SUPPLEMENTARY MATERIAL FOR: A UNIFORM LAW FOR CONVERGENCE TO THE LOCAL TIMES OF LINEAR FRACTIONAL STABLE MOTIONS

A. Verifications for examples from Section 3.

Verification of Example 3.2. Let $\epsilon>0$ be given, and $\left\{\theta_{k}\right\}_{k=1}^{K}$ be the centres of a collection of $\epsilon^{1 / \tau}$-balls that cover Θ. Then for every $\theta \in$ $B\left(\theta_{k}, \epsilon^{1 / \tau}\right)$,

$$
l_{k}(x):=g\left(x, \theta_{k}\right)-\epsilon \dot{g}(x) \leq g(x, \theta) \leq g\left(x, \theta_{k}\right)+\epsilon \dot{g}(x)=: u_{k}(x)
$$

whence the continuous brackets $\left\{l_{k}, u_{k}\right\}_{k=1}^{K}$ have size $2 \epsilon\|\dot{g}\|_{1}$, and cover \mathscr{F}. A suitable envelope for \mathscr{F} is given by

$$
F(x):=\left|g\left(x, \theta_{1}\right)\right|+(\operatorname{diam} \Theta)^{1 / \tau} \dot{g}(x) .
$$

Verification of Example 3.3. Let $\epsilon>0$ be given, and $M<\infty$ chosen such that

$$
\sup _{|x| \geq M} F(x)<\epsilon \quad \int_{[-M, M]^{c}} F(x) \mathrm{d} x<\epsilon,
$$

which is possible by Lemma B.1. Let $\mathscr{F}_{\mid M}$ denote the set formed by restricting each $f \in \mathscr{F}$ to the domain $[-M, M]$. In view of the proof of Theorem 2.7.1 in van der Vaart and Wellner (1996), for any given $\delta>0$, there exist continuous functions $\left\{f_{k}\right\}_{k=1}^{K}$ such that the balls

$$
B\left(f_{k}, \delta\right):=\left\{g:[-M, M] \rightarrow \mathbb{R} \mid\left\|g-f_{k}\right\|_{\infty}<\delta\right\}
$$

cover $\mathscr{F}_{\mid M}$. Thence the brackets formed by

$$
\begin{aligned}
l_{k}(x) & =\left\{\left[f_{k}(x)-\delta\right] \vee[-F(x)]\right\} \mathbf{1}\{x \in[-M, M\}-F(x) \mathbf{1}\{x \notin[-M, M]\} \\
u_{k}(x) & =\left\{\left[f_{k}(x)+\delta\right] \wedge F(x)\right\} \mathbf{1}\{x \in[-M, M\}+F(x) \mathbf{1}\{x \notin[-M, M]\}
\end{aligned}
$$

cover \mathscr{F}, and have size $\left\|u_{k}-l_{k}\right\|_{1} \leq 2 M \delta+\epsilon=2 \epsilon$, where the final equality follows by taking $\delta=\epsilon / 2 M$. Since u_{k} is piecewise continuous (with possible discontinuities at $-M$ and M), and agrees with $F(x)$ for all $|x|>M$, there clearly exists a $\tilde{u}_{k} \in \operatorname{BIL}_{\beta}$ with $\tilde{u}_{k} \geq u_{k}$ and $\left\|\tilde{u}_{k}-u_{k}\right\|_{1}<\epsilon$. Constructing \tilde{l}_{k} from l_{k} in an analogous manner, we thus obtain a collection of continuous brackets $\left\{\tilde{l}_{k}, \tilde{u}_{k}\right\}_{k=1}^{K}$ of size 4ϵ, which cover \mathscr{F}.
B. Modifications required for the proof Theorem 3.1(ii). We must first strengthen (6.1) to weak convergence in $\ell_{\infty}(\mathbb{R})$. To that end, define

$$
\mathfrak{U}_{n}:=\frac{1}{d_{n}} \max _{t \leq n}\left|x_{t}\right| \quad \mathfrak{U}:=\sup _{r \in[0,1]}|X(r)|,
$$

so that $\mathfrak{U}_{n} \rightsquigarrow \mathfrak{U}$ under (2.7). Noting that the supports of $\mathcal{L}_{n}^{\varphi}$ and \mathcal{L}^{φ} are contained in $\left[-\mathfrak{U}_{n}-1, \mathfrak{U}_{n}+1\right]$ and $[-\mathfrak{U}, \mathfrak{U}]$ respectively - in the first case, because φ is compactly supported - we may choose $M<\infty$ sufficiently large such that

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left\{\sup _{a \in[-M, M]^{c}} \mathcal{L}_{n}^{\varphi}(a)>0\right\}+\mathbb{P}\left\{\sup _{a \in[-M, M]^{c}} \mathcal{L}(a)>0\right\}<\frac{\epsilon}{2}
$$

for any given $\epsilon>0$. By the result of part (i) and Theorem 1.10.3 in van der Vaart and Wellner (1996), there exists a distributionally equivalent sequence $\mathcal{L}_{n}^{*}={ }_{d} \mathcal{L}_{n}^{\varphi}$ such that $\mathcal{L}_{n}^{*} \xrightarrow{\text { a.s. }} \mathcal{L}^{*}={ }_{d} \mathcal{L}$ in $\ell_{\text {ucc }}(\mathbb{R})$. Hence

$$
\begin{aligned}
& \mathbb{P}\left\{\sup _{a \in \mathbb{R}}\left|\mathcal{L}_{n}^{*}(a)-\mathcal{L}^{*}(a)\right|>\epsilon\right\} \\
& \leq \mathbb{P}\left\{\sup _{a \in[-M, M]}\left|\mathcal{L}_{n}^{*}(a)-\mathcal{L}^{*}(a)\right|>\epsilon\right\} \\
&+\mathbb{P}\left\{\sup _{a \in[-M, M] c} \mathcal{L}_{n}^{*}(a)>0\right\}+\mathbb{P}\left\{\sup _{a \in[-M, M] c} \mathcal{L}^{*}(a)>0\right\} \\
&< \epsilon
\end{aligned}
$$

for all n sufficiently large. Deduce that $\mathcal{L}_{n}^{*} \xrightarrow{p} \mathcal{L}^{*}$ in $\ell_{\infty}(\mathbb{R})$, whence (6.1) holds in $\ell_{\infty}(\mathbb{R})$.

To extend (6.4) to weak convergence on $\ell_{\infty}(\mathbb{R})$, it suffices to show that

$$
\begin{gather*}
\sup _{(a, b) \in\left[-M_{n}, M_{n}\right] \times \mathscr{B}_{n}}\left|\mathcal{L}_{n}^{f}\left(a, b^{-1}\right)-\mathcal{L}_{n}^{\varphi}(a) \mu_{f}\right|=o_{p}(1) \tag{B.1}\\
\sup _{(a, b) \in\left[-M_{n}, M_{n}\right]^{c} \times \mathscr{B}_{n}}\left|\mathcal{L}_{n}^{f}\left(a, b^{-1}\right)\right|=o_{p}(1) . \tag{B.2}
\end{gather*}
$$

where $\mu_{f}:=\int_{\mathbb{R}} f$, and $M_{n}:=n^{\tau}$ for some $\tau>0$. In view of Lemma 6.1, (B.1) may be proved via precisely the same arguments as which established the asymptotic negligibility of (6.2) above - albeit with a different choice of γ and δ (depending on τ). Regarding (B.2), we have the following (see the end of this section for the proof).

Lemma B.1. Suppose $f \in \mathrm{BIL}_{\gamma}$ for some $\gamma>0$. Then $|f(x)|=o\left(|x|^{-\gamma / 2}\right)$ as $x \rightarrow \pm \infty$.

Since $\max _{t \leq n}\left|x_{t}\right| \lesssim_{p} d_{n}$, we have w.p.a. 1 that

$$
\inf _{t \leq n} \inf _{|a| \geq M_{n}}\left|x_{t}-d_{n} a\right| \geq d_{n} n^{\tau}\left(1-n^{-\tau} d_{n}^{-1} \max _{t \leq n}\left|x_{t}\right|\right)=d_{n} n^{\tau}\left(1+o_{p}(1)\right)
$$

In view of Lemma B.1, we may choose $\beta>0$ such that $|f(x)|=o\left(|x|^{-\beta}\right)$ as $x \rightarrow \pm \infty$. Then

$$
\begin{aligned}
\max _{t \leq n} \sup _{(a, b) \in\left[-M_{n}, M_{n}\right]^{c} \times \mathscr{B}_{n}} b f\left[b\left(x_{t}-d_{n} a\right)\right] & \\
& \vdots \max _{t \leq n} \sup _{(a, b) \in\left[-M_{n}, M_{n}\right]^{c} \times \mathscr{B}_{n}} b^{1-\beta}\left|x_{t}-d_{n} a\right|^{-\beta} \\
& \lesssim_{p} e_{n}\left(e_{n} d_{n}^{-1} n^{-\tau}\right)^{\beta}=o\left(n e_{n}^{-1}\right)
\end{aligned}
$$

if τ is chosen sufficiently large. Thus (B.2) holds, whence (6.4) obtains in $\ell_{\infty}(\mathbb{R})$. An identical bracketing argument to that given above now establishes that (6.5) holds with \mathbb{R} in place of $[-M, M]$.

Proof of Lemma B.1. For simplicity, suppose f has Lipschitz constant $C_{f}=1$. Suppose for a contradiction that the claim is false (for $x \rightarrow+\infty$). Then
[A] there exists a $\delta \in(0,1)$, and a positive, increasing sequence $x_{k} \rightarrow \infty$ with $x_{k}-x_{k-1} \geq 2$, such that $f\left(x_{k}\right) x_{k}^{\gamma / 2} \geq \delta$ for all $k \in \mathbb{N}$.
Since f is Lipschitz (with $C_{f}=1$) and $f\left(x_{k}\right) \geq \delta x_{k}^{-\gamma / 2}$, we can bound the integral

$$
\int_{x_{k}-1}^{x_{k}+1}|f(x)| \mathrm{d} x
$$

from below by the area of a triangle having height $\delta x_{k}^{-\gamma / 2}$ and base $2 \delta x_{k}^{-\gamma / 2}$. Hence

$$
\begin{aligned}
& \int|f(x)||x|^{\gamma} \mathrm{d} x \geq \sum_{k=1}^{\infty} \int_{x_{k}-1}^{x_{k}+1}|f(x)||x|^{\gamma} \mathrm{d} x \\
& \geq \frac{1}{2} \sum_{k=2}^{\infty} x_{k}^{\gamma} \int_{x_{k}-1}^{x_{k}+1}|f(x)| \mathrm{d} x \geq \frac{\delta^{2}}{2} \sum_{k=2}^{\infty} 1
\end{aligned}
$$

But the RHS diverges, contradicting that $\int|f(x)||x|^{\gamma} \mathrm{d} x<\infty$. Hence [A] is false, and thus the claim must be true.

C. Proofs of Lemmas 6.1 and 6.2.

Proof of Lemma 6.1. By the Lipschitz continuity of f, straightforward calculations yield that

$$
\left|f_{\left(a_{1}, b_{1}\right)}(x)-f_{\left(a_{2}, b_{2}\right)}(x)\right| \leq\left|b_{1}-b_{2}\right|\left[1+b_{2}\left(|x|+d_{n}\left|a_{2}\right|\right)\right]+b_{1} b_{2} d_{n}\left|a_{1}-a_{2}\right| .
$$

In particular, taking $\left(a_{1}, b_{1}\right)=(a, b) \in C_{n}$ and $\left(a_{2}, b_{2}\right)=p_{n}(a, b)$, and noting that $b \lesssim e_{n} \lesssim n$ and $d_{n} \lesssim n$, we have

$$
\begin{aligned}
\left|f_{(a, b)}(x)-f_{p_{n}(a, b)}(x)\right| & \leq n^{-\delta}\left[1+n\left(|x|+d_{n} n^{\gamma}\right)\right]+d_{n} n^{2-\delta} \\
& \lesssim n^{2+\gamma-\delta}+n^{1-\delta}|x|
\end{aligned}
$$

whence

$$
\begin{equation*}
\sup _{(a, b) \in C_{n}} \frac{1}{e_{n}} \sum_{t=1}^{n}\left|f_{(a, b)}\left(x_{t}\right)-f_{p_{n}(a, b)}\left(x_{t}\right)\right| \leq n^{3+\gamma-\delta}+n^{1-\delta} \sum_{t=1}^{n}\left|x_{t}\right| . \tag{C.1}
\end{equation*}
$$

To control the final term, note that by Chebyshev's inequality,

$$
\mathbb{P}\left\{n^{1-\delta} \sum_{t=1}^{n}\left|x_{t}\right| \geq M\right\} \leq n^{2} \mathbb{P}\left\{\left|v_{0}\right| \geq \frac{M}{n^{3-\delta}}\right\} \leq \frac{n^{2+(3-\delta) p}}{M^{p}} \mathbb{E}\left|v_{0}\right|^{p},
$$

for any $p>0$ such that $\mathbb{E}\left|v_{0}\right|^{p}<\infty$. Thus, we need only to show that such a $p>0$ always exists, in order to deduce that δ may be chosen sufficiently large such that the right side of (C.1) is $o_{p}(1)$.

To that end, we note that for every $p \in(0,2]$,

$$
\begin{equation*}
\mathbb{E}\left|v_{0}\right|^{p} \lesssim \sum_{k=0}^{\infty}\left|\phi_{k}\right|^{\mid} \mathbb{E}\left|\epsilon_{0}\right|^{p}, \tag{C.2}
\end{equation*}
$$

using Theorem 3 in von Bahr and Esseen (1965) when $p \in(1,2]$, and the elementary inequality $|x+y|^{p} \leq|x|^{p}+|y|^{p}$ when $p \in(0,1]$. Now $\mathbb{E}\left|\epsilon_{0}\right|^{p}<\infty$ for every $p \in(0, \alpha)$, by Theorem 2.6.4 in Ibragimov and Linnik (1971), while when $H \neq 1 / \alpha, \sum_{k=0}^{\infty}\left|\phi_{k}\right|^{p}<\infty$ for any p such that

$$
p(H-1-1 / \alpha)<-1 \Longleftrightarrow p>\frac{1}{1-(H-1 / \alpha)}=: \underline{p}
$$

Importantly,

$$
\alpha-\underline{p}=\frac{\alpha(1-H)}{1-(H-1 / \alpha)}>0
$$

since $H-1 / \alpha<1$. Thus when $H \neq 1 / \alpha$, we may take a $p \in(\underline{p}, \alpha)$ such that the right side of (C.2) is finite; when $H=1 / \alpha$ - in which case $\alpha \in(1,2]-$ it suffices to take $p=1$.

Proof of Lemma 6.2. Let $\left\{l_{k}, u_{k}\right\}_{k=1}^{K}$ denote a collection of continuous ϵ-brackets for \mathscr{F}; we may certainly take

$$
-F(x) \leq l_{k}(x) \leq u_{k}(x) \leq F(x)
$$

without loss of generality. Indeed, since F is integrable and continuous, we may choose brackets having the property that, for some $M<\infty$

$$
l_{k}(x)=-F(x) \quad u_{k}(x)=F(x)
$$

for all $|x|>M$, where M is chosen to be sufficiently large that

$$
\begin{equation*}
\int_{[-M, M]^{c}} F(x)<\epsilon . \tag{C.3}
\end{equation*}
$$

Let $\delta>0$. Since l_{k} is continuous on $[-M, M]$, there exists a polynomial l_{k}^{\prime} on $[-M, M]$ such that $l_{k}^{\prime}(-M)=F(-M), l_{k}^{\prime}(M)=F(M)$ and

$$
\sup _{x \in[-M, M]}\left|l_{k}(x)-l_{k}^{\prime}(x)\right|<\delta .
$$

Thus, setting

$$
\tilde{l}_{k}(x):= \begin{cases}{\left[l_{k}^{\prime}(x)-\delta\right] \vee[-F(x)]} & \text { if } x \in[-M, M] \\ -F(x) & \text { otherwise }\end{cases}
$$

ensures that $\tilde{l}_{k}(x) \leq l_{k}(x)$ for all $x \in \mathbb{R}, \tilde{l}_{k} \in \mathrm{BIL}_{\beta}$, and - in view of (C.3)-

$$
\int_{\mathbb{R}}\left[l_{k}(x)-\tilde{l}_{k}(x)\right] \mathrm{d} x \leq 4 M \delta+\epsilon=2 \epsilon
$$

where the final equality follows by taking $\delta=\epsilon / 4 M$.
Constructing \tilde{u}_{k} in an analogous manner from u_{k}, we thus obtain a collection $\left\{\tilde{l}_{k}, \tilde{u}_{k}\right\}_{k=1}^{K} \subset \operatorname{BIL}_{\beta}$ of 5ϵ-brackets for \mathscr{F}.

D. Proofs of Lemmas 7.1, 7.2 and 7.5.

Proof of Lemma 7.1. Let $S_{n}(\theta):=\sum_{k=1}^{K_{n}} M_{n k}(\theta)$ and $\Omega_{n}:=\sum_{k=1}^{K_{n}} \omega_{n k}$. It is easily verified that

$$
\begin{equation*}
\left\{\max _{\theta \in \Theta_{n}}\left|S_{n}(\theta)\right| \geq x \Omega_{n}\right\} \subseteq \bigcup_{k, \theta}\left\{\left|M_{n k}(\theta)\right| \geq x \omega_{n k}\right\} \tag{D.1}
\end{equation*}
$$

for every $x \in \mathbb{R}_{+}$, where $\bigcup_{k, \theta}:=\bigcup_{k=1}^{K_{n}} \bigcup_{\theta \in \Theta_{n}}$. Define

$$
E_{n}(x):=\bigcup_{k, \theta}\left\{\left[M_{n k}(\theta)\right] \vee\left\langle M_{n k}(\theta)\right\rangle \leq x \omega_{n k}^{2}\right\},
$$

and note that by (7.2) and Lemma 2.2.2 in van der Vaart and Wellner (1996),

$$
\left\|\max _{k, \theta} \omega_{n k}^{-2}\left\{\left[M_{n k}(\theta)\right] \vee\left\langle M_{n k}(\theta)\right\rangle\right\}\right\|_{1} \lesssim \log \left(K_{n} \cdot \# \Theta_{n}\right) \lesssim \log n
$$

where $\max _{k, \theta}:=\max _{1 \leq k \leq K_{n}} \max _{\theta \in \Theta_{n}}$, whence by Chebyshev's inequality

$$
\begin{equation*}
\mathbb{P} E_{n}^{c}(x)=\mathbb{P}\left\{\max _{k, \theta} \omega_{n k}^{-2}\left\{\left[M_{n k}(\theta)\right] \vee\left\langle M_{n k}(\theta)\right\rangle\right\}>x\right\} \lesssim \frac{\log n}{x} \tag{D.2}
\end{equation*}
$$

It follows from (D.1) that

$$
\begin{aligned}
\left\{\max _{\theta \in \Theta_{n}}\left|S_{n}(\theta)\right| \geq\right. & \left.x \Omega_{n}\right\} \cap E_{n}(x) \\
& \subseteq \bigcup_{k, \theta}\left\{\left|M_{n k}(\theta)\right| \geq x \omega_{n k}, \quad\left[M_{n k}(\theta)\right] \vee\left\langle M_{n k}(\theta)\right\rangle \leq x \omega_{n k}^{2}\right\},
\end{aligned}
$$

and so by Theorem 2.1 in Bercu and Touati (2008),
(D.3) $\mathbb{P}\left\{\max _{\theta \in \Theta_{n}}\left|S_{n}(\theta)\right| \geq x \Omega_{n}\right\} \cap E_{n}(x)$

$$
\lesssim\left(K_{n} \cdot \# \Theta_{n}\right) \exp \left(-\frac{\left(x \omega_{n k}\right)^{2}}{4 x \omega_{n k}^{2}}\right) \lesssim n^{C} \exp \left(-\frac{x}{4}\right)
$$

Together, (D.2) and (D.3) yield

$$
\begin{aligned}
\mathbb{P}\left\{\max _{\theta \in \Theta_{n}}\left|S_{n}(\theta)\right| \geq x \Omega_{n}\right\} & \leq \mathbb{P}\left\{\max _{\theta \in \Theta_{n}}\left|S_{n}(\theta)\right| \geq x \Omega_{n}\right\} \cap E_{n}(x)+\mathbb{P} E_{n}^{c}(x) \\
& \lesssim n^{C} \exp \left(-\frac{x}{4}\right)+\frac{\log n}{x}
\end{aligned}
$$

Setting $x=a \log n$ for $a>0$ sufficiently large, we thus have

$$
\mathbb{P}\left\{\max _{\theta \in \Theta_{n}}\left|S_{n}(\theta)\right| \geq x \Omega_{n}\right\} \lesssim n^{C-a / 4}+a^{-1} \rightarrow 0
$$

as $n \rightarrow \infty$ and then $a \rightarrow \infty$.

Proof of Lemma 7.2. In both cases, the reverse implication is trivial. Regarding the forward implication, in case (i) this follows immediately from the fact that

$$
\mathbb{E} \tau_{1}\left(\frac{|X|}{q \sigma}\right)=\mathbb{E} \sum_{p=1}^{\infty} \frac{|X|^{p}}{p!\cdot(q \sigma)^{p}}=\sum_{p=1}^{\infty} \frac{\mathbb{E}|X|^{p}}{p!\cdot(q \sigma)^{p}} \leq \sum_{p=1}^{\infty}\left(\frac{C}{q}\right)^{p} \leq 1
$$

for $q>0$ sufficiently large. In order to prove (ii), note that by Hölder's inequality, for any $p \in \mathbb{N}$,

$$
\mathbb{E}|X|^{2 p / 3} \leq\left(\mathbb{E}|X|^{2 p}\right)^{1 / 3}
$$

and that by Stirling's formula (Rudin, 1976, 8.22),

$$
\frac{(3 p)!}{(p!)^{3}} \asymp 3^{3 p} \frac{(6 \pi p)^{1 / 2}}{(2 \pi p)^{3 / 2}} \lesssim 3^{3 p} .
$$

Hence

$$
\begin{aligned}
\mathbb{E} \tau_{2 / 3}\left(\frac{|X|}{q \sigma}\right) & \leq \frac{\mathbb{E}|X|}{q \sigma}+\sum_{p=1}^{\infty} \frac{\mathbb{E}|X|^{2 p / 3}}{p!\cdot(q \sigma)^{2 p / 3}} \\
& \leq \frac{\left(\mathbb{E}|X|^{2}\right)^{1 / 2}}{q \sigma}+\sum_{p=1}^{\infty} \frac{\left(\mathbb{E}|X|^{2 p}\right)^{1 / 3}}{p!\cdot(q \sigma)^{2 p / 3}} \\
& \lesssim \frac{1}{q}+\sum_{p=1}^{\infty}\left(\frac{C}{q^{2 / 3}}\right)^{p} \\
& \leq 1
\end{aligned}
$$

for $q>0$ sufficiently large.
Proof of Lemma 7.5. Recalling the definitions given at the start of Section 7.2, it is clear that

$$
\sup _{f \in \mathscr{G}} \varsigma_{n}(\beta, f)+\sum_{k=0}^{n-1} \sup _{f \in \mathscr{G}} \sigma_{n k}(\beta, f)
$$

may be bounded by
$\|\mathscr{G}\|_{\infty}+e_{n}^{1 / 2}\left(\|\mathscr{G}\|_{1}+\|\mathscr{G}\|_{2}\right)+\|\mathscr{G}\|_{[\beta]}\left[\sum_{k=1}^{n} d_{k}^{-(1+\beta)}+e_{n}^{1 / 2} \sum_{k=1}^{n-1} k^{-1 / 2} d_{k}^{-(1+2 \beta) / 2}\right]$.

The claimed bound follows since, for some $C<\infty$ depending on β,

$$
\begin{aligned}
\sum_{k=1}^{n} d_{k}^{-(1+\beta)}+e_{n}^{1 / 2} \sum_{k=1}^{n-1} k^{-1 / 2} d_{k}^{-(1+2 \beta) / 2} & \leq C\left(e_{n} d_{n}^{-\beta}+e_{n}^{1 / 2} n^{1 / 2} d_{n}^{-(1+2 \beta) / 2}\right) \\
& \leq C e_{n} d_{n}^{-\beta}
\end{aligned}
$$

by Karamata's theorem, noting in particular that $\left\{k^{-1 / 2} d_{k}^{-(1+2 \beta) / 2}\right\}$ is regularly varying with index

$$
-\frac{1}{2}-\left(\frac{1}{2}+\beta\right) H=-1+H\left(\frac{1-H}{2 H}-\beta\right)>-1
$$

since $\beta<\bar{\beta}_{H} \leq \frac{1-H}{2 H}$.
E. Proof of (8.1). For $-\infty<a<b<\infty$, the same argument as appears in the proof of Lemma 8 in Jeganathan (2008) yields

$$
\begin{aligned}
\mu_{n}(b)-\mu_{n}(a) & =\frac{1}{n} \sum_{t=1}^{n} \mathbf{1}\left\{a<d_{n}^{-1} x_{t} \leq b\right\} \\
& \rightsquigarrow \int_{0}^{1} 1\{a<X(r) \leq b\} \mathrm{d} r \\
& =\int_{a}^{b} \mathcal{L}(x) \mathrm{d} x \\
& =\mu(b)-\mu(a)
\end{aligned}
$$

where the penultimate equality follows by (2.8). In consequence, for any $a>0$,

$$
\mu_{n}(-a)+\left[1-\mu_{n}(a)\right]=1-\left[\mu_{n}(a)-\mu_{n}(-a)\right] \rightsquigarrow 1-[\mu(a)-\mu(-a)] \xrightarrow{\text { a.s. }} 0
$$

as $n \rightarrow \infty$ and then $a \rightarrow \infty$. Hence $\mu_{n}(-a) \xrightarrow{p} 0$ as $n \rightarrow \infty$ and then $a \rightarrow \infty$. Similarly,

$$
\mu_{n}(b)-\mu_{n}(-a) \rightsquigarrow \mu(b)-\mu(-a) \xrightarrow{\text { a.s. }} \mu(b)
$$

as $n \rightarrow \infty$ and then $a \rightarrow \infty$. Since weak convergence is metrisable, it follows that we may choose $a=a_{n} \rightarrow \infty$ sufficiently slowly such that

$$
\mu_{n}(b)=\left[\mu(b)-\mu\left(-a_{n}\right)\right]+\mu\left(-a_{n}\right) \rightsquigarrow \mu(b)
$$

as $n \rightarrow \infty$. Thus $\mu_{n} \rightsquigarrow_{\text {fdd }} \mu$; because μ and μ_{n} are monotone and continuous, with a uniformly bounded range, weak convergence on $\ell_{\infty}(\mathbb{R})$ follows automatically (see the proof of Lemma 2.11 in van der Vaart, 1998).

F. Proofs of results from Section 9.

VERIFICATION OF (9.1). It suffices to prove the result when $y_{0}=0$. Since the Fourier transform is an isometry on L^{2} (Stein and Weiss, 1971, Thm. I.2.3), $f_{k} \rightarrow f$ on L^{2}, where

$$
f_{k}(x):=\frac{1}{2 \pi} \int_{-k}^{k} \mathrm{e}^{-\mathrm{i} \lambda x} \hat{f}(\lambda) \mathrm{d} \lambda
$$

Since $\mathbf{1}_{[-k, k]}(\lambda) \hat{f}(\lambda) \in L^{1}$, it follows that for every $k \in \mathbb{N}$

$$
\begin{equation*}
\mathbb{E} f_{k}(Y)=\frac{1}{2 \pi} \int_{-k}^{k} \hat{f}(\lambda) \mathbb{E}\left[\mathrm{e}^{-\mathrm{i} \lambda^{\prime} Y}\right] \mathrm{d} \lambda \tag{F.1}
\end{equation*}
$$

By assumption, Y has an integrable characteristic function, and thus a bounded density π_{Y}, by the inversion formula (Feller, 1971, Thm XV.3.3). Hence, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left|\mathbb{E} f_{k}(Y)-\mathbb{E} f(Y)\right| \leq\left(\mathbb{E} \mid f_{k}(Y)\right. & \left.-\left.f(Y)\right|^{2}\right)^{1 / 2} \\
& \leq\left\|\pi_{Y}\right\|_{\infty}^{1 / 2}\left(\int_{\mathbb{R}}\left|f_{k}(y)-f(y)\right|^{2} \mathrm{~d} y\right)^{1 / 2} \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. A further application of the Cauchy-Schwarz inequality (noting $\hat{f} \in L^{2}$) yields

$$
\begin{aligned}
& \left|\int_{\{|\lambda|>k\}} \hat{f}(\lambda) \mathbb{E}\left[\mathrm{e}^{-\mathrm{i} \lambda^{\prime} Y}\right] \mathrm{d} \lambda\right| \\
& \\
& \quad \leq\left(\int_{\{|\lambda|>k\}}|\hat{f}(\lambda)|^{2} \mathrm{~d} \lambda\right)^{1 / 2}\left(\int_{\{|\lambda|>k\}}\left|\psi_{Y}(\lambda)\right|^{2} \mathrm{~d} \lambda\right)^{1 / 2} \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. Letting $k \rightarrow \infty$ on both sides of (F.1) then gives the result.
Proof of Lemma 9.1. (i) is immediate from $|\hat{f}(\lambda)| \leq\|f\|_{1}$ and the definition of $\|\cdot\|_{[\beta]}$. Regarding (ii), in this case $\hat{f}(0)=\int f=0$. Therefore, using the elementary inequality $\left|\mathrm{e}^{\mathrm{i} z}-1\right| \leq 2^{1-\beta}|z|^{\beta}$ (for $z \in \mathbb{R}$), we find that

$$
\begin{aligned}
|\hat{f}(\lambda)|=\mid \hat{f}(\lambda) & -\hat{f}(0) \mathrm{e}^{-\mathrm{i} \lambda y} \mid \\
& \leq \int_{\mathbb{R}}|f(x)|\left|\mathrm{e}^{\mathrm{i} \lambda(x+y)}-1\right| \mathrm{d} x \leq 2^{1-\beta}|\lambda|^{\beta} \int_{\mathbb{R}}|f(x-y)||x|^{\beta} \mathrm{d} x
\end{aligned}
$$

for every $y \in \mathbb{R}$. Finally, for f as in (iii)

$$
\begin{aligned}
&|\hat{f}(\lambda)|=|g(\hat{\lambda})|\left|\mathrm{e}^{\mathrm{i} \lambda a_{1}}-\mathrm{e}^{\mathrm{i} \lambda a_{2}}\right| \\
&=|g(\hat{\lambda})|\left|1-\mathrm{e}^{\mathrm{i} \lambda\left(a_{1}-a_{2}\right)}\right| \leq 2^{1-\beta}\|g\|_{1}|\lambda|^{\beta}\left|a_{1}-a_{2}\right|^{\beta}
\end{aligned}
$$

Verification of (9.4). When $H=1 / \alpha$, the result follows from arguments given in Wang and Phillips (2009): see their (7.14), in particular. Otherwise, first note that by Karamata's theorem,

$$
a_{k}=\sum_{l=0}^{k} \phi_{l} \sim \sum_{l=1}^{k} l^{H-1-1 / \alpha} \pi_{l} \asymp k^{H-1 / \alpha} \pi_{k}=c_{k}
$$

when $H>1 / \alpha$, and

$$
a_{k}=\sum_{l=0}^{k} \phi_{l}=-\sum_{l=k+1}^{\infty} \phi_{l} \sim \sum_{l=k+1}^{\infty} l^{H-1-1 / \alpha} \pi_{l} \asymp k^{H-1 / \alpha} \pi_{k}=c_{k}
$$

when $H<1 / \alpha$, since $\sum_{l=0}^{\infty} \phi_{l}=0$. In the first case, setting $\delta:=\frac{1}{2}(H-1 / \alpha)$, it follows from Potter's inequality that we may choose k_{0} sufficiently large that

$$
2^{-3 \delta} \lesssim\left(\frac{l}{k}\right)^{3 \delta} \lesssim \frac{c_{l}}{c_{k}} \lesssim\left(\frac{l}{k}\right)^{\delta} \leq 1
$$

for all $k \geq k_{0}$ and $\lfloor k / 2\rfloor \leq l \leq k$. Since $a_{k} \asymp c_{k}$, this yields the stated result, which follows also when $H<1 / \alpha$ by a strictly analogous argument.

The proof of Lemma 9.2 requires the following two results. The first is an immediate consequence of (9.4), and the fact that ϵ_{0} is in the domain of attraction of a stable distribution, with $\psi \in L^{p_{0}}$.

Lemma F.1. There exist $\eta_{0}, \gamma_{0} \in(0, \infty)$ such that

$$
\sup _{k \geq k_{0}+1} \sup _{\lfloor k / 2\rfloor \leq l \leq k}\left|\psi\left(c_{k}^{-1} a_{l} \lambda\right)\right| \leq \begin{cases}\mathrm{e}^{-\gamma_{0}|\lambda|^{\alpha} G(\lambda)} & \text { if }|\lambda| \leq \eta_{0} \\ \mathrm{e}^{-\gamma_{0}} & \text { if }|\lambda|>\eta_{0}\end{cases}
$$

Lemma F.2. Let $k \geq k_{0}+1, p \in[0,5], q \in(0,2]$ and $z_{1}, z_{2} \in \mathbb{R}_{+}$. Then there exists a $\gamma_{1}>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}}\left(z_{1}|\lambda|^{p} \wedge z_{2}\right) \prod_{l \in \mathcal{K}}\left|\psi\left(a_{l} \lambda\right)\right| \mathrm{d} \lambda \lesssim z_{1} d_{k}^{-(p+1)}+z_{2} \mathrm{e}^{-\gamma_{1} k} \tag{F.2}
\end{equation*}
$$

and if $F(u) \asymp G^{p / \alpha}(u)$ as $u \rightarrow 0$,

$$
\begin{align*}
\int_{\mathbb{R}}\left(z_{1}\left|a_{k}\right|^{p}|\lambda|^{p+q} F\left(a_{k} \lambda\right) \wedge z_{2}\right) \prod_{l \in \mathcal{K}}\left|\psi\left(a_{l} \lambda\right)\right| \mathrm{d} \lambda & \tag{F.3}\\
& \lesssim z_{1} k^{-p / \alpha} d_{k}^{-(1+q)}+z_{2} \mathrm{e}^{-\gamma_{1} k}
\end{align*}
$$

uniformly over all $\mathcal{K} \subseteq\{\lfloor k / 2\rfloor+1, \ldots, k\}$ with $\# \mathcal{K} \geq\lceil k / 4\rceil$.
Proof of Lemma F.1. As noted in (9.5) above, there exist $\eta, \gamma \in(0, \infty)$ such that

$$
|\psi(\lambda)| \leq \mathrm{e}^{-\gamma|\lambda|^{\alpha} G(\lambda)}
$$

whenever $|\lambda| \leq \eta$. Defining

$$
\mathcal{I}:=\left\{(k, l) \mid k \geq k_{0}+1,\lfloor k / 2\rfloor \leq l \leq k\right\}
$$

it follows from (9.4) that

$$
|\lambda| \leq \bar{a}^{-1} \eta \Longrightarrow \sup _{(k, l) \in \mathcal{I}}\left|c_{k}^{-1} a_{l} \lambda\right| \leq \eta
$$

Let $\eta_{0}:=\bar{a}^{-1} \eta$ and $r(\lambda):=|\lambda|^{\alpha} G(\lambda)$. Then whenever $|\lambda| \leq \eta_{0}$,

$$
\sup _{(k, l) \in \mathcal{I}}\left|\psi\left(c_{k}^{-1} a_{l} \lambda\right)\right| \leq \exp \left(-\inf _{(k, l) \in \mathcal{I}} r\left(c_{k}^{-1} a_{l} \lambda\right)\right) \leq \exp \left(-\inf _{a \in[a, \bar{a}]} r(a \lambda)\right),
$$

using (9.4) again. Since r is regularly varying at zero,

$$
\inf _{a \in[\underline{a}, \bar{a}]} r(a \lambda)=r(\lambda) \inf _{a \in[a, \bar{a}]} \frac{r(a \lambda)}{r(\lambda)} \leq C_{0} r(\lambda)
$$

for some $C_{0} \in(0, \infty)$, for all $|\lambda| \leq \eta_{0}$. Hence

$$
\sup _{(k, l) \in \mathcal{I}}\left|\psi\left(c_{k}^{-1} a_{l} \lambda\right)\right| \leq \exp \left(-\gamma C_{0}|\lambda|^{\alpha} G(\lambda)\right)
$$

for all $|\lambda| \leq \eta_{0}$.
Next, note that since $\psi \in L^{p_{0}}$ and $\|\psi\|_{\infty} \leq 1$, we have $\varphi:=|\psi|^{2^{k}} \in L^{1}$ for a $k \in \mathbb{N}$ chosen such that $2^{k} \geq p_{0}$. Thus φ is the characteristic function of a random variable having bounded continuous density (Feller, 1971, corollaries to Lem. XV.1.2 and Thm XV.3.3), and so by the Riemann-Lebesgue lemma

$$
\limsup _{|\lambda| \rightarrow \infty}|\psi(\lambda)|=\left(\limsup _{|\lambda| \rightarrow \infty}|\varphi(\lambda)|\right)^{2^{-k}}=0
$$

(Feller, 1971, Lem. XV.3.3). Further, $\varphi \in L^{1}$ cannot be periodic, and so $|\varphi(\lambda)|<1$ for all $\lambda \neq 0$ (Feller, 1971, Lem. XV.1.4). Since φ is necessarily continuous, it follows that

$$
\sup _{|\lambda|>\delta}|\psi(\lambda)|=\left(\sup _{|\lambda|>\delta}|\varphi(\lambda)|\right)^{2^{-k}}<1
$$

for every $\delta>0$. Noting that

$$
|\lambda|>\eta_{0} \Longrightarrow \inf _{(k, l) \in \mathcal{I}}\left|c_{k}^{-1} a_{l} \lambda\right|>\underline{a} \eta_{0}
$$

it follows that

$$
\sup _{|\lambda|>\eta_{0}} \sup _{(k, l) \in \mathcal{I}}\left|\psi\left(c_{k}^{-1} a_{l} \lambda\right)\right| \leq \sup _{|\lambda|>\underline{a} \eta_{0}}|\psi(\lambda)| \leq \mathrm{e}^{-C_{1}}
$$

for some $C_{1} \in(0, \infty)$. Setting $\gamma_{0}:=\gamma C_{0} \wedge C_{1}$ thus yields the result.
Proof of Lemma F.2. We shall only give the proof of (F.3): the proof of (F.2) is strictly analogous, albeit somewhat simpler. Letting $K:=\# \mathcal{K}$ and $h_{k}(\lambda):=\left(z_{1}\left|a_{k}\right|^{p}|\lambda|^{p+q} F\left(a_{k} \lambda\right) \wedge z_{2}\right)$, we first note that by repeated applications of Hölder's inequality (see Jeganathan, 2008, Lem. 7) and then a change of variables,

$$
\begin{align*}
\int_{\mathbb{R}} h_{k}(\lambda) \prod_{l \in \mathcal{K}}\left|\psi\left(a_{l} \lambda\right)\right| \mathrm{d} \lambda & \leq \prod_{l \in \mathcal{K}}\left(\int_{\mathbb{R}} h_{k}(\lambda)\left|\psi\left(a_{l} \lambda\right)\right|^{K} \mathrm{~d} \lambda\right)^{1 / K} \tag{F.4}\\
& \leq \max _{l \in \mathcal{K}} \int_{\mathbb{R}} h_{k}(\lambda)\left|\psi\left(a_{l} \lambda\right)\right|^{K} \mathrm{~d} \lambda \\
& =c_{k}^{-1} \max _{l \in \mathcal{K}} \int_{\mathbb{R}} h_{k}\left(c_{k}^{-1} \lambda\right)\left|\psi\left(c_{k}^{-1} a_{l} \lambda\right)\right|^{K} \mathrm{~d} \lambda . \tag{F.5}
\end{align*}
$$

We proceed by handling this integral separately on the domains $\left[-\eta_{0}, \eta_{0}\right.$] and $\left[-\eta_{0}, \eta_{0}\right]^{c}$. In the first case, we use $h_{k}(\lambda) \leq z_{1}\left|a_{k}\right|^{p}|\lambda|^{p+q} F\left(a_{k} \lambda\right)$, and are thus led to consider

$$
\begin{align*}
& c_{k}^{-1} \max _{l \in \mathcal{K}} \int_{\left[-\eta_{0}, \eta_{0}\right]} h_{k}\left(c_{k}^{-1} \lambda\right)\left|\psi\left(c_{k}^{-1} a_{l} \lambda\right)\right|^{K} \mathrm{~d} \lambda \tag{F.6}\\
&=c_{k}^{-(1+p+q)}\left|a_{k}\right|^{p} \int_{\left[-\eta_{0}, \eta_{0}\right]}|\lambda|^{p+q} F\left(c_{k}^{-1} a_{k} \lambda\right)\left|\psi\left(c_{k}^{-1} a_{l} \lambda\right)\right|^{K} \mathrm{~d} \lambda \\
& \lesssim c_{k}^{-(1+q)} \int_{\left[-\eta_{0}, \eta_{0}\right]}|\lambda|^{p+q} F\left(c_{k}^{-1} a_{k} \lambda\right) \mathrm{e}^{-\gamma_{0} K|\lambda|^{\alpha} G(\lambda)} \mathrm{d} \lambda
\end{align*}
$$

using (9.4) and Lemma F.1. Now let $r(\lambda):=|\lambda|^{\alpha} G(\lambda)$; as noted in Jeganathan (2004, p. 1774), the sequence $b_{n}:=n^{1 / \alpha} \varrho_{n}$ satisfies

$$
\begin{equation*}
r\left(b_{n}^{-1}\right)=b_{n}^{-\alpha} G\left(b_{n}^{-1}\right) \sim n^{-1} \tag{F.7}
\end{equation*}
$$

as $n \rightarrow \infty$. Therefore, setting $\mu=\lambda b_{K}$, we obtain

$$
K \cdot r(\lambda)=K \cdot r\left(\mu b_{K}^{-1}\right) \gtrsim \frac{r\left(\mu b_{K}^{-1}\right)}{r\left(b_{K}^{-1}\right)} \gtrsim|\mu|^{\alpha / 2}
$$

since r is regularly varying at zero, with index α. Further, recalling (9.4), we have

$$
\begin{aligned}
F\left(c_{k}^{-1} a_{k} b_{K}^{-1} \mu\right) & =F\left(c_{k}^{-1} a_{k} b_{K}^{-1}\right) \frac{F\left(c_{k}^{-1} a_{k} b_{K}^{-1} \mu\right)}{F\left(c_{k}^{-1} a_{k} b_{K}^{-1}\right)} \\
& \lesssim G^{p / \alpha}\left(b_{K}^{-1}\right)|\mu|^{-\epsilon} \\
& \lesssim K^{-p / \alpha} b_{K}^{p}|\mu|^{-\epsilon}
\end{aligned}
$$

for any $\epsilon>0$, using the fact that F is slowly varying, $F(u) \asymp G^{p / \alpha}(u)$ as $u \rightarrow 0$, and (F.7). Hence, by a change of variables, the right side of (F.6) may be bounded by

$$
\begin{align*}
c_{k}^{-(1+q)} b_{K}^{-(1+p+q)} & \int_{\left[-\eta_{0} b_{K}, \eta_{0} b_{K}\right]}|\mu|^{p+q} F\left(c_{k}^{-1} a_{k} b_{K}^{-1} \mu\right) \mathrm{e}^{-\gamma_{0} K \cdot r\left(\mu b_{K}^{-1}\right)} \mathrm{d} \mu \\
& \lesssim c_{k}^{-(1+q)} K^{-p / \alpha} b_{K}^{-(1+q)} \int_{\mathbb{R}}|\mu|^{p+q-\epsilon} \mathrm{e}^{-C|\mu|^{\alpha / 2}} \mathrm{~d} \mu \\
& \lesssim c_{k}^{-(1+q)} k^{-p / \alpha} b_{k}^{-(1+q)} \\
& =k^{-p / \alpha} d_{k}^{-(1+q)} \tag{F.8}
\end{align*}
$$

since $\lceil k / 4\rceil \leq K \leq k$, and $b_{k} c_{k}=n^{1 / \alpha} c_{k} \varrho_{k}=d_{k}$.
Since $h_{k}(\lambda) \leq z_{2}$, to complete the proof we need only to consider

$$
c_{k}^{-1} \int_{\left[-\eta_{0}, \eta_{0}\right]^{c}}\left|\psi\left(c_{k}^{-1} a_{l} \lambda\right)\right|^{K} \mathrm{~d} \lambda .
$$

Thence, taking a $\mathcal{K}^{\prime} \subseteq \mathcal{K}$ with $\# \mathcal{K}^{\prime}=\lceil k / 8\rceil$,

$$
\begin{align*}
c_{k}^{-1} \int_{\left[-\eta_{0}, \eta_{0}\right] c}\left|\psi\left(c_{k}^{-1} a_{l} \lambda\right)\right|^{K} \mathrm{~d} \lambda & \leq c_{k}^{-1} \mathrm{e}^{-\gamma_{0}(K-\lceil k / 8\rceil)} \int_{\mathbb{R}}\left|\psi\left(c_{k}^{-1} a_{l} \lambda\right)\right|^{\lceil k / 8\rceil} \mathrm{d} \lambda \\
& \lesssim \mathrm{e}^{-\gamma_{1} k} \tag{F.9}
\end{align*}
$$

for any $\gamma_{1} \in\left(0, \gamma_{0} / 8\right)$; note that the right hand integral is finite because $\psi \in L^{p_{0}}$, and $\lceil k / 8\rceil \geq k_{0} / 8 \geq p_{0}$, and again the uniform boundedness of $c_{k}^{-1} a_{l}$ follows from (9.4). Thus (F.5), (F.8) and the preceding yield

$$
\begin{equation*}
\int_{\mathbb{R}} h_{k}(\lambda) \prod_{l \in \mathcal{K}}\left|\psi\left(a_{l} \lambda\right)\right| \mathrm{d} \lambda \lesssim z_{1} k^{-p / \alpha} d_{k}^{-(1+q)}+z_{2} \mathrm{e}^{-\gamma_{1} k} \tag{F.10}
\end{equation*}
$$

Proof of Lemma 9.2. Recall from (9.3) the decompositions

$$
x_{t+1, t+k, t+k}^{\prime}=\sum_{l=0}^{k-1} a_{l} \epsilon_{t+k-l} \quad x_{t-s+1, t-1, t+k}^{\prime}=\sum_{l=k+1}^{k+s-1} a_{l} \epsilon_{t+k-l} .
$$

Thence

$$
\left|\mathbb{E}^{-\mathrm{i} \lambda x_{t+1, t+k, t+k}^{\prime}}\right| \leq \prod_{l=\lfloor k / 2\rfloor+1}^{k-1}\left|\psi\left(-\lambda a_{l}\right)\right|
$$

whereupon (i) follows immediately from Lemma F.2. The proof of (ii) requires a slight modification of the arguments used to prove Lemma F.2. Since

$$
\left|\mathbb{E}^{-\mathrm{i} \lambda x_{t-s+1, t-1, t+k}^{\prime}}\right| \leq \prod_{l=k+\lfloor s / 2\rfloor}^{k+s-1}\left|\psi\left(-\lambda a_{l}\right)\right|,
$$

the problem reduces to one of controlling

$$
c_{k+s}^{-1} \max _{l \in \mathcal{K}} \int_{\mathbb{R}}\left|\psi\left(c_{k+s}^{-1} a_{l} \lambda\right)\right|^{K} \mathrm{~d} \lambda,
$$

as per (F.5) above, where $K:=\# \mathcal{K}$ for

$$
\mathcal{K}:=\{l \in \mathbb{N} \mid k+\lfloor s / 2\rfloor \leq l \leq k+s-1\} .
$$

Thus in this case, the same arguments as which led to (F.8) and (F.9) now yield

$$
c_{k+s}^{-1} \max _{l \in \mathcal{K}} \int_{\mathbb{R}}\left|\psi\left(c_{k+s}^{-1} a_{l} \lambda\right)\right|^{K} \mathrm{~d} \lambda \lesssim c_{k+s}^{-1}\left(b_{K}^{-1}+\mathrm{e}^{-\gamma_{1} K}\right) \lesssim \frac{c_{K}}{c_{k+s}} d_{K}^{-1} \lesssim \frac{c_{s}}{c_{k+s}} d_{s}^{-1},
$$

since $\left\{c_{k}\right\}$ and $\left\{d_{k}\right\}$ are regularly varying, and $s / 3 \leq K \leq 2 s / 3$.

Proof of Lemma 9.3.

(i). Recall from (9.2) the decomposition

$$
\begin{equation*}
x_{t+k}=x_{t, t+k}^{*}+x_{t+1, t+k, t+k}^{\prime} . \tag{F.11}
\end{equation*}
$$

Let \tilde{f} denote the Fourier transform of $x \mapsto|f(x)|$, noting that $|\tilde{f}(\lambda)| \leq\|f\|_{1}$. Thence by Fourier inversion and Lemma 9.2(i),

$$
\begin{aligned}
\mathbb{E}_{t}\left|f\left(x_{t+k}\right)\right| & =\left\lvert\, \frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{f}(\lambda) \mathrm{e}^{-\mathrm{i} \lambda x_{t, t+k}^{*} \mathbb{E}}\left[\mathrm{e}^{\left.-\mathrm{i} \lambda x_{t+1, t+k, t+k}^{\prime}\right] \mathrm{d} \lambda \mid}\right.\right. \\
& \lesssim\|f\|_{1} \int_{\mathbb{R}}\left|\mathbb{E} \mathrm{e}^{-\mathrm{i} \lambda x_{t+1, t+k, t+k}^{\prime}}\right| \mathrm{d} \lambda \\
& \lesssim\|f\|_{1} d_{k}^{-1} .
\end{aligned}
$$

(ii). By (F.11), Fourier inversion, Lemma 9.1(i) and then Lemma 9.2(i),

$$
\begin{aligned}
\left|\mathbb{E}_{t} f\left(x_{t+k}\right)\right| & \lesssim \int_{\mathbb{R}}|\hat{f}(\lambda)|\left|\mathbb{E} \mathrm{e}^{-\mathrm{i} \lambda x_{t+1, t+k, t+k}^{\prime}}\right| \mathrm{d} \lambda \\
& \leq \int_{\mathbb{R}}\left(\|f\|_{[\beta]}|\lambda|^{\beta} \wedge\|f\|_{1}\right)\left|\mathbb{E} \mathrm{e}^{-\mathrm{i} \lambda x_{t+1, t+k, t+k}^{\prime}}\right| \mathrm{d} \lambda \\
& \lesssim\|f\|_{[\beta]} d_{k}^{-(1+\beta)}+\|f\|_{1} \mathrm{e}^{-\gamma_{1} k} .
\end{aligned}
$$

Proof of Lemma 9.4. Using Jensen's inequality and $\left|\mathrm{e}^{\mathrm{i} x}-1\right| \lesssim|x| \wedge 1$, we obtain that for any $\lambda \in \mathbb{R}$,

$$
\begin{align*}
\mathbb{E}\left|\mathrm{e}^{-\mathrm{i} \lambda \epsilon_{0}}-\mathbb{E} \mathrm{e}^{-\mathrm{i} \lambda \epsilon_{0}}\right|^{2} & =\mathbb{E}\left|\left(\mathrm{e}^{-\mathrm{i} \lambda \epsilon_{0}}-1\right)-\mathbb{E}\left(\mathrm{e}^{-\mathrm{i} \lambda \epsilon_{0}}-1\right)\right|^{2} \tag{F.12}\\
& \leq 2 \mathbb{E}\left[\left|\mathrm{e}^{-\mathrm{i} \lambda \epsilon_{0}}-1\right|^{2}+\left(\mathbb{E}\left|\mathrm{e}^{-\mathrm{i} \lambda \epsilon_{0}}-1\right|\right)^{2}\right] \\
& \leq 2 \mathbb{E}\left|\mathrm{e}^{-\mathrm{i} \lambda \epsilon_{0}}-1\right|^{2} \\
& \lesssim \mathbb{E}\left[\left|\lambda \epsilon_{0}\right|^{2} \wedge 1\right] .
\end{align*}
$$

To obtain a bound for the final term, let F denote the distribution function of ϵ_{0}; following Ibragimov and Linnik (1971, Sec. 2.6), we define

$$
\chi(x):=1-F(x)+F(-x) \sim x^{\alpha} l(x)
$$

for $x>0$, where l is slowly varying at infinity, and

$$
L(x):=-\int_{0}^{x} u^{2} \mathrm{~d} \chi(u) .
$$

Then

$$
\begin{aligned}
\mathbb{E}\left[\left(\lambda \epsilon_{0}\right)^{2} \wedge 1\right] & =\left[\int_{\left[-\lambda^{-1}, \lambda^{-1}\right]}+\int_{\left[-\lambda^{-1}, \lambda^{-1}\right] c}\left(\left(\lambda \epsilon_{0}\right)^{2} \wedge 1\right) \mathrm{d} F(\epsilon)\right. \\
& =\lambda^{2} \int_{\left[-\lambda^{-1}, \lambda^{-1}\right]} \epsilon^{2} \mathrm{~d} F(\epsilon)+\int_{\left[-\lambda^{-1}, \lambda^{-1}\right] c} \mathrm{~d} F(\epsilon) \\
& =-\lambda^{2} \int_{0}^{\lambda^{-1}} \epsilon^{2} \mathrm{~d} \chi(\epsilon)+1-F\left(\lambda^{-1}\right)+F\left(-\lambda^{-1}\right) \\
& =\lambda^{2} L\left(\lambda^{-1}\right)+\chi\left(\lambda^{-1}\right) .
\end{aligned}
$$

Now by Theorem 2.6.3 and (2.6.24) in Ibragimov and Linnik (1971), we have

$$
\begin{equation*}
\chi\left(\lambda^{-1}\right)=\lambda^{2} \cdot \lambda^{-2} \chi\left(\lambda^{-1}\right) \asymp \lambda^{2} L\left(\lambda^{-1}\right) \tag{F.13}
\end{equation*}
$$

when $\alpha \in(0,2)$, and

$$
\chi\left(\lambda^{-1}\right) \lesssim \lambda^{2} L\left(\lambda^{-1}\right)
$$

when $\alpha=2$, for λ in a neighbourhood of zero. Thus, defining

$$
\tilde{G}(\lambda):=|\lambda|^{2-\alpha} L\left(\lambda^{-1}\right)
$$

it follows that

$$
\mathbb{E}\left[\left(\lambda \epsilon_{0}\right)^{2} \wedge 1\right] \lesssim|\lambda|^{\alpha} \tilde{G}(\lambda) .
$$

That $\tilde{G}(\lambda) \asymp G(\lambda)$ as $\lambda \rightarrow 0$ is evident from (F.13) and the proof of Theorem 2.6.5 in Ibragimov and Linnik (1971): see their (2.6.38) and (2.6.39), in particular.

Since the left side of (F.12) is also bounded by 4, we thus have

$$
\mathbb{E}\left|\mathrm{e}^{-\mathrm{i} \lambda \epsilon_{0}}-\mathbb{E} \mathrm{e}^{-\mathrm{i} \lambda \epsilon_{0}}\right|^{2} \lesssim|\lambda|^{\alpha} \tilde{G}(\lambda) \wedge 1
$$

Hence, by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\vartheta\left(z_{1}, z_{2}\right) & \leq\left(\mathbb{E}\left|\mathrm{e}^{-\mathrm{i} z_{1} \epsilon_{0}}-\mathbb{E} \mathrm{e}^{-\mathrm{i} z_{1} \epsilon_{0}}\right|^{2}\right)^{1 / 2}\left(\mathbb{E}\left|\mathrm{e}^{-\mathrm{i} z_{2} \epsilon_{0}}-\mathbb{E} \mathrm{e}^{-\mathrm{i} z_{2} \epsilon_{0}}\right|^{2}\right)^{1 / 2} \\
& \lesssim\left[\left|z_{1}\right|^{\alpha} \tilde{G}\left(z_{1}\right) \wedge 1\right]^{1 / 2}\left[\left|z_{2}\right|^{\alpha} \tilde{G}\left(z_{2}\right) \wedge 1\right]^{1 / 2} .
\end{aligned}
$$

G. Proof of (10.1). Note first that

$$
\begin{aligned}
& \mathbb{E}\left|\mathcal{V}_{n k} f\right|^{p}=\mathbb{E}\left(\sum_{t=1}^{n-k} \mathbb{E}_{t-1} \xi_{k t}^{2} f\right)^{p} \\
& \leq p!\cdot \sum_{t_{1}=1}^{n-k} \cdots \sum_{t_{p-1}=t_{p-2}}^{n-k} \sum_{t_{p}=t_{p-1}}^{n-k} \\
& \mathbb{E}\left[\mathbb{E}_{t_{1}-1}\left(\xi_{k t_{1}}^{2} f\right) \cdots \mathbb{E}_{t_{p-1}-1}\left(\xi_{k t_{p-1}}^{2} f\right) \cdot \mathbb{E}_{t_{p}-1}\left(\xi_{k t_{p}}^{2} f\right)\right]
\end{aligned}
$$

and that by the law of iterated expectations, when $t_{p-1}<t_{p}$,

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{E}_{t_{1}-1}\left(\xi_{k t_{1}}^{2} f\right) \cdots \mathbb{E}_{t_{p-1}-1}\left(\xi_{k t_{p-1}}^{2} f\right) \cdot \mathbb{E}_{t_{p}-1}\left(\xi_{k t_{p}}^{2} f\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}_{t_{1}-1}\left(\xi_{k t_{1}}^{2} f\right) \cdots \mathbb{E}_{t_{p-1}-1}\left(\xi_{k t_{p-1}}^{2} f\right) \cdot \mathbb{E}_{t_{p-1}-1}\left(\xi_{k t_{p}}^{2} f\right)\right] \\
& \quad \leq\left\|\mathbb{E}_{t_{p-1}-1} \xi_{k t_{p}}^{2} f\right\|_{\infty} \mathbb{E}\left[\mathbb{E}_{t_{1}-1}\left(\xi_{k t_{1}}^{2} f\right) \cdots \mathbb{E}_{t_{p-1}-1}\left(\xi_{k t_{p-1}}^{2} f\right)\right]
\end{aligned}
$$

When $t_{p}=t_{p-1}$, we may instead use

$$
\begin{aligned}
\left(\mathbb{E}_{t_{p}-1} \xi_{k t}^{2} f\right)^{2} & \leq\left\|\mathbb{E}_{t_{p-1}-1} \xi_{k t_{p-1}}^{2} f\right\|_{\infty} \mathbb{E}_{t_{p-1}-1} \xi_{k t_{p-1}}^{2} f \\
& \leq\left\|\xi_{k t_{p-1}}^{2} f\right\|_{\infty} \mathbb{E}_{t_{p-1}-1} \xi_{k t_{p-1}}^{2} f .
\end{aligned}
$$

Thus $\mathbb{E}\left|\mathcal{V}_{n k} f\right|^{p}$ is bounded by

$$
\begin{aligned}
& p!\cdot \sum_{t_{1}=1}^{n-k} \cdots \sum_{t_{p-1}=t_{p-2}}^{n-k} \mathbb{E}\left[\mathbb{E}_{t_{1}-1}\left(\xi_{k t_{1}}^{2} f\right) \cdots \mathbb{E}_{t_{p-1}-1}\left(\xi_{k t_{p-1}}^{2} f\right)\right] \\
& \cdot\left(\left\|\xi_{k t_{p-1}}^{2} f\right\|_{\infty}+\sum_{s=1}^{n-k-t_{p-1}}\left\|\mathbb{E}_{t_{p-1}-1} \xi_{k, t_{p-1}+s}^{2} f\right\|_{\infty}\right)
\end{aligned}
$$

References.

Bercu, B., AND A. Touati (2008): "Exponential inequalities for self-normalized martingales with applications," Annals of Applied Probability, 18(5), 1848-69.
Feller, W. (1971): An Introduction to Probability Theory and its Applications, vol. II. Wiley, New York, USA.
Ibragimov, I. A., AND Y. V. Linnik (1971): Independent and stationary sequences of random variables. Wolters-Noordhoff, Groningen (Netherlands).
Jeganathan, P. (2004): "Convergence of functionals of sums of r.v.s to local times of fractional stable motions," Annals of Probability, 32, 1771-95.
(2008): "Limit theorems for functionals of sums that converge to fractional Brownian and stable motions," Cowles Foundation Discussion Paper No. 1649, Yale University.

Rudin, W. (1976): Principles of Mathematical Analysis. McGraw-Hill, USA, 3 edn.
Stein, E. M., AND G. Weiss (1971): Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ, USA.
van der Vaart, A. W. (1998): Asymptotic Statistics. C.U.P., Cambridge (UK).
van der Vaart, A. W., And J. A. Wellner (1996): Weak Convergence and Empirical Processes: with applications to statistics. Springer, New York (USA).
von Bahr, B., And C.-G. Esseen (1965): "Inequalities for the r th absolute moment of a sum of random variables, $1 \leq r \leq 2$," Annals of Mathematical Statistics, 36(1), 299-303.
Wang, Q., And P. C. B. Phillips (2009): "Structural nonparametric cointegrating regression," Econometrica, 77(6), 1901-48.

H. List of notation.

Greek and Roman symbols. Listed in (Roman) alphabetical order. Greek symbols are listed according to their English names: thus Ω, as 'omega', appears before ξ, as 'xi'.

a_{i}	partial sum of $\left\{\phi_{i}\right\}, a_{i}:=\sum_{j=0}^{i} \phi_{j}$	Sec. 9		
α	index of domain of attraction of ϵ_{0}	Ass. 1(i)		
$\bar{\beta}_{H}$	upper bound for β, depends on H	(4.6)		
BI	bounded and integrable functions on \mathbb{R}	Sec. 1.1		
BI_{β}	$f \in$ BI with $\int\|f(x) \\| x\|^{\beta} \mathrm{d} x<\infty$	(3.2)		
$\mathrm{BI}_{[\beta]}$	$f \in \mathrm{BI}$ with $\\|f\\|_{[\beta]}<\infty$	Sec. 4.2		
BIL_{β}	Lipschitz functions in BI_{β}	Sec. 3		
c_{n}	norming sequence	(2.3)		
C	generic constant	Sec. 1.1		
d_{n}	norming sequence used to define X_{n}	(2.4)		
$\delta_{n}(\beta, \mathscr{F})$	appears in Proposition 4.2	(4.8)		
e_{n}	norming sequence used to define \mathcal{L}_{n}^{f}	(2.4)		
ϵ_{t}	i.i.d. sequence	Ass. 1(i)		
\mathbb{E}_{t}	expectation conditional on $\mathcal{F}_{-\infty}^{t}$	Sec. 7.1		
\mathcal{F}_{s}^{t}	σ-field generated by $\left\{\epsilon_{r}\right\}_{r=}^{t}$	Sec. 7.1		
\mathscr{F}	subset of BI	Ass. 3		
G	specific slowly varying function	(9.5)		
h, h_{n}	bandwidth parameter (or sequence)	(3.1), (5.1)		
$\underline{h}_{n}, \bar{h}_{n}$	lower and upper bounds defining \mathscr{H}_{n}	Ass. 2		
H	sets the decay rate of ϕ_{k} as $k \rightarrow \infty$	Ass. 1(ii)		
\mathscr{H}_{n}	set of allowable bandwidths	Ass. 2		
$\ell_{\text {ucc }}(Q)$	bounded functions on Q, with ucc topology .	Sec. 1.1		
$\ell_{\infty}(Q)$	bounded functions on Q, with uniform topology	Sec. 1.1		
\mathcal{L}	local time of X	Rem. 2.5		
\mathcal{L}_{n}^{f}	sample estimate of local time	(3.1)		
$\mathcal{M}_{n k} f$	martingale components in decomposition of $\mathcal{S}_{n} f$	(7.4)		
$\mathcal{N}_{n} f$	remainder from decomposition of $\mathcal{S}_{n} f$	(7.4)		
$N_{[]}^{*}(\epsilon, \mathscr{F})$	number of continuous ϵ-brackets to cover \mathscr{F}	Sec. 3		
Ω	sample space.	Sec. 8		
ϕ_{k}	coefficients defining the linear process v_{t}.	Ass. 1(ii)		

φ	triangular kernel function	(4.2)
ψ	characteristic function of ϵ_{0}	Ass. 1(i)
ϱ_{n}	norming sequence	(2.2)
\mathcal{S}_{n}	summation operator, $\mathcal{S}_{n} f:=\sum_{t=1}^{n} f\left(x_{t}\right)$	(4.4)
$\tau_{2 / 3}$	specific convex and increasing function	(4.7)
τ_{1}	function $x \mapsto \mathrm{e}^{x}-1$	Sec. 7
v_{t}	linear process built from $\left\{\epsilon_{t}\right\}$	(2.1)
x_{t}	partial sum of $\left\{v_{t}\right\}$	(2.1)
$x_{s, t}^{*}$	$\mathcal{F}_{-\infty}^{s}$-measurable component of x_{t}	(9.2)
$x_{s, r, t}^{\prime}$	\mathcal{F}_{s}^{r}-measurable component of x_{t}	(9.3)
X	finite-dimensional limit of X_{n}, an LFSM	(2.6)
X_{n}	process constructed from $\left\{x_{t}\right\}$	(2.5)
$\xi_{k t} f$	martingale difference components of $\mathcal{M}_{n k} f$	(7.3)
Z_{α}	α-stable Lévy motion	Rem. 2.1

Symbols not connected to Greek or Roman letters. Ordered alphabetically by their description.

$={ }_{d}$	both sides have the same distribution	Rem. 3.2		
$\lceil\cdot\rceil$	ceiling function	Sec. 1.1		
\xrightarrow{p}	converges in probability to	Sec. 7.1		
${ }^{\text {f }}$ fdd	finite-dimensional convergence	Sec. 4.2		
$\lfloor\cdot\rfloor$	floor function (integer part)	Sec. 1.1		
$\\|\cdot\\|_{[\beta]}$	fourier transform modulus (at origin) norm	(4.5)		
\hat{f}	fourier transform of f	Sec. 4.2		
\lesssim	left side bounded by a constant times the right side	Sec. 1.1		
$\lesssim p$	left side bounded in probability by the right side . . $\left(a_{n} \lesssim_{p} b_{n}\right.$ if $\left.a_{n}=O_{p}\left(b_{n}\right)\right)$	Sec. 4.2		
$\\|f\\|_{p}$	L^{p} norm, $\left(\int\|f\|^{p}\right)^{1 / p}$, for function $f \ldots \ldots \ldots \ldots \ldots$. denotes $\sup _{x \in \mathbb{R}}\|f(x)\|$ when $p=\infty$	Sec. 1.1		
$\\|X\\|_{p}$	L^{p} norm, $\left(\mathbb{E}\|X\|^{p}\right)^{1 / p}$, for random variable X	Sec. 1.1		
$\langle M\rangle$	martingale conditional variance	(7.1)		
[M]	martingale sum of squares	(7.1)		
$\\|X\\|_{\tau}$	Orlicz norm associated to function τ	Sec. 4.2		

\sim	strong asymptotic equivalence $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	Sec. 4.2						
	$\left(a_{n} \sim b_{n}\right.$ if $\left.\lim _{n \rightarrow \infty} a_{n} / b_{n}=1\right)$							
$\\|\mathscr{F}\\|$	supremum of norm $\\|\cdot\\|$ over $\mathscr{F}: \sup _{f \in \mathscr{F}}\\|f\\| \ldots \ldots \ldots$	Sec. 4.2						
\asymp	weak asymptotic equivalence $\ldots \ldots \ldots \ldots \ldots \ldots$	Sec. 4.2						
	$\left(a_{n} \asymp b_{n}\right.$ if $\left.\lim _{n \rightarrow \infty} a_{n} / b_{n} \in(-\infty, \infty) \backslash\{0\}\right)$							
\rightsquigarrow	weak convergence (van der Vaart and Wellner, 1996)	Sec. 1.1						

