 1, then

sup
(γ,δ)∈Γ×∆n

δm‖µnf(γ,δ)‖ = op(1). (E.1)

Remark E.1. Suppose δn is an F-measurable sequence for which n1−1/p/δ2m−1
n log(δn∨n)

p→∞.
Then for every ε > 0, there exists a deterministic sequence {δn} satisfying the requirements of
Proposition E.1, and for which lim supn→∞ P{δn ≤ δn} > 1− ε. Deduce that

sup
γ∈Γ

δmn ‖µnf(γ,δn)‖ = op(1).

The proof requires the following

Lemma E.1. Suppose F is a (pointwise measurable) class with envelope F , satisfying

(i) ‖F‖∞ ≤ τ ;

(ii) supf∈F‖f‖2,P ≤ σ; and

(iii) supQN(ε‖F‖1,Q,F , L1,Q) ≤ Cε−d.

Let θ := τ−1/2σ, m ∈ N and x > 0. Then there exist C1, C2 ∈ (0,∞), not depending on τ , σ or
x, such that

P

{
σ−2 sup

f∈F
|µnf | > x

}
≤ C1 exp[−C2nθ

2(1 + x2) + d log(θ−2x−1)] (E.2)

for all n ≥ 1
8x
−2θ−2.

Proof of Proposition E.1. We first note that, by E2,

max
i≤n
|F (zi)| = op(n

−1/p)

and so, letting fn(γ,δ)(z) := f(γ,δ)(z)1{F (z) ≤ n1/p}, we have

P

{
sup

(γ,δ)∈Γ×∆n

δm|µn[f(γ,δ) − fn(γ,δ)]| = 0

}
≤ P

{
max
i≤n
|F (zi)| > n1/p

}
= o(1).

It thus suffices to show that (E.1) holds when f(γ,δ) is replaced by fn(γ,δ). Since E1 and E3 continue
to hold after this replacement, it suffices to prove (E.1) when E2 is replaced by the condition that
‖F‖∞ ≤ n1/p, which shall be maintained throughout the sequel. (The dependence of f and F
upon n will be suppressed for notational convenience.)

Letting δk := ek, define ∆nk := [δk, δk+1 ∧ δn] for k ∈ {0, . . . ,Kn}, where Kn := log δn;
observe that ∆n =

⋃Kn
k=0 ∆nk. Set

Fnk := {z 7→ f(γ,δ)(z) | (γ, δ) ∈ Γ×∆nk}

and note that ‖F‖∞ ≤ n1/p and supf∈Fnk‖f‖2,P ≤ δ
−1/2
k . Under E3, we may apply apply

Lemma E.1 to each Fnk, with (τ, σ) = (n1/p, δ
−1/2
k ) and x = δ1−m

k ε, for some ε > 0. There thus
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exist C1, C2 ∈ (0,∞) depending on ε such that

P

{
sup

(γ,δ)∈Γ×∆n

δm|µnf(γ,δ)| > ε

}
≤

Kn∑
k=0

P

{
δmk sup

(γ,δ)∈Γ×∆nk

|µnf(γ,δ)| > e−1ε

}

≤ C1

Kn∑
k=0

exp[−C2nθ
2
nkδ

2(1−m)
k + d log(θ−2

nk δ
m−1
k )] (E.3)

where θnk := n−1/2pδ
−1/2
k , provided

n ≥ 1
8δ

2(m−1)
k θ−2

nk ε
−2, ∀k ∈ {0, . . . ,Kn} ⇐= n1−1/p/δ

2m−1
n ≥ 1

8ε
−2, (E.4)

which holds for all n sufficiently large. In obtaining (E.4) we have used δk ≤ δn and θnk ≥
n−1/2pδ

−1/2
n , and these further imply that (E.3) may be bounded by

C1(log δn) exp[−C2n
1−1/pδ

−2m−1
n (1 + ε2) + d log(δ

m
n n

1/p)]→ 0

as n→∞. Thus (E.1) holds.

Proof of Lemma E.1. Suppose (iii) holds. Define G := {τ−1f | f ∈ F}, and G := τ−1F . Then

sup
g∈G
‖g‖2,P ≤ τ−1 sup

f∈F
‖f‖2,P ≤ τ−1/2σ =: θ;

‖g‖∞ ≤ 1 for all g ∈ G; and since ‖Gn‖1,Q ≤ 1, N(ε,G, L1,Q) ≤ Cε−d. Hence, by arguments
given in the proof of Theorem II.37 in Pollard (1984), there exist C1, C2 > 0, depending on x,
such that

P

{
σ−2 sup

f∈F
|µnf | > x

}
= P

{
sup
g∈G
|µng| > θ2x

}
≤ C1 exp[−C2nθ

2(1 + x2) + d log(θ−2x−1)]

for all n ≥ 1
8x
−2θ−2.
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F Index of key notation

Greek and Roman symbols

Listed in (Roman) alphabetical order. Greek symbols are listed according to their English names:
thus Ω, as ‘omega’, appears before θ, as ‘theta’.

β, β0, B structural model parameters, true value, parameter space . . . . . Sec. 2

β̂enk GII estimator; near-minimizer of Qenk . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 5.3

β
e
nk(β

(0), r) terminal value for routine r started at β(0) . . . . . . . . . . . . . . . . . . . (5.15)

cn tuning sequence in the definition of Renk . . . . . . . . . . . . . . . . . . . . . . Sec. 5.5

dβ , dθ, . . . dimensionality of β, θ, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 3.1

Enf sample average, 1
n

∑n
i=1 f(zi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. D.1

ηit stochastic components of the structural model . . . . . . . . . . . . . . . . Sec. 2

F σ-field supporting all observed and simulated variates . . . . . . . . Sec. 5.1

G Jacobian of the population binding function . . . . . . . . . . . . . . . . . . Sec. 5.3

Gn(β) Jacobian of the smoothed sample binding function . . . . . . . . . . . Rem. 5.15

γ(β) (re-)parametrizes the structural model . . . . . . . . . . . . . . . . . . . . . . . . (5.2)

γrk jackknifing weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.3)

H auxiliary model (population) log-likelihood Hessian . . . . . . . . . . . Sec. 5.3

J total number of alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2

k order of jackknifing (unless otherwise defined) . . . . . . . . . . . . . . . . R6

k0 maximum order (less 1) of differentiability of β 7→ θ(β, λ) . . . . . R3

K, Kλ smoothing kernel, Kλ(x) := K(λ−1x) . . . . . . . . . . . . . . . . . . . . . . . . . (5.3)

K, Ks, Kst product of kernel-type functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. E

`(yi, xi; θ) ith contribution to auxiliary model log-likelihood . . . . . . . . . . . . . (3.1)

`(β, λ; θ) abbreviates `(yi(β, λ), xi; θ) Sec. 5.1

`∞(D) space of bounded functions on the set D . . . . . . . . . . . . . . . . . . . . . H3

Ln(y, x; θ) auxiliary model average log-likelihood . . . . . . . . . . . . . . . . . . . . . . . . (3.1)

λ, Λ smoothing parameter, set of allowable values . . . . . . . . . . . . . . . . . Sec. 3.3

m indexes the simulated dataset; m = 0 denotes the data . . . . . . . Sec. 3.1

M total number of simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 3.1

µnf centered sample average, 1
n

∑n
i=1[f(zi)− Ef(zi)] . . . . . . . . . . . . . . App. D.1

n total number of individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2

N(θ, ε) open ball of radius ε centered at θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. B.1

νr(z;β) linear index in structural model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.2a)

ωr(z;β) linear index in structural model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.2a)

Ω(U, V ) variance matrix function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5.10)

p0 order of moments possessed by model variates . . . . . . . . . . . . . . . . L6

φmn , φm standardized auxiliary sample score and its weak limit . . . . . . . . (5.5)
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ψmn , ψm centered auxiliary estimator process and its weak limit . . . . . . . H3

Qenk sample criterion for estimator e (jackknifed) . . . . . . . . . . . . . . . . . . Sec. 4.2

Qek large-sample (unsmoothed) limit of Qenk; note Q
e
k = Qe . . . . . . . Sec. 4.2

R auxiliary model score covariance, E ˙̀m
i (θ0) ˙̀m′

i (θ0)T for m′ 6= m (5.6)

Renk, R
e set of near-roots of Qenk, exact roots of Q

e . . . . . . . . . . . . . . . . . . . . Sec. 5.5

%min(A) smallest eigenvalue of symmetric matrix A . . . . . . . . . . . . . . . . . . . Sec. 5.1

Senk, S
e subset of Renk, R

e satisfying second-order conditions . . . . . . . . . . (5.13)

σmin(B) smallest singular value of matrix B . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 5.6

Σ auxiliary model score variance, E ˙̀m
i (θ0) ˙̀m

i (θ0)T . . . . . . . . . . . . . . . (5.6)

T total number of time periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2

θ, Θ auxiliary model parameters, parameter space . . . . . . . . . . . . . . . . . Sec. 3.1

θ0 pseudo-true parameters implied by β0 . . . . . . . . . . . . . . . . . . . . . . . . Sec. 3.1

θ̂n data-based estimate of θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 3.1

θ̂mn (β, λ) simulation-based estimate of θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.3)

θk(β, λ) population binding function (smoothed, jackknifed) . . . . . . . . . . (4.3)

θ
k
n(β, λ) sample binding function (smoothed, jackknifed) . . . . . . . . . . . . . . (4.4)

uitj utility of individual i from alternative j in period t . . . . . . . . . . . Sec. 2

umitj(β) simulated utilities at β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 3.3

Ue “Hessian” component of limiting variance . . . . . . . . . . . . . . . . . . . . . (5.11)

Ve “score” component of limiting variance . . . . . . . . . . . . . . . . . . . . . . . . (5.11)

w.p.a.1 with probability approaching one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thm. 5.3

Wr(z) envelope for ωr(z;β) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 5.1

Wn, W Wald weighting matrix and its probability limit . . . . . . . . . . . . . . Sec. 3.1

xit exogenous covariates for individual i in period t . . . . . . . . . . . . . . Sec. 2

yitj set = 1 if individual i chooses j in period t . . . . . . . . . . . . . . . . . . . Sec. 2

ymitj(β, λ) smoothed simulated choice indicators at β . . . . . . . . . . . . . . . . . . . . Sec. 3.3

zmi collects xi and ηmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 5.1

Symbols not connected to Greek or Roman letters

Ordered alphabetically by their description.

 weak convergence (van der Vaart and Wellner, 1996) . . . . . . . . . H3
p→ convergence in probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 5

‖x‖, ‖x‖A Euclidean norm, A-weighted norm of x . . . . . . . . . . . . . . . . . . . . . . . Sec. 3.1

ḟ , f̈ gradient, hessian of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 5.3

∂βf , ∂2
βf gradient, hessian of f w.r.t. β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rem. 5.1

. left side bounded by the right side times a constant . . . . . . . . . . App. D.1

‖f‖p,Q Lp(Q) norm of f , i.e. (EQ|f(zi)|p)1/p . . . . . . . . . . . . . . . . . . . . . . . . . App. D.1
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