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Abstract

This paper proposes a class of partial cointegrated models allowing for struc-
tural breaks in their deterministic terms. Details of the proposed models and their
moving-average representations are examined. It is then shown that, under the
assumption of martingale di¤erence innovations, the limit distributions of partial
quasi-likelihood ratio tests for cointegrating rank have a close connection to those
for standard full models. This connection facilitates a response surface analysis
which is required to extract critical information about moments from large-scale
simulation studies. An empirical illustration of the proposed methodology is also
provided. This paper renders partial cointegrated models more �exible and reliable
devices for the study of non-stationary time series data with structural breaks.

JEL classi�cation: C12, C32, C50.
Keywords: Partial cointegrated vector autoregressive models, Structural breaks,
Deterministic terms, Weak exogeneity, Cointegrating rank, Response surface.

1 Introduction

Partial cointegration models with structural shifts in level or linear trends are quite com-
mon in practice; yet, no formal analysis is available for these models. The likelihood
analysis of the partial models with such breaks is based on reduced rank regression, just
like standard full cointegrated vector autoregressive models introduced by Johansen (1988,
1995). The main di¤erence lies in the fact that likelihood-based tests for cointegrating
rank in the partial models involve a set of new asymptotic distributions which re�ect the
combination of weakly exogenous regressors and broken deterministic terms. We gener-
alise the standard assumption of normal innovations (see Johansen, 1995) to a �exible
class of heterogeneous martingale di¤erence innovations. We then derive the asymptotic
distributions of the test statistics in question and also simulate their response surfaces
that are applicable to a wide range of situations.
The presented models combine two widely used extensions of Johansen�s original

model. The �rst extension was a partial cointegrated system investigated by Harbo,
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Johansen, Nielsen and Rahbek (1998), referred to as HJNR henceforth. This partial sys-
tem is a conditional vector autoregressive model for a vector of variables, Yt, given another
vector of variables, Zt, as well as lags of both variables. They also presented simulated
tables for asymptotic rank test distributions based on the partial system. Boswijk (1995)
and Ericsson and MacKinnon (2002) explored the use of conditional autoregressive mod-
els. Recently Cavaliere, De Angelis and Fanelli (2018) have explored how to turn these
HNJR test statistics into information criteria. The second extension was a full cointe-
grated system allowing for structural breaks in a constant level or linear trend, a model
explored by Johansen, Mosconi and Nielsen (2000), referred to as JMN hereafter. This
full model is a multivariate extension of model C of Perron (1989), where both level and
linear trend slope are changed at the time of the break, as opposed to his models A and
B, in which only one of the two is changing. Deterministic breaks in cointegrated systems
have also been explored by Inoue (1999) and Hendry and Massmann (2007).
Each of the above two extensions has proved to be useful in empirical applications;

furthermore, subsequent practical work has shown that we frequently require both of the
two extensions simultaneously. As an example, Bårdsen, Eitrheim, Jansen and Nymoen
(2005) built a large scale model of the Norwegian economy by combining a number of
smaller partial cointegration models. Each of these sub-systems is regarded as a partial
model subject to structural shifts, and these types of models are useful in a practical
sense for empirical macroeconomic research. As it stands, however, the exact asymptotic
properties of likelihood-based test statistics derived from the partial models with struc-
tural breaks are unknown, so that a formal econometric study based on these models is
unfeasible. This paper, therefore, conducts both analytical and simulation-based inves-
tigations into the unknown asymptotic properties, in order that researchers can perform
a formal analysis using the partial models with structural breaks. Another example of
these partial models is a trade model for the UK by Schreiber (2015), which we are going
to use as an empirical illustration later in this paper.
This paper shows that the asymptotic distributions of the proposed likelihood-based

test statistics are dependent on information about the dimension of the variables Yt and Zt,
cointegrating rank, the number of breaks and their locations; but the distributions them-
selves are free of any unknown parameters. Hence, the limit distributions can be simulated
given the above information, as in a manner similar to Johansen (1995, §15), HJNR or
MacKinnon, Haug and Michelis (1999). The Granger-Johansen representation for the full
model in JMN is also reexamined as a basis for the required asymptotic study, and this
reexamination can be viewed as a useful clari�cation of roles of a set of starting values
in the workings of the system. It should be noted that a condition for weak exogeneity
reviewed in Section 2 is assumed to be satis�ed when exploring the properties of the
test statistics; the violation of this condition can give rise to a class of limit results un-
favourable in applications, as discussed by Johansen (1992a). This assumption is testable
by following an ex-post testing procedure suggested by Johansen (1992a) and others. We
demonstrate this procedure in the empirical illustration in Section 4.
In deriving the asymptotic distributions of the test statistics, the assumption of nor-

mal innovations in Johansen (1995), HJNR and JMN is relaxed to the assumption of
martingale di¤erence innovations, with a view to widening the scope of applications of
the proposed models. This means we have to be careful in developing asymptotic ar-
guments required for the quasi-likelihood ratio test statistics. We use martingale limit
results of Anderson and Kunitomo (1992) and Brown (1971) for approximately stationary

2



components and for non-stationary components, respectively.
Furthermore, it is shown that the derived asymptotic distributions can be approx-

imated by gamma distributions, a class of common statistical distributions identi�able
only by the �rst two moments; the validity of this gamma-distribution approximation
method in various other existing models was documented by Nielsen (1997), Doornik
(1998) and JMN. In demonstrating the applicability of this method to the proposed quasi-
likelihood ratio tests, this study utilises the following property: the parameters of gamma
distributions approximated to the limit distributions for the proposed partial models are
expressible in terms of the corresponding parameters for full models and estimable co-
variance terms. As a result, it is feasible to apply the gamma approximation method to
simulation results based on the full models, in order to obtain precise limit quantiles of
the test statistics for the proposed partial models.
This approximation via the full models saves a great deal of computational time.

It also contributes to a concise presentation of the simulation outcomes. Hence, we are
justi�ed in conducting comprehensive simulations in the full-model framework, the results
of which are applied to response surface regression involved in the gamma approximation
method. The outcomes of the regression analysis are tabulated in two tables, the accuracy
of which is veri�ed by moving back to the partial-model framework. The tables provide
information of practical use, allowing researchers to conduct formal applied studies with
the proposed partial models. A brief empirical study is also conducted to illustrate the
advantage of having these tables available for applied research.
Overall, this paper makes a valuable addition to literature on time series econometrics

and applied macroeconomics. As a result, the partial cointegrated models will be recog-
nised as more �exible and practical devices for modelling and analysing non-stationary
time series data containing structural breaks. Since the idea of JMN was extended to
modelling time series data integrated of order 2, denoted as I(2), by Kurita, Nielsen and
Rahbek (2011), the same type of extension of the present paper is also conceivable in
order to study partial I(2) cointegrated models subject to deterministic breaks. This may
be one of the important research directions to follow in the future.
The rest of this paper consists of four sections. Section 2 introduces partial cointe-

grated models subject to deterministic breaks and their moving-average representations.
Section 3 derives partial quasi likelihood-based tests for cointegrating rank allowing for
the breaks, and explores the limit distributions of the test statistics. In this section, a re-
sponse surface analysis is performed by using simulated distributions and then the results
of the analysis are summarised as a set of statistical tables. An empirical illustration of
the proposed methodology is provided in Section 4. Finally, Section 5 gives concluding
remarks. This study used Ox (Doornik, 2013) and PcGive (Doornik and Hendry, 2013)
to conduct the simulations and the empirical study, respectively.

2 Models and representations

This section introduces partial cointegrated vector autoregressive models in the presence
of deterministic breaks. Section 2.1 reviews the existing standard models known in the
literature, while Sections 2.2 - 2.4 provide details of the proposed new models.
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2.1 Previous models

The cointegrated vector autoregressive model was proposed by Johansen (1988, 1995).
Suppose that we observe a p-variate vector time series Xt integrated of order 1, denoted
as I(1) hereafter. In the presence of 2 lags, a constant and restricted linear trend, the
model equation for Xt, given cointegrating rank r � p, is

�Xt = �(�
0; )

�
Xt�1

t

�
+ ��Xt�1 + �+ "t for t = 3; : : : ; T; (1)

where the initial values X1 and X2 are �xed while p-vector innovations "3; : : : ; "T are
distributed as independent normal, denoted by Np(0;
). The parameters in equation
(1) are all variation free, de�ned as �; � 2 Rp�r,  2 Rr, � 2 Rp and �;
 2 Rp�p

with rank(�) = rank(�) = r and with 
 being positive de�nite. This model is interpreted
in terms of its Granger-Johansen representation. The likelihood function is maximised
through reduced rank regression of �Xt on the vector of Xt�1; 1 corrected for �Xt�1.
The cointegrating rank r can be determined through a sequence of rank test statistics,
which have Dickey-Fuller type limit distributions depending on the number of common
trends, p� r in this case, and on the speci�cation of deterministic terms. Once the rank
is determined, asymptotic inference for the cointegrating vectors � and the adjustment
vectors � can be based on �2 distributions.
The partial model is derived from equation (1) to adjust to a situation where there are

exogenous regressors that are not necessarily analysed in the model equation. With a view
to setting up the partial model, let us introduce an integer m satisfying 0 � r � m < p,
so that we can decompose Xt into an m-vector Yt and a vector Zt of dimension p �m.
Decompose the parameters of equation (1) accordingly, which is referred to as the full
model henceforth, and also decompose its error sequence similarly to �nd

� =

�
�y
�z

�
, � =

�
�y
�z

�
; � =

�
�y
�z

�
; "t =

�
"y;t
"z;t

�
and 
 =

�

yy 
yz

zy 
zz

�
:

We also de�ne the population regression coe¢ cient ! = 
yz
�1zz , which leads to a class of
conditional coe¢ cients �y�z = �y�!�z, �y�z = �y�!�z and �y�z = �y�!�z: The partial
or conditional model for Yt given Zt is then presented as

�Yt = !�Zt + �y�z(�
0; )

�
Xt�1

t

�
+ �y�z�Xt�1 + �y�z + "y�z;t; (2)

where the conditional innovation sequence "y�z;t = "y;t � !"z;t is Nm(0;
yy�z) distributed,
so "y�z;t is independent of Zt and the overall past series, while its variance is


yy�z = 
yy � 
yz
�1zz 
zy: (3)

The marginal model for Zt is simply given as

�Zt = �z(�
0; )

�
Xt�1

t

�
+ �z�Xt�1 + �z + "z;t: (4)

Due to the conditioning of Yt on Zt, the innovations "y�z;t and "z;t are independent. Even
so, the cointegrating relationships �0Xt�1 + t form cross equation restrictions, so that
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maximum likelihood estimation needs to involve a joint analysis of (2) and (4). The rank
can be determined from a partial analysis using information criteria albeit without size
control as argued by Cavaliere, De Angelis and Fanelli (2018).
Weak exogeneity arises when �z = 0. In this case, the partial model and the marginal

model are unrelated and Zt is weakly exogenous for a class of parameters of interest,
�y, � and , in the sense of Engle, Hendry and Richard (1983). See also Johansen (1992
a,b; 1995, §8) and HJNR. Maximum likelihood estimation can be performed by analysing
the two models separately, i.e. the partial model is estimated by reduced rank regression
while the marginal model is by least squares regression. The maintained assumption is
that the joint vector Xt has r cointegrating relations and hence p � r common trends,
with the cointegrating relations being in the partial model for Yt. A notable feature of the
setup is that it is left unspeci�ed whether or not Zt is cointegrated. In a one-lag model Zt
will not be cointegrated, but with further lags Zt could be cointegrated since the short-run
dynamics are determined by both � and �; see HJNR (p. 390) for an example of these
models. HJNR explored an asymptotic theory for likelihood-based rank testing in the
partial model (2). The asymptotic distribution of HJNR�s rank test statistic is of the
Dickey-Fuller type, now depending on both m� r and p� r, which are the dimensions of
common trends for Yt and Xt, respectively.
Structural breaks in deterministic terms were included in the full model by JMN. The

idea is to consider, say, two sub-samples starting at time T0 and T1, respectively, for
0 = T0 < T1 < T2 = T . The dynamic parameters in the model are the same for both
sub-samples, while the parameters for deterministic terms can di¤er. In the model with
lag-length k = 2 the observations Tj�1 + 1; Tj�2 + 2 for j = 1; 2 are held back as initial
observations. Thus, the transition from one regime to the next is not modelled. A similar
idea was recently used in a structural time series model by Harvey and Thiele (2017).

2.2 The partial model with structural breaks

We are in a position to introduce a new model, a partial cointegrated model allowing
for structural breaks in its deterministic terms. Following JMN, we introduce a pre-
speci�ed number of sub-sample periods, q say, determined by the sub-sample structure
0 = T0 < T1 < � � � < Tq = T . The dynamic parameters are common across the sub-sample
periods, whereas the parameters for deterministic terms vary. For each period j and time
point t under 1 � j � q and Tj�1 + k < t � Tj, respectively, we extend the partial model
for Yt under �z = 0 to the one with q � 1 breaks and k lags:

�Yt = !�Zt + �y(�
0; j)

�
Xt�1

t

�
+

k�1X
i=1

�y�z;i�Xt�i + �y�z;j + "y�z;t; (5)

where j 2 Rr, �j = (�0y;j; �
0
z;j)

0 2 Rp and �y�z;j = �y;j � !�z;j for j = 1; : : : ; q, along
with �i = (�0y;i;�

0
z;i)

0 2 Rp�p and �y�z;i = �y;i � !�z;i for i = 1; : : : ; k � 1, and all the
other parameters were de�ned in the previous sub-section. Note that the parameters for
deterministic terms depend on j; indicating the presence of parameter shifts according to
regime changes. A class of initial observations XTj�1+1; : : : ; XTj�1+k plays the dual role
of capturing the transition from the previous regime, j � 1 and of serving as the initial
observations for the regime j. In some applications the transition between the regimes
may be longer than k observations, in which case more observations could be classi�ed as
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initial observations. The marginal model for Zt under �z = 0 is

�Zt =

k�1X
i=1

�z�Xt�i + �z;j + "z;t: (6)

As before, we can form a full model equation as in (1) for each sub-sample period. This
yields the model of JMN with the condition of weak exogeneity �z = 0 implicitly placed
on �. This model will be presented in the next sub-section.
The partial model can be formulated as a single equation for the full sample period it

terms of the following notation. Following JMN, we de�ne impulse dummy variables as

Dj;t =

�
1 for t = Tj�1,
0 otherwise,

for j = 1; :::; q and t = 1; : : : ; T;

so that Dj;t�i = 1 if t = Tj�1 + i, and also de�ne indicators for the e¤ective samples as

Ej;t =

Tj�Tj�1X
i=k+1

Dj;t�i =

�
1 for Tj�1 + k < t � Tj,
0 otherwise,

and Et = (E1;t; : : : ; Eq;t)
0 :

The whole-sample model equation then has the form

�Yt = !�Zt + �y (�
0; )

�
Xt�1

tEt

�
+

k�1X
i=1

�y�z;i�Xt�i + �y�zEt

+
kX
i=1

qX
j=2

'j;iDj;t�i + "y�z;t for t = k + 1; :::; T; (7)

where 'j;i 2 Rm represents a class of parameters forDj;t�i for i = 1; : : : ; k and j = 2; : : : ; q,
while the parameters  and �y�z are now rede�ned in a manner allowing for breaks as

 = (1; : : : ; q) 2 Rr�q and �y�z = (�y�z;1; : : : ; �y�z;q) 2 Rm�q;

which are used in the rest of this study. Equation (5), or its whole-sample form (7), is
referred to as the partial model with a broken linear trend term.

2.3 Representations

Various properties of the proposed partial model (5) will be analysed using the Granger-
Johansen representation of an I(1) process, which is formulated based on the full model
for Xt; thus, the representation is the same as that in JMN (2000, Theorem 2.1). In
JMN each sub-sample period is analysed conditionally on its initial observations. As a
result, the representation for each sub-sample period is the same as that in Johansen
(1995, Theorem 4.2). The initial values for each sub-sample can be large and thus be
in�uential even in the asymptotic context, but, when following the underlying argument
of JMN, one can see that such initial values do not play critical roles in the required
asymptotic analysis. We are going to clarify this point by demonstrating further details
of the representation than JMN. Following Kurita and Nielsen (2009), we implement this
clari�cation in two steps: �rst, we analyse a homogeneous equation, and then consider
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the roles of deterministic terms by moving to a non-homogeneous equation. For further
details, see the proof of Theorem 2.2 below.
For 1 � j � q and Tj�1 + k < t � Tj, the full model for Xt with deterministic breaks

is de�ned as a joint system of (5) and (6) in the following manner:

�Xt = �(�
0; j)

�
Xt�1

t

�
+

k�1X
i=1

�i�Xt�i + �j + "t; (8)

while the corresponding homogeneous equation is

� ~Xt = ��
0 ~Xt�1 +

k�1X
i=1

�i� ~Xt�i + "t; (9)

where ~Xt denotes a p-variate mean-zero vector time series. We then set up a companion
vector based on (9) and analyse a companion form of this equation. Several choices are
conceivable with respect to a companion form for (9) and we use the choice that appears,
for instance, in Hansen (2005). For the purpose of studying details of the representation,
we need an assumption for the parameters, Assumption 2.1 below, which is applicable to
both (8) and (9). Some additional notation is required. Johansen (1995, §3)�s notation
�? signi�es the p� (p�r) dimensional orthogonal complement to � of full column rank r,
so that (�; �?) is invertible and �

0
?� = 0, along with the normalization � = �(�

0�)�1; the
same notational conventions are applied to � of full column rank r. It is also necessary
to de�ne 	 = Ip �

Pk�1
i=1 �i:

Assumption 2.1 Assume that the roots of the characteristic polynomial,

A(z) = (1� z)Ip � ��0z �
k�1X
i=1

�i(1� z)zi;

are outside the complex unit circle or at unity; furthermore, assume that the matrices �
and � have full column rank r and that the square matrix �0?	�? has full rank p� r.

Given Assumption 2.1, we also need to de�ne C = �?(�
0
?	�?)

�1�0? for future ref-
erence, which is often referred to as the impact matrix in cointegration literature; see
Paruolo (1997) for inference on this matrix.
We are approaching the stage where the Granger-Johansen representation for each

sub-sample period is presented. For the homogeneous equation (9), let us de�ne

� =

0BBBBB@
� �1 � � � �k�1
0 Ip 0
...

. . .
...
0

0 � � � 0 Ip

1CCCCCA ; � =

0BBBBBB@
Ip 0 � � � 0

Ip �Ip
...

0
. . .

... 0
0 � � � 0 Ip �Ip

1CCCCCCA ; (10)

�0 =

�
�0 0
0 Ip(k�1)

�
�; ~Xt�1 =

0B@ Xt�1
...

Xt�k

1CA ; (11)

and � = (Ip; 0; : : : ; 0)0 together with r = r+ p (k � 1) : The representation is then given in
the theorem below, the proof of which is provided in Appendix B.
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Theorem 2.2 Suppose that Assumption 2.1 is ful�lled. Then, for 1 � j � q and Tj�1 +
k < t � Tj, an r-variate process �0 ~Xt derived from (9) satis�es

�0 ~Xt = (Ir + �
0�)�0 ~Xt�1 + �

0�"t with jeigen(Ir + �0�)j < 1; (12)

which is a stable �rst-order vector autoregression. Moreover, for 1 � j � q and Tj�1+k <
t � Tj, the solution to (9) is given as

~Xt = C
tX

s=Tj�1+k+1

"s + f(I � C	)��;C�1; C�2; � � � ; C�k�1g�0 ~Xt

� C(	;�1;�2; � � � ;�k�1)�~XTj�1+k; (13)

where �i = ��i � � � � � �k�1 for 1 � i � k � 1: Thus, for 1 � j � q and Tj�1 + k < t �
Tj, the variable Xt in (8) satis�es

Xt = C
tX

s=Tj�1+k+1

"s + (I � C	)���0 ~Xt � C
k�1X
i=1

�i

i�1X
`=0

� ~Xt�`

� C	 ~XTj�1+k + C
k�1X
i=1

�i

i�1X
`=0

� ~XTj�1+k�` + � c;j + � `;jt; (14)

for ~Xt = Xt � � c;j � � `;jt with the parameters � c;j and � `;j satisfying

	� l;j = ��
0(� c;j � � l;j) + �j and �0� l;j + j = 0:

Note that the initial observations for the j-th sub-sample in (14) are expressed in terms
of linear combinations of the mean-zero values ~XTj�1+1; : : : ;

~XTj�1+k, so that we can in
general argue that the the starting values for each sub-sample period do not play critical
roles in asymptotic analysis. This property was not explicitly examined in JMN. Thus,
Theorem 2.2 can be seen as a useful clari�cation of roles of the initial values in the full
cointegrated model subject to deterministic breaks. The Granger-Johansen representation
is utilised in proofs of asymptotic theorems in Section 3 under Assumption 2.1.
As an alternative to the above sub-sample representation, one can derive a joint rep-

resentation for the whole sample. For this purpose we need a full system equation for Xt

over the entire sample period. This equation is derived from a combination of (8) over
j = 1; : : : ; q augmented with dummies Dj;t�i and Ej;t, as in (7); that is,

�Xt = � (�
0; )

�
Xt�1

tEt

�
+

k�1X
i=1

�i�Xt�i + �Et +

kX
i=1

qX
j=2

�j;iDj;t�i + "t; (15)

where �j;i 2 Rp for i = 1; : : : ; k and j = 2; : : : ; q, and � = (�1; : : : ; �q) 2 Rp�q; see
equation (2.6) in JMN. We then replace the innovations "t with "Dt = "t+�tEt+ �Et+Pk

i=1

Pq
j=2 �j;iDj;t�i to reach a whole-sample representation such as

Xt � C
tX

s=k+1

"Ds + C1(L)"
D
t + A for k < t � T; (16)
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whereC1(L)"Dt denotes a moving-average process whose coe¢ cients decrease exponentially
fast, and A depends on initial observations X1; : : : ; Xk, satisfying �

0A = 0: As before the
deterministic parts of the common trends C

PT
s=k+1 "

D
s will be piecewise constant since

C� = 0, so that each constant fails to cumulate to a linear trend. A similar approach
was adopted in I(2) cointegration analysis by Kurita, Nielsen and Rahbek (2011). The
representation (16) is clear and concise, but the transition from one regime to another
is considered to be explicitly autoregressive, which may leave less �exibility to repre-
sent regime transitions of some persistent and messy nature. For the asymptotic study
conducted below, we follow JMN by using the sub-sample representation (14).

2.4 The partial model with shifts in the level

In some applications it su¢ ces to exclude the broken linear trend term and just include
shifts in the level (a broken constant). By restricting the broken constant term within the
cointegrating space, equation (7) for 1 � j � q and Tj�1 + k < t � Tj is reduced to

�Yt = !�Zt + �y (�
0; )

�
Xt�1

Et

�
+

k�1X
i=1

�y�z;i�Xt�i +
kX
i=1

qX
j=2

'j;iDj;t�i + "y�z;t: (17)

The Granger-Johansen representation has the same form as (14) but is subject to

�0� c;j + 
0
j = 0 and � `;j = 0:

3 Testing for cointegrating rank in the partial models

This section addresses the issue of testing for cointegrating rank in the suggested partial
models with deterministic shifts. Section 3.1 introduces a partial likelihood ratio test for
the choice of rank based on the broken linear-trend model and Section 3.2 derives its limit
distribution. Section 3.3 then turns to the broken constant model and examines the test
statistic based upon it. Finally, Section 3.4 derives a class of approximations to the limit
distributions by means of computer simulations and response surface regression.

3.1 Rank test statistic

For each sub-sample period, the partial model (5) or (7) is seen as equivalent to that in
HJNR, given the presence of structural breaks in its deterministic terms. This model can
thus be analysed by reduced rank regression in a manner similar to the original cointe-
gration model in Johansen (1988, 1995). We express below that reduced rank regression
is applicable to the proposed partial model by following three di¤erent approaches.
The �rst approach is based on a full-sample reduced rank regression. Regress each of

the vectors�Yt andX�
t�1 = (X

0
t�1; tE

0
t)
0 on a vectorHt consisting of the variables�Zt, the

lagged di¤erences �Xt�1; : : : ;�Xt�k+1, the intercepts Et and the impulse dummies Dj;t�i
for i = 1; : : : ; k and j = 2; : : : ; q; so that Ht has dimension pk �m + q + k(q � 1): This
gives residuals R0;t and R1;t:�

R0;t
R1;t

�
=

�
�Yt
X�
t�1

�
�

TX
s=k+1

�
�Ys
X�
s�1

�
H 0
s

 
TX

s=k+1

HsH
0
s

!�1
Ht for k < t � T:
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The second approach is viewed as a sub-sample approach. We note that the impulse
dummies result in a perfect �t for each transitional period in between two connecting
regimes; thus R0;t and R1;t are zero for all transitional periods. We can, therefore, compute
the residuals R0;t and R1;t by analysing the e¤ective sub-sample periods only; see also
Doornik, Hendry and Nielsen (1998, Sec. 12.2). For this purpose, let us form regressors
Pt from the variables �Zt, the lagged di¤erences �Xt�1; : : : ;�Xt�k+1 and the intercepts
Et, so that Pt is a vector of dimension pk�m+ q: The residuals R0;t and R1;t then satisfy

�
R0;t
R1;t

�
=

�
�Yt
X�
t�1

�
�

qX
j=1

TjX
s=Tj�1+k+1

�
�Ys
X�
s�1

�
P 0s

0@ qX
j=1

TjX
s=Tj�1+k+1

PsP
0
s

1A�1

Pt;

for Tj�1 + k < t � Tj with 1 � j � q; while R0;t and R1;t are zero otherwise.
The third approach is recognised as a two-step approach, in which we �rst demean

the observed time series and then partial out in�uences from the lagged di¤erences. In
the �rst step, we analyse two vectors �Yt and X�

t�1, along with a vector Vt consisting
of the variables �Zt and the lagged di¤erences �Xt�1; : : : ;�Xt�k+1: These three vectors
are demeaned within each sub-sample period, yielding Z0;t; Z1;t and Z2;t de�ned as0@ Z0;t

Z1;t
Z2;t

1A =

0@ �Yt
X�
t�1
Vt

1A� 1

Tj � Tj�1 + k

TjX
s=Tj�1+k+1

0@ �Ys
X�
s�1
Vs

1A ; (18)

for 1 � j � q and Tj�1 + k < t � Tj and zero otherwise. In the second step we compute�
R0;t
R1;t

�
=

�
Z0;t
Z1;t

�
�

TX
s=k+1

�
Z0;s
Z1;s

�
Z 02;s

 
TX

s=k+1

Z2;sZ 02;s

!�1
Z2;t:

Since Z0;t; Z1;t are zero within the transitional periods, so are the residuals R0;t; R1;t.
With the residuals R0;t and R1;t in hand, we can compute the product moments�

S00 S01
S10 S11

�
=

1

T � k

TX
t=k+1

�
R0;t
R1;t

��
R0;t
R1;t

�0
; (19)

and a set of squared canonical correlations 1 � �̂1 � � � � � �̂m � 0 by solving the
eigenvalue problem

0 = det(�S11 � S10S�100 S01):
Hence, the log partial likelihood ratio (PLR) test statistic for the null hypothesis of
cointegrating rank r, H`(r), against the hypothesis H`(m) is

PLRfH`(r)jH`(m)g = �(T � k)
mX

i=r+1

log(1� �̂i): (20)

3.2 Asymptotic distribution of the test statistic

We derive the asymptotic distribution of the rank test statistic in a setting where the
relative break points satisfy Tj=T ! vj for j = 0; : : : ; q while T goes to in�nity. The
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relative break points satisfy 0 = v0 < v1 < � � � < vq = 1. De�ne a q-variate vector of
indicator functions as

eu =
�
1(v0<u<v1); : : : ; 1(vq�1<u<vq)

	0
; (21)

which is viewed as the limit of Eint(Tu) on u 2 [0; 1] as T !1 with vj = Tj=T �xed.
In the standard framework developed by Johansen (1995), the innovation sequence "t

is assumed to be independent and identically Gaussian distributed, and this assumption
was adopted by HJNR and JMN as reviewed in Section 2.1 above. We relax this nor-
mality assumption to a martingale di¤erence assumption. If the innovations "t are not
normal, the model equations lead to a quasi-likelihood function rather than a likelihood
function. Weak exogeneity is preserved as it is a property of the likelihood rather than
the distribution of the innovations as such. The partial innovation "y�z;t = "y;t � !"z;t
and the marginal innovation "z;t are uncorrelated, but they will not be independent in
general when moving away from the normality assumption. We can no longer appeal to
the conditional-distribution argument, as implied in equation (2). Thus, the conditional-
distribution argument is replaced with a regression argument, see Appendix C.2. The
martingale di¤erence assumption is summarised as Assumption 3.1 below.

Assumption 3.1 Assume that "t is a martingale di¤erence sequence with respect to a
�ltration Ft such that E("tjFt�1) = 0 almost surely (a:s:). Let 
 be a positive de�nite
matrix. Suppose that
(i) T�1

PT
t=1 E("t"

0
t)! 
;

(ii) T�1
PT

t=1 E("t"
0
tjFt�1)

P! 
;
(iii) either of the following boundedness conditions

(a) supt2N Ef"0t"t1("0t"t>a)jFt�1g
P! 0 as a!1;

(b) supt2N Ej"tj4 <1:

The boundedness conditions in part (iii) are not nested. Part (a) can be satis�ed with-
out the existence of fourth moments as in part (b): Conversely, bounded fourth moments
in part (b) do not necessarily imply part (a); see Remark C.4 in Appendix C.1.
Under Assumption 3.1, we are able to apply the results of Brown (1971) to analyse the

random walk components of the process. For this we require a Lindeberg condition, which
is established in Lemma C.2 in Appendix C.1 under Assumption 3.1. Brown�s result is
for univariate martingale di¤erence sequences and requires that the ratio of the sum of
conditional variances to that of unconditional variances should converge to unity. For the
multivariate case we can apply the Cramér-Wold device and form linear combinations of
the present multivariate martingale di¤erences. Using parts (i); (ii) we can then show
that Brown�s ratios converge to unity.
Under Assumption 3.1, we can also analyze the (approximately) stationary compo-

nents of the process. Under part (iii:a) we can apply the results of Anderson and Ku-
nitomo (1992), which exploit a truncation argument. Under part (iii:b) we can apply the
same ideas as in Anderson and Kunitomo (1992) but without the truncation argument.
Cointegration models with heteroscedasticity have previously been analyzed by for

instance Cavaliere, Rahbek and Taylor (2010) and Boswijk, Cavaliere, Rahbek and Taylor
(2016). The former paper is concerned with rank testing in a full system. For the analysis
of the (approximately) stationary components it relies on Hannan and Heyde (1972) with
slightly di¤erent conditions from here. See Remark C.5 in Appendix C.1. The latter paper
is concerned with testing on the cointegrating vectors in a full system with an elaborate,
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deterministic structure for the variances of the innovations. We note that Assumption 3.1
does not require any particular structure for the individual variances for the innovations.
Before proceeding to the main results, we present a set of stronger assumptions re-

quiring constant conditional variance, see Assumption 3.2 and Lemma 3.3 below. These
assumptions were used by Lai and Wei (1982, 1985) as well as Chan and Wei (1988). They
have two advantages. First, they are easier to check for practitioners than the convergence
results in Assumption 3.1. Second, the assumptions can also be used to derive a variety
of almost sure convergence results for least squares estimators, as explored by Lai and
Wei (1982, 1985) and Nielsen (2005), although we will not exploit those properties here.

Assumption 3.2 Assume that "t is a martingale di¤erence sequence with respect to a
�ltration Ft such that E("tjFt�1) = 0 a:s: and
(i) Var("tjFt�1) = 
 a:s:, where 
 is positive de�nite;
(ii) supt2N E(j"tj2+�jFt�1) <1 a:s: for some � > 0:

Lemma 3.3 Assumption 3.2 implies Assumption 3.1.

We are in a position to present the limit distribution of the PLR statistic (20), which
should now be viewed as a log partial quasi-likelihood ratio test statistic, although it
will continue to be denoted as the PLR test statistic. For this purpose, let D! signify
weak convergence, while let Bu represent a (p� r)-dimensional standard Brownian motion
process on u 2 [0; 1] and let B(m�r)u be the �rst m � r coordinates of Bu. The limit
distribution is given in the next theorem, which is proved in Appendix C.3.

Theorem 3.4 Suppose that Assumptions 2.1 and 3.1 are satis�ed along with �z = 0, so
that Zt is weakly exogenous with respect to �y, � and . As T ! 1; with relative break
point satisfying Tj=T ! vj for 0 = v0 < v1 < � � � < vq = 1; the PLR test statistic (20)
under H` (r) satis�es

PLRfH`(r)jH`(m)g
D! DF`(m� r; p� r; v); (22)

where, with eu de�ned in (21),

DF`(m� r; p� r; v) = tr

(Z 1

0

dB(m�r)u G0u

�Z 1

0

GuG
0
udu

��1 Z 1

0

GudB
(m�r)0
u

)
;

Gu =

�
Bu
ueu

�
�
Z 1

0

�
Bs
ses

�
es
0ds

�Z 1

0

ese
0
sds

��1
eu:

Note that, when p = m, the result in Theorem 3.4 corresponds to Theorem 3.1 in JMN.
A direct simulation of (22) is rather laborious. By exploiting some analytic properties
of the distributions, we are able to simplify this simulation task. The next Theorem 3.5
describes these properties by linking the moments of the limit distribution in Theorem
3.4 to those for the full model. Theorem 3.5 provides a basis for simulation in Section
3.4. The proof of this theorem, given in Appendix C.3, is based on a slight modi�cation
of results in Doornik (1998, Sec. 9); see also Boswijk and Doornik (2005).
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Theorem 3.5 Let Bi;u be the i-th coordinate of the Brownian motion Bu: Let

Ti =

Z 1

0

dBi;uG
0
u

�Z 1

0

GuG
0
udu

��1 Z 1

0

GudB
0
i;u for i = 1; : : : ; p� r:

Then T1; : : : ;Tp�r are identically distributed and any pairs Tj;Tk are also identically
distributed. Moreover, the limiting statistic (21) satis�es DF`(m� r; p� r; v) =

Pm�r
i=1 Ti

with expectation and variance given by

EfDF`(m� r; p� r; v)g =

�
m� r
p� r

�
E

 
p�rX
i=1

Ti

!
;

VarfDF`(m� r; p� r; v)g =

�
m� r
p� r

�
Var

 
p�rX
i=1

Ti

!
� (m� r)(p�m)Cov(T1;T2):

Since the above Theorem 3.5 links the moments of the statistics for partial systems
and for full system, we can now proceed by simulating distributions for full systems only.
JMN simulated response surfaces for the mean and variance of

Pp�r
i=1 Ti: As we will also

need a response surface for Cov(T1;T2) we have to redo their simulation exercise. For this
purpose we quote a result from JMN.

Theorem 3.6 (JMN, Theorem 3.2) Let B[1]; : : : ; B[q] be independent (p�r)-dimensional
standard Brownian motions and de�ne

Jj =

�Z 1

0

(uj1)2 du
��1=2 Z 1

0

(uj1)
�
dB[j](m�r)u

	
;

Kj =

Z 1

0

�
B[j]u
��u; 1� �dB[j](m�r)u

	0
;

Lj =

Z 1

0

�
B[j]u
��u; 1� �B[j]u ��u; 1�0 du:

Then the limiting variable (21) for a full sample with p = m satis�es

DF`(p� r; p� r; v) = tr

24 qX
j=1

Kj�vj

!0( qX
j=1

Lj (�vj)
2

)�1 qX
j=1

Kj�vj

!35+ qX
j=1

J 0jJj

where �vj = vj � vj�1. Here the two summands are independent and
Pq

j=1 J
0
jJj is dis-

tributed as �2fq (m� r)g. Moreover, let J [i]j and K [i]
j denote the ith coordinate of Jj and

Kj so that

Ti =

 
qX
j=1

K
[i]
j �vj

!0( qX
j=1

Lj (�vj)
2

)�1 qX
j=1

K
[i]
j �vj

!
+

qX
j=1

(J
[i]
j )

2:

As in JMN we note the Theorem 3.6 implies a simple relation between the limiting
statistics for models with q and with q � 1 sub-sample periods, that is

lim
�vq!0

DF`(p� r; p� r; v1; : : : vq�1; vq) = DF`(p� r; p� r; v1; : : : vq�1) + J 0qJq; (23)

where DF`(p� r; p� r; v1; : : : vq�1) and J 0qJq are independent and J 0qJq is �2(p� r).
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3.3 Asymptotic distribution for the broken constant case

The model investigated in the previous sub-sections has a broken linear trend. A variant
of this model is free of such a linear trend but with a broken constant; see equation (17).
Equation (5) then reduces to

�Yt = !�Zt + �y(�
0; j)

�
Xt�1

1

�
+

k�1X
i=1

�y�z;i�Xt�i + "y�z;t;

for 1 � j � q and Tj�1 + k < t � Tj: As before the partial quasi-likelihood is maximized
by reduced rank regression. We follow the third approach (18) in Section 3.1, in which
the broken linear trend is now replaced with the broken constant, so that we consider the
vectors �Yt and X�

t�1 = (X
0
t�1; E

0
t)
0, together with the vector Vt composed of the variables

�Zt and the lagged di¤erences �Xt�1; : : : ;�Xt�k+1. Equation (18) then reduces to0@ Z0;t
Z1;t
Z2;t

1A =

0@ �Yt
X�
t�1
Vt

1A :
The limit distribution of the log partial quasi-likelihood ratio test statistic for cointegrating
rank r, denoted by PLRfHc(r)jHc(m)g, is given in Theorem 3.7 below. Its proof is based
on a set of modi�cations of the proofs for the limit theorems in the previous sub-sections.

Theorem 3.7 Suppose that Assumptions 2.1 and 3.1 are satis�ed along with �z = 0, so
that Zt is weakly exogenous with respect to �y, � and . As T ! 1; with relative break
point satisfying Tj=T ! vj for 0 = v0 < v1 < � � � < vq = 1; the PLR test statistic (20)
under Hc (r) satis�es

PLRfHc(r)jHc(m)g
D! DFc(m� r; p� r; v);

where DFc is de�ned as in Theorem 3.4 with the di¤erence that

Gu =

�
Bu
eu

�
:

The results in Theorems 3.5, 3.6 also apply with the present choice of Gu:

3.4 Approximations of the asymptotic distributions

The limit distributions of the cointegrating rank test statistics are non-standard, as shown
in the previous sub-sections; however, given the existing results in literature, the distri-
butions can be closely approximated by a gamma distribution identi�ed by the �rst two
moments, mean and variance. In addition, the theorems and corollary in the previous
sub-sections will simplify the application of this approximation method to the rank test
statistics in the proposed partial models.
The quality of the gamma-distribution approximation method has been documented

in several papers. Using analytic methodology, Nielsen (1997) showed a very good agree-
ment between limit distributions and approximate gamma distributions in tests for unit
roots. Doornik (1998) then conducted detailed simulation studies to demonstrate a simi-
lar agreement for standard full-system cointegration rank test statistics; see also Doornik
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(2003) for various tables of asymptotic quantiles produced by the gamma-distribution ap-
proximations. Furthermore, JMN employed this method to test for cointegrating rank in
the full system subject to deterministic breaks. The gamma-distribution approximation
method has thus facilitated testing for cointegrating rank in various model settings.
In order to apply the gamma approximation method we �rst de�ne parameters for

shape, �F ; and scale, �F ; for the full system statistic DF`(p� r; p� r; v) =
Pp�r

i=1 Ti where
m = p and Yt = Xt so Zt is absent. These parameters are

1

�F
=
Var(

Pp�r
i=1 Ti)

fE(
Pp�r

i=1 Ti)g2
; �F =

Var(
Pp�r

i=1 Ti)

E(
Pp�r

i=1 Ti)
:

Below we present response surface approximations to �F and �F based on an extensive
simulation study. We also show that the distribution of DF`(p � r; p � r; v) can be ap-
proximated well by a gamma distribution with shape �F and scale �F :
For the partial system statistic DF`(m�r; p�r; v) =

Pm�r
i=1 Ti we de�ned shape �P and

scale �P in the same way. Replace Var(
Pm�r

i=1 Ti) and E(
Pm�r

i=1 Ti) with the expressions in
Theorem 3.5 and then replace Var(

Pp�r
i=1 Ti) = �

2
F�F and E(

Pp�r
i=1 Ti) = �F�F to get

1

�P
=

Var(
Pm�r

i=1 Ti)

fE(
Pm�r

i=1 Ti)g2
=

p� r
�F (m� r)

�
1� (p� r)(p�m)

�F �
2
F

Cov(T1;T2)

�
; (24)

�P =
Var(

Pm�r
i=1 Ti)

E(
Pm�r

i=1 Ti)
= �F �

(p� r)(p�m)
�F �F

Cov(T1;T2): (25)

Thus, by simulating Cov(T1;T2) in addition to �F and �F we can compute the shape and
scale for the DF`(m� r; p� r; v) distribution. Through simulation we will show that the
DF`(m � r; p � r; v) distribution can also be approximated well in numerical terms by a
gamma distribution with shape �P and scale �P :
This indirect method, by means of equations (24) and (25), saves a lot of computational

costs in comparison with approximating �P and �P directly. Such direct approximations
require a huge number of simulations of partial-system-based tests, depending on nu-
merous combinations of m � r, p � r and relative break points. In addition, the direct
approximations will generate another problem: di¢ culty in presenting the results neatly.
Presenting the results obtained by the direct method will require huge tables including,
again, numerous combinations of m � r, p � r and relative break points. These tables
may be too cumbersome to use in practical applications.
We require a set of precise approximates for �F , �F and Cov(T1;T2), in order to

conduct reliable inference using the equations (24) and (25). Following JMN and Doornik
(1998) we simulate these quantities for various data generating processes and conduct a
response surface analysis. We take logs of the dependent variables �F , �F to alleviate
residual heteroscedasticity. Compared to JMN we increase the maximum number of
observations from T = 500 to T = 2000: It is then found that the large-sample (T � 1; 000)
approximates of the mean and variance in small dimensions (p� r � 3) tend to be rather
di¤erent from those when T is small, in comparison with a di¤erence between those
moment approximates for larger dimensions (p � r > 3). This �nding is consistent with
Doornik (1998), who introduced a set of indicator variables being assigned 1 for p� r =
2 and p� r = 1 and assigned 0 otherwise; these indicators put residual heteroscedasticity
under control even in the presence of in�uential values for p� r = 2 and p� r = 1.
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p� r m� r a b q95 q�95 jq95=q�95 � 1j
2 1 0:0 0:0 15:45 15:33 0:0078
2 1 0:0 0:3 21:25 21:25 0:0000
2 1 0:1 0:4 25:63 25:76 0:0050
2 1 0:2 0:3 27:23 27:11 0:0044
2 1 0:3 0:3 27:74 27:62 0:0043
4 3 0:0 0:0 50:29 50:08 0:0042
4 3 0:0 0:3 65:09 64:97 0:0018
4 3 0:1 0:4 77:01 76:84 0:0022
4 3 0:2 0:3 80:25 80:11 0:0017
4 3 0:3 0:3 81:92 81:84 0:0010
5 3 0:0 0:0 57:35 57:32 0:0005
5 3 0:0 0:3 72:27 72:03 0:0033
5 3 0:1 0:4 84:00 83:98 0:0002
5 3 0:2 0:3 87:23 87:10 0:0015
5 3 0:3 0:3 88:44 88:47 0:0003
7 4 0:0 0:0 91:64 91:79 0:0016
7 4 0:0 0:3 110:97 110:81 0:0014
7 4 0:1 0:4 126:33 126:34 0:0001
7 4 0:2 0:3 130:53 130:07 0:0035
7 4 0:3 0:3 131:26 131:45 0:0014

Table 1: A comparative analysis of 95% limit quantiles: broken linear-trend models

With a view to addressing this problem, our response surface study also employs
such indicator variables. Moreover, it adopts the strategy of using a set of simulated
approximates for log �F , log �F and Cov(T1;T2) as the response variables, instead of the
logged means and variance as in JMN. It turns out that the use of these response variables
(log �F , in particular) mitigates the residual heteroscedasticity problem, hence resulting
in the reduction in the number of indicator variables required for p� r = 2 and p� r = 1.
Note that Cov(T1;T2) needs to be included in the set of response variables in any response
surface study, in order to make use of equations (24) and (25). In addition, note that
taking the log of Cov(T1;T2) is not permissible, since covariance is not always positive.
All the response variables for the full model were simulated for a set of given p �

r; T and relative break points. Following JMN, we chose q = 3 as the maximum number
of sub-samples, with a and b representing the smallest and the second smallest of relative
sample lengths, respectively. For example, if q = 2 along with v1 < 1 � v1; we then
have a = 0 and b = v1. The decimals a and b were selected in the same way as those for
Figure 1 in JMN e.g., (a; b) = (0; 0); (0; 0:05); (0; 0:1); � � � , so that they were subject to
the constraints of a � b and b < (1� a� b) and the total number of their combinations
was 20, along with the selection of non-stationary components p � r = 1; :::; 8. For the
overall sample sizes or T s, JMN used 10 integers derived from 500=i for i = 1; :::; 10;
but we quadrupled them in order to improve approximations to the underlying limit
distributions of the response variables. Thus, we obtained a new set of 10 sample sizes,
T s, ranging from 200 to 2; 000. For log �F and log �F , this simulation design led to 1; 600
(= 20� 8� 10) cases, while the number of cases was reduced to 1; 400 for Cov(T1;T2) as
a result of missing values corresponding to p� r = 1.
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p� r m� r a b q95 q�95 jq95=q�95 � 1j
2 1 0:0 0:0 12:21 12:28 0:0057
2 1 0:0 0:3 15:51 15:55 0:0026
2 1 0:1 0:4 18:24 18:35 0:0060
2 1 0:2 0:3 18:71 18:75 0:0021
2 1 0:3 0:3 18:81 18:87 0:0032
4 3 0:0 0:0 42:76 42:60 0:0038
4 3 0:0 0:3 50:66 50:71 0:0010
4 3 0:1 0:4 57:40 57:67 0:0047
4 3 0:2 0:3 58:63 58:69 0:0010
4 3 0:3 0:3 58:83 58:90 0:0012
5 3 0:0 0:0 50:06 49:96 0:0020
5 3 0:0 0:3 57:88 57:73 0:0026
5 3 0:1 0:4 64:64 64:73 0:0014
5 3 0:2 0:3 65:66 65:50 0:0024
5 3 0:3 0:3 65:62 65:66 0:0006
7 4 0:0 0:0 82:47 82:35 0:0015
7 4 0:0 0:3 92:22 92:26 0:0004
7 4 0:1 0:4 101:46 101:56 0:0010
7 4 0:2 0:3 102:01 102:04 0:0003
7 4 0:3 0:3 101:81 102:16 0:0034

Table 2: A comparative analysis of 95% limit quantiles: broken constant models

The computational algorithm used in our study was based on Theorem 3.6 in JMN.
These asymptotic results justify simulating three sets of T -step random walks for broken
linear-trend and constant cases and scaling them according to the pre-speci�ed relative
sample lengths. The number of simulation replications N was set at 100; 000.
We have reached a stage to explain further details of response surface regression equa-

tions. We can regard the simulated response variables as functions of a, b, p � r and
T ; however, they are unknown in functional forms. Response surface regression enables
us to approximate these unknown functions. We adopted a class of modi�ed versions of
regression equation (3.11) in JMN as the baseline functional forms for our three response
variables, log �F , log �F and Cov(T1;T2). Following Doornik (1998), we also added to the
equation a set of indicator variables as explanatory variables, each of which is 1 for a
selected value of dimension p� r and is 0 otherwise. By performing a series of regression
analyses and carefully removing insigni�cant explanatory variables, we arrived at parsi-
monious response-surface functions for log �F , log �F and Cov(T1;T2); these functions are
henceforth denoted f zF (p� r; a; b; T ) with z taking values �; � and cov, respectively.
Tables 6 and 7 in Appendix A record rounded values of coe¢ cients for a, b, p � r

and their variants in the response surface regression for the broken linear trend case and
the broken constant case, respectively. The inverse of the observation number, T�1, and
its variants such as T�2, also play critical roles in the response surface regression, but
all of them are irrelevant asymptotically and thus disregarded when calculating the limit
approximates based on these tables.
It should also be noted that a response-surface regression analysis of Cov(T1;T2) was

technically di¢ cult in terms of residual diagnostic tests. Doornik (1998) used the average
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of estimates for Cov(T1;T2) when performing a response surface analysis for partial sys-
tems with no break. We adhered to the regression approach, rather than simply taking
the average of the covariance estimates, by assigning importance to various signi�cant in-
�uences of a, b and p� r on the behaviour of Cov(T1;T2): This regression analysis indeed
bore fruit and clari�ed the highly complex structure of the dependence of Cov(T1;T2) on
a, b, p� r and its variants, as shown in the third column of each of Tables 6 and 7. These
�ndings about Cov(T1;T2) are not known in the literature, thus giving added value to the
response surface study conducted in this paper.
With regard to Tables 6 and 7, it would be useful to give an instruction for how to

use them. First, construct a regression equation for each of the three response variables
by referring to the coe¢ cients reported in either Table 6 or Table 7 (according to the
speci�cation of deterministic terms). Note that the explanatory variables for each equa-
tion consist of linear and non-linear functions of a, b and p � r. Second, substitute a
set of pre-determined values for a, b and p � r into the explanatory variables of each
regression equation, with the result that the approximate values of f zF (p� r; a; b;1) for
z = �; �; cov are calculated given a, b and p� r.
These approximate values are computed for a full system under the assumption of 2

breaks. Values for one or no breaks can be computed using formula (23), see also (3.12)
and (3.13) in JMN. Thus, we approximate the moments of DF`(m� r; p� r; v) as follows

Mean � exp
�
f�F (�)

	
exp

�
f �F (�)

	
� (3� q) (p� r) ;

Variance � exp
�
f�F (�)

	
[exp

�
f �F (�)

	
]2 � 2 (3� q) (p� r) ;

where (�) stands for (p� r; a; b;1); note that the second terms on the right-hand side
vanish when q = 3. In turn, we calculate the shape and scale parameters:

f��F (�) = log
(
(Mean)2

Variance

)
and f ��F (�) = log

�
Variance

Mean

�
:

The values for exp
�
f��F (�)

	
, exp

�
f ��F (�)

	
and f covF (�) are then inserted into �F , �F and

Cov(T1;T2) respectively in equations (24) and (25), which yield a set of approximates to
�P and �P : Finally, noting that a gamma distribution function can be speci�ed only by
shape and scale parameters, we depend on the approximates to �P and �P to identify the
underlying gamma distribution, which enables us to calculate both a quantile of interest
and a p-value of the observed PLR statistic.
Tables 1 and 2 display a set of examples demonstrating the accuracy of the response

surface regression results. A class of approximate 95% limit quantiles is presented in
each of the tables for various conceivable combinations of a, b, p � r and m � r, when
either broken-linear-trend or broken-constant speci�cations are adopted in analysis. Ap-
proximate quantiles in the �fth column (q95) in Tables 1 and 2 are derived from Table 6
and 7, respectively; that is, they are from the full-system-based response surface analysis,
combined with the mappings (24) and (25).
By contrast, approximate quantiles recorded in the sixth column (q�95) of each table,

except those for a = b = 0, were obtained directly from auxiliary response surface re-
gression based on partial-system simulations with the same T s and N as above. Each
of auxiliary regression equations employed a simulated 95% quantile as a response vari-
able and involved a constant, T�1 and its powers if necessary, as explanatory variables.
The regression equations vary in speci�cation for the purpose of capturing the underlying
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smooth response surfaces of various simulated quantiles; the graph of each regression�s
actual and �tted values was checked to ensure the capturing of the underlying smooth-
ness. Estimated constants in these regression equations are then recorded in the columns
for q�95 as approximate 95% limit quantiles. The limit quantiles in q�95 for a = b = 0 (that
is, no break cases) were taken from Doornik (2003).
Tables 1 and 2 show that the quantiles in q95 almost coincide with those in q�95 re-

gardless of speci�cations of the deterministic terms; see the seventh column of each table
for jq95=q�95 � 1j, a series of absolute relative errors, all of which are very small. This
correspondence can be seen as strong evidence supporting the validity of the proposed
approximation method based on the full model. As a caveat, let us recall that our response
surface regression was conducted by using a class of realistic number of non-stationary
variables, p� r = 1; :::; 8, which are presumably assumed in most applied research. Thus,
an empirical study using a partial system of large dimension may require careful examina-
tions of the underlying cointegrating rank, in addition to the application of the proposed
PLR tests to the data under study, as discussed by Juselius (2006, §8).

4 Empirical illustration

As empirical illustration we analyse a set of quarterly time series data from Schreiber
(2015), who attained an econometric system for the exchange rate and bilateral trade
between the UK and Germany. She decomposed the UK-Germany economic system into
two blocks, a foreign exchange block and bilateral trade block, in order to obtain a data-
congruent representation useful for forecasting and policy analysis. Various econometric
studies were conducted by Schreiber (2015), and one of them was the analysis of a partial
model for the bilateral trade block with a structural break. The methodology developed in
the above sections enables us to conduct formal tests for cointegrating rank that underlies
such a partial system subject to a break. This partial system analysis may also be
encouraged in terms of local power advantage of partial-system-based tests over those
based on a full system under weak exogeneity, as demonstrated by Doornik, Hendry and
Nielsen (1998) as well as Kurita (2011).
Figure 1 presents an overview of the quarterly data spanning the sample period of the

�rst quarter in 1991 - the second quarter in 2014, denoted as 1991.1 - 2014.2 hereafter. The
variable tbt is the trade balance between the UK and Germany, i.e. the di¤erence between
the log of exports of UK goods to Germany and the log of imports of German goods
to the UK; dulct represents the unit labour cost di¤erential between the two countries;
yt and y�t denote the logs of the UK and German gross domestic products, respectively;
pppt represents the terms of trade in logarithm. See Schreiber (2015) for further details
of the data. The �gure indicates the presence of a structural break around 2008-2009
attributable to a global economic recession over this period.
In this empirical illustration, we analyse the data using a bivariate partial autoregres-

sive model for tbt and dulct, with yt, y�t and pppt assumed to be weakly exogenous for the
class of parameters of interest such as cointegrating vectors; that is, p = 5 and m = 2.
This assumption is based on Schreiber�s study, suggesting that modelling the bilateral
trade block centering on tbt and dulct appears to be conformable to the underlying data
structure. The lag-length k = 2 is selected for our bivariate partial autoregressive model.
With regard to the issue on a structural break, we adopt a broken trend speci�cation;

that is, the presence of a shift in the restricted trend as well as the unrestricted constant.
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Figure 1: Data overview: tbt; dulct; yt; y�t and pppt

The second sub-sample period starts in 2008:3, corresponding to the observation point in
Tq�1 for q = 2, which results in the selection of relative break points a = 0 and b = 0:255.
According to (7), our bivariate model with k = 2 requires a set of two impulse dummy
variables for the initial values of the second sub-sample periods. In addition, a pair of
impulse dummy variables, Dp1998(1) andDp2006(2), is employed in our model to capture
outliers in the data, as in Schreiber (2015); the former variable is 1 in 1998.1 and zero
otherwise for an outlier due to the Asian �nancial crisis, while the latter is 1 in 2006.2
and zero otherwise, corresponding to an outlier attributable to an increase in oil prices.
A set of residual diagnostic tests for the partial system is reported in Table 3. Most of

the test statistics are given in the form Fj(df1; df2), which denotes an approximate F test
(with relevant degrees of freedom df1 and df2) against the alternative hypothesis j. The
alternative hypotheses are speci�ed as: 5th-order serial correlation (FAR5: see Godfrey
1978), 4th-order autoregressive conditional heteroscedasticity (FARCH4: see Engle, 1982),
heteroscedasticity (FHET : see White, 1980). Chi-squared tests for normality (�2ND: see
Doornik and Hansen, 2008) are also recorded in the table. We also note the following

Single-eq. tests tbt dulct
FAR5(5,66)] 0:946[0:457] 0:777[0:570]
FARCH4(4,84) 0:469[0:758] 0:511[0:728]
FHET (31,56) 0:726[0:831] 1:016[0:468]
�2ND(2) 1:341[0:512] 0:426[0:808]

Vector tests
FAR5(20,120) 0:542[0:943]
FHET (93,162) 0:838[0:825]
�2ND(4) 2:233[0:693]

Note: Figures in square brackets are p-values.

Table 3: Diagnostic test statistics for the estimated partial system
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r = 0 r � 1
PLRfH`(r) jH`(2)g 56:610[0:014]� 21:964[0:148]
95% limit quantiles 50:864 26:334

Notes: Figures in square brackets are p-values.
� denotes signi�cance at the 5% level.

Table 4: Testing for cointegrating rank

caveats based on recent advances in the �eld of mis-speci�cation tests: Nielsen (2006)
demonstrated that FAR5 is a valid test in the presence of unit roots; Berenguer-Rico and
Wilms (2018) showed that FHET is valid after eliminating outliers from the observations,
while �2ND is not necessarily valid after the removal of outliers, which was demonstrated
by Berenguer-Rico and Nielsen (2017). In any case, no evidence is found in Table 3
suggesting signi�cant mis-speci�cation problems. We can thus judge this partial system
is formulated su¢ ciently well to be subjected to PLR tests for cointegrating rank.
Table 4 presents a class of PLR test statistics for the determination of cointegrat-

ing rank, along with the corresponding p-values and approximate 95% limit quantiles
calculated from the response surface outcomes in the previous section. We used Table
6 in Appendix A to calculate approximates to log �F , log �F and Cov(T1;T2), and then
applied them to the mappings (24) and (25) adjusted for extra �2 terms, so that the
gamma-distribution approximation method yielded the p-values. Table 4 shows that, at
the 5% level, the null hypothesis r = 0 is rejected while the hypothesis r � 1 fails to be
rejected. Hence, this formal analysis enables us to reach the conclusion of r = 1, which
supports the informal analysis of Schreiber (2015).
The estimated cointegrating relationship under some additional restrictions is

tb = 0:259
(0:121)

dulct � 0:726
(0:3)

pppt + 2:34
(0:323)

(y�t � yt)� 0:019
(0:004)

t1(�2009:1) + �t; (26)

where a �gure in brackets under each coe¢ cient is a standard error and �t represents a
stationary error. The signs of the coe¢ cients in (26) are the same as those in Schreiber
(2015)�s cointegrating equation except for y�t . The German income y

�
t was insigni�cant

in her cointegrating relationship and thus removed from it, while, in (26), y�t plays a
signi�cant role, along with yt. As a result of checking a set of unrestricted estimates for
the cointegrating vector, we have arrived at equation (26), where yt and y�t are restricted
such that they have the same coe¢ cient but opposite sign, while a zero-restriction is
placed on the coe¢ cient for t1(�2008:2); that is, a linear trend is present only in the second
sub-sample period. The PLR test statistic for these restrictions is 3:571[0:168], in which
the �gure in square brackets is a p-value according to �2(2). Thus, the hypothesis of the
overall restrictions cannot be rejected at the 5% level.
There are several interesting aspects of equation (26) that are worth discussing here.

The real income di¤erence between Germany and the UK, y�t�yt, has a positive coe¢ cient,
implying that a spread in the income di¤erence leads to an improvement in the UK trade
balance with Germany. This �nding is interpretable in the context of an income e¤ect
from each of the two countries. The coe¢ cient for the terms of trade, pppt; should also be
noted. It is negative, thus indicating a relative price e¤ect on the trade balance in a theory-
consistent manner; that is, a decrease in exports prices relative to import prices leads to
trade balance improvement, so that the well-known elasticity approach to trade balance
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appears to be empirically valid for the two countries. Furthermore, the linear trend t is
signi�cant solely in the second sub-sample period, suggesting long-lasting in�uences of
the global recession on the two countries�trade balance and other economic variables.

yt y�t pppt
0:004[0:951] 1:183[0:277] 1:954[0:162]

Note: Figures in square brackets are p-values.

Table 5: Checking weak exogeneity

Finally, we will check that the three variables, yt, y�t and pppt, are indeed weakly ex-
ogenous for the class of parameters of interest. We follow the testing procedure suggested
by Johansen (1992a), Boswijk (1992) and HJNR. First, the restricted cointegrating com-
bination is added as a regressor to a marginal system (6) for Zt = (yt; y�t ; pppt)

0. Second,
a standard regression analysis is performed to test for the signi�cance of the cointegrating
combination in each equation. Table 5 reports a class of LR test statistics for the ex-
clusion of the empirical cointegrating linkage from each equation in the marginal system.
Judging from the reported p-values according to �2(1), none of the test statistics indicate
evidence against the assumption of weak exogeneity; thus, the preceding partial-system
analysis of cointegrating rank has been justi�ed.

5 Conclusion

This study has explored partial cointegrated vector autoregressive models subject to struc-
tural breaks in deterministic terms, a linear trend and constant. The Granger-Johansen
representation of the full model in JMN has been reexamined, leading to a useful clari�ca-
tion of roles of the initial values in asymptotic analysis. A class of log likelihood ratio test
statistics for cointegrating rank has then been introduced in the proposed partial-model
framework. We have investigated asymptotic theory under a general class of innovation
distributions allowing martingale di¤erence sequences with conditional heteroscedasticity.
The derived limit distributions of the statistics are closely related to those for the full mod-
els investigated by JMN. This relationship allows us to perform a response surface analysis
in a simpli�ed full-system framework, instead of relying on laborious partial-system-based
simulations. The outcomes of the analysis are summarised as a set of two statistical tables
providing valuable information for inference on the underlying cointegrating rank. Lastly,
an empirical analysis of real-life data from the UK and Germany has demonstrated the
practicality of these tables in applied economic research. As a result of this study, the
partial cointegrated models have become more �exible and reliable devices for modelling
time series data subject to various structural breaks.
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A Tables for response surfaces

log �F log �F Cov(T1;T2)
const: 4.14 const: 0.5987 const: -1.298
(p� r)�1 -6.301 p� r -0.0538 1(2) 0.03616
(p� r)�2 5.8842 a -1.039 1(4) -0.027
(p� r)�3 -2.32576 b -0.39 (p� r)�3 -2.022
p� r 0.17 (p� r)2 0.00686 a -8.689
a 2.6165 a2 5.547 b 2.225
b 2.5245 ab 2.331 a2 59.77
(p� r)a -0.0572 b2 1.841 ab 24.31
(p� r)b -0.0971 (p� r)3 -0.00033 b2 -5.156
a2 -7.550 a3 -10.42 a3 -133.5
ab -5.323 ab2 -4.325 ab2 -59.05
b2 -7.412 b3 -2.553 a(p� r)�1 -29.55
(p� r)3 -0.000124 a(p� r)�1 9.905 b(p� r)�1 -66.58
(p� r)ab 0.161 b(p� r)�1 1.862 b2(p� r)�1 255.3
(p� r)b2 0.179 a2(p� r)�1 -61.09 a3(p� r)�1 280.5
a3 10.40 ab(p� r)�1 -17.09 ab2(p� r)�1 155.3
ab2 6.096 b2(p� r)�1 -11.48 b3(p� r)�1 -240
b3 5.851 a3(p� r)�1 117.68 a(p� r)�2 21.32
a(p� r)�1 -8.860 ab2(p� r)�1 35.19 b(p� r)�2 71.68
b(p� r)�1 -4.948 b3(p� r)�1 18.6 b2(p� r)�2 -305.7
a2(p� r)�1 46.15 a(p� r)�2 -8.836 a2b(p� r)�2 -321.1
ab(p� r)�1 31.85 b(p� r)�2 1.033 b3(p� r)�2 332.1
b2(p� r)�1 26.12 a2(p� r)�2 66.94 (p� r)1(3) 0.038

a3(p� r)�1 -86.58 ab(p� r)�2 10.84 b21(3) -0.184
ab2(p� r)�1 -50.50 a3(p� r)�2 -140.88
b3(p� r)�1 -28.78 ab2(p� r)�2 -30.16
a(p� r)�2 5.296 b3(p� r)�2 -10.05
b(p� r)�2 2.386 a1(1) 2.107
a2(p� r)�2 -29.03 b1(1) -1.029
ab(p� r)�2 -19.46 a21(1) -20.63
b2(p� r)�2 -13.42 b21(1) 3.511
a3(p� r)�2 62.00 a31(1) 45.85
a2b(p� r)�2 -5.880 ab21(1) 4.267
ab2(p� r)�2 34.59 (p� r)b21(2) 0.062
b3(p� r)�2 15.93

Table 6: Response surfaces for broken trend models

Note: 1(x) is 1 when p� r = x and zero otherwise.
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log �F log �F Cov(T1;T2)
const: 4.95486 const: 0.4472 const: -1.531
(p� r)�1 -9.263 (p� r)�2 1.17564 (p� r)�1 0.9029
(p� r)�2 9.162 (p� r)�3 -1.5294 a 4.164
(p� r)�3 -3.662 b 0.8286 (p� r)2 0.01579
a 3.05 (p� r)b -0.0646 (p� r)b 0.3388
b 0.3315 ab 1.75 ab -27.16
(p� r)2 0.01738 (p� r)b2 0.04051 b2 -14.15
(p� r)a -0.128 a3 -2.084 (p� r)3 -0.0013
a2 -14.61 ab2 -3.698 (p� r)2b -0.0167
ab -4.14 b3 -0.788 a3 -19.65
b2 -2.419 a(p� r)�1 -4.819 a2b 14.03
(p� r)3 -0.00084 b(p� r)�1 -3.897 ab2 42.2
(p� r)a2 0.3264 a2(p� r)�1 30.49 b3 17.43
(p� r)ab 0.1302 ab(p� r)�1 -5.108 a(p� r)�1 -77.72
(p� r)b2 0.0266 b2(p� r)�1 2.273 b(p� r)�1 -20.52
a3 21.56 a3(p� r)�1 -40.9 a2(p� r)�1 278.7
ab2 5.56 ab2(p� r)�1 13.37 ab(p� r)�1 313.6
b3 3.03 a(p� r)�2 16 b2(p� r)�1 169.1
a(p� r)�1 -5.742 b(p� r)�2 3.795 a3(p� r)�1 -461.7
b(p� r)�1 3.339 a2(p� r)�2 -110.5 ab2(p� r)�1 -562.9
a2(p� r)�1 44.2 a3(p� r)�2 184.8 b3(p� r)�1 -221.2
ab(p� r)�1 9.66 ab2(p� r)�2 -4.478 a(p� r)�2 81.64
b2(p� r)�1 -4.44 (p� r)1(1) 0.5014 a2(p� r)�2 -315

a3(p� r)�1 -81.67 a1(1) -9.833 ab(p� r)�2 -384.8
ab2(p� r)�1 -15.2 a21(1) 73.02 b2(p� r)�2 -114.6
a(p� r)�2 2.41 b21(1) -5.835 a3(p� r)�2 804
b(p� r)�2 -3.44 a31(1) -130.2 a2b(p� r)�2 -290
a2(p� r)�2 -24.23 b31(1) 4.743 ab2(p� r)�2 860.7
b2(p� r)�2 9.6 (p� r)2a1(2) -0.2472 b3(p� r)�2 205.2
a3(p� r)�2 47.34 (p� r)2b1(2) 0.06919 b21(2) 0.18
b3(p� r)�2 -7.22 (p� r)a21(2) 3.765 (p� r)31(2) -0.00017

(p� r)b21(2) -0.884 (p� r)a1(3) 1.337
a31(2) -14.06 (p� r)b1(3) -0.0215

b31(2) 1.944 (p� r)2a1(3) -0.408

Table 7: Response surfaces for broken constant models

Note: 1(x) is 1 when p� r = x and zero otherwise.
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B Proof of the Granger-Johansen representation

This section provides a proof of Theorem 2.2, in which the Granger-Johansen representa-
tion of the full model with deterministic breaks is presented.

Proof of Theorem 2.2. The companion form of the homogenous equation (9) for
1 � j � q and Tj�1 + k < t � Tj is

�~Xt�1 = ��
0 ~Xt�1 + �"t:

As shown by Hansen (2005, Lemma A.1), rank(�0?	�?) = p � r stated in Assumption
2.1 implies that the above homogenous equation is an I(1) system satisfying

�0 ~Xt = (Ir + �
0�)�0 ~Xt�1 + �

0�"t with jeigen(Ir + �0�)j < 1;

which is a stable equation (see Lai and Wei, 1985).
We then follow Kurita and Nielsen (2009) in the analysis of non-stationary components.

Start by the homogenous equation (9) for 1 � j � q and Tj�1 + k < t � Tj:

� ~Xt = ��
0 ~Xt�1 +

k�1X
i=1

�i� ~Xt�i + "t:

Pre-multiplying the above equation by �0? and replacing � ~Xt�i = � ~Xt �
Pi�1

`=0�
2 ~Xt�`,

we collect repeated terms � ~Xt on the left hand side to �nd

�0?	� ~Xt = ��0?
k�1X
i=1

�i

i�1X
`=0

�2 ~Xt�` + �
0
?"t;

by recalling 	 = Ip �
Pk�1

i=1 �i. Summing �
0
?	�

~Xs over s = Tj�1 + k + 1; : : : ; t yields

�0?	 ~Xt = �
0
?

tX
s=Tj�1
+k+1

"s � �0?
k�1X
i=1

�i

i�1X
`=0

� ~Xt�` � �0?	 ~XTj�1+k + �
0
?

k�1X
i=1

�i

i�1X
`=0

� ~XTj�1+k�`:

Apply the orthogonal projection identity �0?	 ~Xt = �0?	�?
��
0
?
~Xt + �

0
?	
���0 ~Xt to the

left hand side and then pre-multiply both sides by �?(�
0
?	�?)

�1 to �nd the C matrix.
Shifting C	���0 ~Xt to the right hand side, we arrive at

�?
��
0
?
~Xt = C

tX
s=Tj�1+k+1

"s � C	���0 ~Xt � C
k�1X
i=1

�i

i�1X
`=0

� ~Xt�`

� C	 ~XTj�1+k + C

k�1X
i=1

�i

i�1X
`=0

� ~XTj�1+k�`:

Adding ���0 ~Xt on both sides results in

~Xt = C
tX

s=Tj�1+k+1

"s + (I � C	)���0 ~Xt � C
k�1X
i=1

�i

i�1X
`=0

� ~Xt�`

� C	 ~XTj�1+k + C

k�1X
i=1

�i

i�1X
`=0

� ~XTj�1+k�`: (27)
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Using the notation �i = ��i�� � ���k�1 for 1 � i � k�1 as well as the matrix � de�ned
in (10) leads to the �rst desired result (13).
Next, we move on to the non-homogenous formulation (8), in which �j and j are

distinct from zero. Replace Xt in (8) with ~Xt + � c;j + � l;jt and refer to the proof of
Theorem 2.1 in JMN to �nd

	� l;j = ��
0(� c;j � � l;j) + �j and �0� l;j + 

0
j = 0: (28)

Applying (28) to (8) recovers the homogenous equation (9), so the above results derived
for (9) are all applicable to (8) under (28). Substituting ~Xt = Xt � � c;j � � l;jt into (27)
yields the desired representation (14). �

C Proofs of asymptotic results

In this section we present a high-level assumption which overrides Assumptions 3.1, 3.2
in the subsequent arguments. We then provide some speci�c lemmas required for proofs
of the limit theorems in Section 3. Finally, we proceed to the proofs of Theorems 3.4, 3.5.
We introduce some notation. For a vector v let the outer product be v
2 = vv0. For

a matrix m the spectral norm is jjmjj2 = max eigen(m0m): Note that jjmjj2 � tr(m0m):

C.1 A high level assumption

In order to give proofs of the theorems introduced in this paper, we need a Law of Large
Numbers for the approximately stationary components of the full model, while we require
a Functional Central Limit Theorem and a convergence to a stochastic integral for the
non-stationary components of the full model. We formulate these as a the following high
level assumption and then prove that it is satis�ed under Assumptions 2.1 and 3.1.

Assumption C.1 Let "t be a p-dimensional random variables and suppose that Assump-
tion 2.1 is satis�ed. Let ~Xt satisfy the homogenous equation (9) and de�ne Ut�1 as

Ut�1 =

0BBB@
�0 ~Xt�1
� ~Xt�1
...

� ~Xt�k+1

1CCCA :
Suppose that

T�1=2 max
1�t�T

jUtj = oP(1) (29)

and

T�1
TX
t=1

0@ "t
Ut�1
1

1A
2

P!

0@ 
 0 0
0 �u 0
0 0 1

1A ; (30)

where 
 and �u are positive de�nite matrices. Furthermore, let Wu be a p-dimensional
Brownian motion with variance 
. Suppose that, for 0 � u � 1,

T�1=2
int(Tu)X
t=1

"t
D! Wu; (31)
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as a process on (D[0; 1])p endowed with the Skorokhod metric with common distortion.
Finally,

T�1
TX
t=1

t�1X
s=1

"s"
0
t
D!
Z 1

0

WudW
0
u: (32)

The next result explores the conditions of for instance Brown (1971). Subsequently
we use this to show that Assumptions 2.1, 3.1 imply Assumption C.1.

Lemma C.2 Suppose Assumption 3.1 is satis�ed. Then
(a) T�1

PT
t=1 "t"

0
t
P! 
;

(b) T�1
PT

t=1 Ef"0t"t1("0t"t>�T )jFt�1g
P! 0 for all � > 0;

(c) T�1
PT

t=1 Ef"0t"t1("0t"t>�T )g ! 0 for all � > 0;

(d) max1�t�T j"2t j=T
P! 0:

Proof of Lemma C.2: (a) Since T�1
PT

t=1 E("t"
0
tjFt�1)

P! 
 by Assumption 3.1(i) it

su¢ ces to show that T�1
PT

t=1mt
P! 0 where mt = "t"

0
t�E("t"0tjFt�1): Using the spectral

norm and the Chebychev inequality

P =P(jjT�1
TX
t=1

mtjj > �) �
1

�2
EjjT�1

TX
t=1

mtjj2 �
1

T 2�2
trE

TX
s=1

TX
t=1

msmt:

Since mt is a martingale di¤erence then Emsm
0
t = 0 for s 6= t while Emtmt � E"t"0t"t"0t so

that by Assumption 3.1(ii) we get

P � 1

T 2�2
trE

TX
t=1

mtmt �
1

T 2�2
E

TX
t=1

j"tj4 �
1

T�2
sup
t2N

Ej"tj4 �
C

T�2
! 0:

(b; c) Brown (1971, Lemma 2) shows that the conditional Lindeberg condition (b) and
the marginal Lindeberg condition (c) are equivalent under Assumption 3.1(i; ii):
First, under Assumption 3.1(iii:a), so that supt2N Ef"0t"t1("0t"t>a)jFt�1g = oP(1) as

a!1. Thus, 8� > 0, 9a0 and 8a � a0, it follows that

P[supt2N Ef"0t"t1("0t"t>a)jFt�1g > �] < �:

Thus, given � > 0 and for 8T > a0=�, we �nd

Ef"0t"t1("0t"t>�T )jFt�1g � Ef"
0
t"t1("0t"t>a0)jFt�1g < �;

so that the conditional Lindeberg condition (b) follows.
Second, suppose Assumption 3.1(iii:b) holds, so that supt2N Ej"tj4 < 1: The Cheby-

chev inequality gives

Ef1("0t"t>�T )g = P("
0
t"t > �T ) �

1

�2T 2
Ej"tj4:

Next, by the Cauchy-Schwarz inequality and Assumption 3.1(iii:b) we get

Ef"0t"t1("0t"t>�T )g � [Ej"tj
4Ef1("0t"t>�T )g]

1=2 � ��1T�1Ej"tj4 � ��1T�1 sup
t2N

Ej"tj4 � ��1T�1C:
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As a consequence T�1
PT

t=1 Ef"0t"t1("0t"t>�T )g � �
�1T�1C ! 0 so that the marginal Linde-

berg condition (c) holds.
(d) We show PT = P(max1�t�T j"tj2 > �T ) ! 0 for all � > 0: Note that PT =ST

t=1 P(j"tj2 > �T ): Boole�s inequality gives PT �
PT

t=1 P(j"tj2 > �T ) =
PT

t=1 E1(j"tj2>�T ):

On the set (j"tj2 > �T ) we get the further bound PT � ��1T�1
PT

t=1 Ej"tj21(j"tj2>�T ); which
vanishes by part (c): �

We then prove that Assumption C.1 is satis�ed under Assumptions 2.1 and 3.1.

Lemma C.3 Suppose that Xt and "t satisfy Assumptions 2.1 and 3.1, respectively, while
~Xt solves the homogenous equation (9). Then, Assumption C.1 is satis�ed.

Proof of Lemma C.3. Note that the process Ut equals �
0 ~Xt, which is studied in

Theorem 2.2. It satis�es equation (12), which is of the form Ut = �Ut�1 + F"t with
� = (Ir + �

0�) for r = r + p (k � 1) and F = �0�, where � has spectral radius less than
unity as veri�ed in Theorem 2.2.
For (29), we apply Lemma 1 in Anderson and Kunitomo (1992). This requires that

max1�t�T j"tj2 = oP(T ); which is proved in Lemma C.2 using Assumption 3.1.
For (30) using Assumption 3.1(iii:a): We apply Lemma 2 in Anderson and Kunitomo

(1992) to show the convergence of the product moment matrix, which requires Assumption
3.1(ii; iii:a). Assumption 3.1 states that 
 is a positive de�nite matrix, which results in
the positive de�niteness of �u by Lemma 3 in Anderson and Kunitomo (1992).
For (30) using Assumption 3.1(iii:b): We follow Lemma 2 in Anderson and Kunitomo

(1992) but avoid their truncation argument. We �rst argue that
PT

t=1Ut�1F"
0
t = oP(T ):

Since Ut�1F"
0
t is a martingale di¤erence sequence with second moments due to Assump-

tion 3.1(ii) and the spectral norm is bounded by the trace, we obtain

E = Ejj
TX
t=1

Ut�1F"tjj2 � Etr
TX
s=1

TX
t=1

Ut�1F"
0
t"sF

0U0
s�1 = Etr

TX
t=1

Ut�1F"
0
t"tF

0U0
t�1:

Applying iterated expectations and using that max1�t�T Ej"tj2 is bounded by Assumption
3.1(iii:b) gives E � C

PT
t=1 EjUt�1j2. Noting that Ut =

Pt�1
j=0�

jF"t�j + �
tU0 and using

that "t is a martingale di¤erence array, we arrive at

EU0
t�1Ut�1 = E

t�2X
j=0

"0t�1�jF
0(�j)0�jF"t�1�j =

t�2X
j=0

trfF 0(�j)0�jFgEj"t�1�jj2:

Using that max1�t�T Ej"tj2 is bounded and � has spectral radius less than unity

EjUt�1j2 �
1X
j=0

trfF 0(�j)0�jFg max
1�t�T

Ej"tj2 � C:

As a consequence E = O(T ) and by the Markov inequality
PT

t=1Ut�1F"
0
t = oP(T ): Next,

we show T�1
PT

t=1Ut�1U
0
t�1 ! �U in probability. Since Ut�1 = �Ut�2 + F"t�1 then

T�1
TX
t=1

Ut�1U
0
t�1 = �T�1

TX
t=1

Ut�2U
0
t�2�

0 + T�1
TX
t=1

F"t�1"
0
t�1F

0

+�T�1
TX
t=1

Ut�2"
0
t�1F

0 + T�1
TX
t=1

F"t�1U
0
t�2�

0:
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Here, the second term converges to F
F 0 by Assumption 3.1(i) while the last two term
vanishes. Since max1�t�T jUtj = oP(T 1=2) we therefore get

T�1
TX
t=1

Ut�1U
0
t�1 = �T

�1
TX
t=1

Ut�1U
0
t�1�

0 + F
F 0 + oP(1):

This is a linear equation in T�1
PT

t=1Ut�1U
0
t�1 so that T

�1PT
t=1Ut�1U

0
t�1 ! �U in

probability where �U solves �U = ��U�
0 + F
F 0: The invertibility of �U follows by

Lemma 3 of Anderson and Kunitomo (1992).
For (31), the Functional Central Limit Theorem follows from Brown (1971, Theorem

3), equipped with Cramér-Wold device (see Billingsley 1968, Theorem 7.7). Brown�s result
applies under Assumption 3.1(i; ii) and either of the Lindeberg condition established in
Lemma C.2(b; c) under Assumption 3.1.
For (32), the convergence to a stochastic integral for the univariate case is based on the

results of Jakubowki, Ménin and Pages (1989), which was referred to by Kurtz and Protter
(1996), while the convergence to a stochastic integral for the multivariate case is based on
the results of Kurtz and Protter (1991). For the univariate case, Kurtz and Protter (1996,
Theorem 7.1) show that we need to check that the martingale array MT

t = T
�1=2Pt

s=1 "s
is uniformly tight, as required by Jakubowski, Ménin and Pages (1989) or, equivalently,
it has uniformly controlled variations. We use Theorem 2.2 in Kurtz and Protter (1991),
which applies to the multivariate case; see also Hansen (1992, Theorem 2.1). Choose
� = 1 so that MT;�

t = MT
t in Kurtz and Protter�s notation. For each � > 0, T � 1,

choose stopping times �T;� = 1 so that P(�T;� � �) = 0 � 1=�: Then, we obtain a
quadratic variation processes

[MT;�]t^�T;� = T
�1

t^�T;�X
s=1

"s"
0
s � T�1

TX
t=1

"t"
0
t = [M

T;�]T ;

so that E[MT;�]t^�T;� � E[MT;�]T . From Assumption 3.1(i) it follows that E[MT;�]T ! 
:
Consequently, we have supT jjE[MT;�]T jj <1. In turn supT jjE[MT;�]t^�T;� jj <1 for each
t, so that MT

t has uniformly controlled variations. �

Proof of Lemma 3.3. Under Assumption 3.2, we have E("t"0tjFt�1) = 
 a:s:, so that
T�1

PT
t=1 E("t"

0
tjFt�1) = 
 a:s: follows and Assumption 3.1(ii) holds. Taking iterated

expectations, we obtain E("t"0t) = 
, which leads to T�1
PT

t=1 E("t"
0
t) = 
 and thus

Assumption 3.1(i) is satis�ed. Lastly, we show that Assumption 3.1(iii:a) is implied by
Assumption 3.2(ii). Using Hölder�s inequality, we �nd, for � = �=2 > 0,

Ef"0t"t1("0t"t>a)jFt�1g � [E(j"tj
2+2�jFt�1)]1=(1+�)[Ef1(1+�)=�("0t"t>a)

jFt�1g]�=(1+�);

in which we note the equality 1(1+�)=�("0t"t>a)
= 1("0t"t>a). Hence, writing the expectation of the

indicator as a probability, and also using Markov�s inequality, we arrive at

Ef1(1+�)=�("0t"t>a)
jFt�1g = P("0t"t > ajFt�1) �

1

a1+�
Ef("0t"t)1+�jFt�1g:

In combination we obtain Ef"0t"t1("0t"t>a)jFt�1g � a��E(j"tj2+2�jFt�1), which vanishes as
a!1 uniformly in t, since the E(j"tj2+2�jFt�1) is uniformly bounded by assumption. �
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Remark C.4 We give an example of a martingale di¤erence sequence ("t;Ft) satisfying
supt2N Ej"tj4 <1 but violating Assumption 3.1(iii:a), i.e. supt2N Efj"tj21(j"tj2>a)jFt�1g !
0 in probability, which is from Anderson and Kunitomo (1992). Consider the probability
space f(0; 1];F ;Pg, where F is the Borel �eld on (0; 1] and P is the uniform distribution.
Consider also a dyadic sequence with indices n = 1; 2; : : : and kn = 1; : : : ; 2n, so that
t =

Pn�1
j=1 2

j + kn, and de�ne

"t(!) = "nkn(!) =

8<:
n if 2k � 1 < 2n! � 2k;
�n if 2k � 2 < 2n! � 2k + 1;
0 otherwise.

9=; :
We note that E"t = 0 while E"4t = n4=2n is uniformly bounded in n: The natural �l-
tration of "t is then given by the �-�elds F0 = �f[0; 1]g; F1 = �f(0; 1

4
]; (1

4
; 1
2
];F0g;

F2 = �f(12 ;
3
4
]; (3

4
; 1];F1g; F3 = �f(0; 18 ]; (

1
8
; 1
4
];F2g and so on. We �nd that E("tjFt�1) = 0

while [supt2N Efj"tj21(j"tj2>a)jFt�1g](!) = 1 for all a and all !; so that the random vari-
ables supt2N Efj"tj21(j"tj2>a)jFt�1g cannot vanish in probability.

Remark C.5 A related cointegration model allowing for heteroscedasticity was considered
by Cavaliere, Rahbek and Taylor (2010). It was assumed that T�1

PT
t=1 E("t"

0
tjFt�1)! 


in probability (Assumption 3.1(ii)) and supt2N Ej"tj4 < 1, and the results of Hannan
and Heyde (1972) were used for asymptotic arguments. These assumptions appear to be
insu¢ cient in that Hannan and Heyde (1972) require that Assumption 3.1(ii) should hold
almost surely. In addition, it is necessary to ensure the invertibility of �u, see (30), which
is guaranteed under Assumption 3.1, as demonstrated in the proof of Lemma C.3 above.

C.2 Several lemmas for the partial systems

The asymptotic properties of the product moment matrices, Sij for i; j = 0; 1 de�ned in
(19), are investigated so as to adapt Lemmas 10.1 and 10.3 of Johansen (1995) to the
present model. We do this by combining various ideas and techniques from HJNR, JMN
and Kurita and Nielsen (2009). These papers assume normal innovations, which we have
generalised as Assumptions 3.2 and 3.1 in our study. This means that we have to be careful
when de�ning the limits of product moments of various non-integrated components. This
issue is addressed in the following lemma:

Lemma C.6 Suppose that Assumptions 2.1 and C.1 are satis�ed. Let

Vt =

0@ "t
�Xt

�0Xt�1 + jt

1A ; Qt =

0B@ �Xt�1
...

�Xt�k+1

1CA and Qt =

�
Qt
1

�
:

Let vj = Tj=T be relative break points for j = 0; : : : ; q and de�ne the sample product
moment matrix of Vt corrected for Qt and a constant as

MVV�Q;1 =

qX
j=1

1

T

TjX
t=Tj�1+k

8<:Vt �
TjX

s=Tj�1+k

VtQ
0
s

0@ TjX
s=Tj�1+k

Q

2
s

1A�1

Qt

9=;

2

:
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Then, as T ! 1 with �xed relative break points vj we get that MVV�Q;1 converges in
probability to a positive de�nite matrix with the structure0@ 
 
 0


 �xx �x�
0 ��x ���

1A ; (33)

where �x� = ���� and �xx = ���x + 
 hold.

Proof of Lemma C.6. We start with the homogenous equation (12). For 1 � j � q
and Tj�1 + k < t � Tj, this equation can always be solved as

�0 ~Xt =

t�Tj�1�kX
s=1

(Ir + �
0�)t�Tj�1�k�s�0�"Tj�1+k+s + (Ir + �

0�)t�Tj�1�k�0 ~XTj�1+k;

and, in the �rst sub-sample period or j = 1, the initial value �0 ~XT0+k = �0 ~Xk can be
treated as �xed, so that the process �0 ~Xt for T0+k < t � T1 becomes uniformly bounded
in probability by noting that it equals Ut in Assumption C.1. Similarly, by iterating over
all the other start-up values, the process �0 ~Xt for Tj�1+k < t � Tj and j = 2; : : : ; q is also
uniformly bounded in probability. Since the number of breaks is �nite, �0 ~Xt is uniformly
bounded in probability jointly for 1 � j � q.
Next, the Granger-Johansen representation (14) implies that, for 1 � j � q and Tj�1+

k < t � Tj,

�Xt = C"t +�Ut + � `;j and �0Xt + jt = �
0Ut + �

0� c;j;

where

Ut = (I � C	)���0 ~Xt � C
k�1X
i=1

�i

i�1X
`=0

� ~Xt�`:

Since �0 ~Xt is uniformly bounded in probability, it follows that Ut is also uniformly bounded
in probability. Note that Ut is identical throughout all sub-sample periods. The intercepts
� `;j and �

0� c;j are eliminated from�Xt and �
0Xt+jt respectively, when demeaning them

within each sub-sample period. Consequently, we can apply the Law of Large Numbers
(30) in Assumption C.1 to

1

Tj � Tj�1 � k

TjX
t=Tj�1+k

8<:
�
Vt

Qt

�
� 1

Tj � Tj�1 � k

TjX
s=Tj�1+k

�
Vs

Qs

�9=;

2

; (34)

which, for 1 � j � q, converges in probability to a positive de�nite matrix denoted as0BBB@
N
(j)
"" N

(j)
"x N

(j)
"� N

(j)
"q

N
(j)
x" N

(j)
xx N

(j)
x� N

(j)
xq

N
(j)
�" N

(j)
�x N

(j)
�� N

(j)
�q

N
(j)
q" N

(j)
qx N

(j)
q� N

(j)
qq

1CCCA ;
for N (j)

"" = 
 by Assumption C.1. Since both Xt�1 and Qt consist of the past values of "t,
it follows from (30) that N (j)

"� = 0 and N
(j)
"q = 0 hold. Note that the model equation is

"t = �Xt � �(�0Xt�1 + jt)� �Qt + �j; (35)
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for � = (�1; : : : ;�k�1): We can derive three properties from this equation. First, we
post-multiply (35) by "0t and then exploit N

(j)
"� = 0 and N

(j)
"q = 0 to �nd


 = N (j)
"" = N

(j)
x" � 0� 0 = N (j)

x" ;

which is the �rst property. The next one is

(N
(j)
x� ; N

(j)
xq )

 
N
(j)
�� N

(j)
�q

N
(j)
q� N

(j)
qq

!�1
= (�;�); (36)

where the left hand side is the limit of the sample regression coe¢ cient for �Xt regressed
on �0Xt�1 + jt, Qt and an intercept. This property is demonstrated by substituting
"t + �(�

0Xt�1 + jt) + �Qt � �j from (35) into �Xt; we then arrive at the limit result

(N
(j)
x� ; N

(j)
xq ) = (N

(j)
"� ; N

(j)
"q ) + (�;�)

 
N
(j)
�� N

(j)
�q

N
(j)
q� N

(j)
qq

!
;

from which (36) follows by noting that N (j)
"� = 0 and N

(j)
"q = 0. The third property is


 = N (j)
xx � (�;�)

 
N
(j)
�� N

(j)
�q

N
(j)
q� N

(j)
qq

!�
�0

�0

�
: (37)

The left hand side of (37) is the limit of the sample product moment of "t regressed on
�0Xt�1 + jt, Qt and an intercept, due to N

(j)
"� = 0 and N

(j)
"q = 0. The right hand side of

(37) is the limit of the sample product moment of �Xt regressed on �
0Xt�1+ jt, Qt and

an intercept, where we have exploited the identity (36).
Now, we return to (34) and partial out Qt to obtain

1

Tj � Tj�1 � k

TjX
t=Tj�1+k

8<:Vt �
TjX

s=Tj�1+k

VsQ
0
s

0@ TjX
s=Tj�1+k

Q

2
s

1A�1

Qt

9=;

2

P!

0B@ N
(j)
"" N

(j)
"x N

(j)
"�

N
(j)
x" N

(j)
xx N

(j)
x�

N
(j)
�" N

(j)
�x N

(j)
��

1CA�
0B@ N

(j)
"q

N
(j)
xq

N
(j)
�q

1CA�N (j)
qq

��1 �
N (j)
q" ; N

(j)
qx ; N

(j)
q�

�
; (38)

for which it should be noted that N (j)
"" = N

(j)
"x = 
 while N

(j)
"� = 0 and N

(j)
"q = 0: Thus,

(38) is reduced to 0B@ 
 
 0


 �
(j)
xx �

(j)
x�

0 �
(j)
�x �

(j)
��

1CA ;
where  

�
(j)
xx �

(j)
x�

�
(j)
�x �

(j)
��

!
=

 
N
(j)
xx N

(j)
x�

N
(j)
�x N

(j)
��

!
�
 
N
(j)
xq

N
(j)
�q

!�
N (j)
qq

��1 �
N (j)
qx ; N

(j)
q�

�
:
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Furthermore, noting
Pq

j=1�vj = 1 and
Pq

j=1(�vj)
 = 
, we de�ne

�ik =

qX
j=1

(�vj)�
(j)
ik and Nlm =

qX
j=1

�vjN
(j)
lm ; (39)

for i; k = x; � and l;m = q; x; �. The use of Slutsky�s theorem then leads to (33).
It is left to show that �x� = ���� and �xx = ���x + 
: For the �rst expression, we

apply the identities in (39) to (36) so as to obtain

(Nx�; Nxq) = (�;�)

�
N�� N�q
Nq� Nqq

�
: (40)

Taking partitioned inversion in (40) results in � = Nx��qN�1
���q = �x��

�1
�� : For the second

expression, we apply the identities in (39) to (37) to �nd


 = Nxx � (�;�)
�
N�� N�q
Nq� Nqq

��
�0

�0

�
: (41)

Inserting (40) into (41) and taking its partitioned inversion, we arrive at


 = Nxx�(Nx�; Nxq)
�
N�� N�q
Nq� Nqq

��1�
N�x
Nqx

�
= Nxx�q�Nx��qN�1

���qN�x�q = �xx����x;

by noting from (40) that Nx��qN�1
���q = � holds. �

Recalling the decomposition �Xt = (�Y
0
t ;�Z

0
t)
0, we �nd the following equivalence in

the lower-right submatrix of (33) in Lemma C.6:�
�xx �x�
��x ���

�
=

0@ �yy �yz �y�
�zy �zz �z�
��y ��z ���

1A = �:

Under the normality assumption for "t as in HJNR, we could form the conditional variance
of the two elements �Yt and �

0Xt�1 + tj given the element �Zt: Moving away from
normality under Assumptions 3.2 and 3.1, we need to consider instead the limit of a
product moment matrix consisting of linear combinations of these elements, de�ned in
the following manner:�

�yy�z �y��z
��y�z ����z

�
= A0�A =

�
�yy �y�
��y ���

�
�
�
�yz
��z

�
��1zz (�zy;�z�) ; (42)

which appears in (43) in Lemma C.9, and where

A0 =

�
I ��yz��1zz 0
0 ���z��1zz I

�
:

Let us recall the weak exogeneity condition �z = 0, which implies

� =

�
�y
0

�
and �? =

�
�y? 0
0 Ip�m

�
:

Finally, recall from (3) that the limit variance of innovations in the partial equation
equals 
yy�z = 
yy � 
yz
�1zz 
zy under Assumption C.1. Within each sub-sample period
the setup here is identical to that of HJNR. We therefore obtain the following equation,
which adapts equation 10.6 in Johansen (1995, Lemma 10.1).
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Lemma C.7 (HJNR, Lemma 4) Suppose that Assumptions 2.1 and C.1 are satis�ed
under �z = 0. It then follows that

�y?(�
0
y?
yy�z�y?)

�1�0y? = �
�1
yy�z � ��1yy�z�y��z(��y�z��1yy�z�y��z)�1��y�z��1yy�z:

We now explore the limit of the common trends within each sub-sample period. De�ne

B�0T =

�
�0?� 0
0 T�1=2

��
Ip �� `;j
0 1

�
and X�

t =

�
Xt�1
t

�
;

and the next lemma is a combination of Lemma A.1 in JMN and Lemma 5 in HJNR.

Lemma C.8 Suppose that Assumptions 2.1 and C.1 are satis�ed. Consider the (p�r+1)-
dimensional process T�1=2B�0TX

�
int(Tu) on D[0; 1] endowed with the Skorokhod metric with

common distortion across the dimensions. Let Wu be a (p � r)-dimensional Brownian
motion with variance 
 for 0 � u � 1: For �j�1 � u < �j and 1 � j � q; the process
X�
int(Tu) satis�es

T�1=2B�0T (X
�
int(Tu) �X�

int(T�j�1))
D!
�
�0?(Wu �W�j�1)

u� �j�1

�
:

The convergence holds jointly for 1 � j � q and 0 � u � 1.

Proof of Lemma C.8. The Granger-Johansen representation (14) implies that, for 1 �
j � q and Tj�1 + k < t � Tj,

T�1=2�0?�(Xt � � `;jt) � T�1=2�0?�(C
tX

s=Tj�1+k+1

"s + Ut + � c;j):

Since �0?�C = �
0
? has full row rank and Ut is bounded in probability as shown in the proof

of Lemma C.6, the random walk component �0?
Pt

s=Tj�1+k+1
"s dominates �0?�Ut. The

initial value � c;j could be large when j > 1; but it is eliminated when taking di¤erences
X�
int(Tu) �X�

int(T�j�1)
. Thus, the �rst element of T�1=2B�0T (X

�
int(Tu) �X�

int(T�j�1)
) converges

to �0?(Wu �W�j�1) by the Functional Central Limit Theorem (31) in Assumption C.1.
The second element also converges as desired since T�1int(Tu) converges to u. As the
number of breaks is �nite, the convergence holds jointly for 1 � j � q: �

Decompose Wu = (W 0
1u;W

0
2u)

0, in which the dimensions of W1u and W2u are m and
p � m, respectively. Let us recall the notation X�

t�1 = (X 0
t�1; tE

0
t)
0, which was used in

reduced rank regression in Section 3.1. The next lemma establishes the asymptotic theory
for the product moment matrices Sij for i; j = 0; 1 de�ned in (19).

Lemma C.9 Suppose that Assumptions 2.1 and C.1 are satis�ed under �z = 0. De�ne
�� = (�0; )0, � ` = (� `;1; : : : ; � `;q) 2 Rp�q and

B�0T =

�
�0?� 0
0 T�1=2Iq

��
Ip �� `
0 Iq

�
:
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It then follows that�
S00 S01�

�

��0S10 ��0S11�
�

�
P!
�
�yy�z �y��z
��y�z ����z

�
; (43)

T�1B�0T S11B
�
T

D!
Z 1

0

FuF
0
udu; (44)

B�0T
�
S10 � S11���0y

� D!
Z 1

0

Fud (W1u � !W2u) ; (45)

B�0T S11�
� = OP(1); (46)

where

Fu =

�
�0?Wu

ueu

�
�
Z 1

0

�
�0?Ws

ses

�
es
0ds

�Z 1

0

ese
0
sds

��1
eu:

Proof of Lemma C.9. Recall the decomposition �Xt = (�Y
0
t ;�Z

0
t)
0.

For (43), we start with the left hand side of (38) and further partial out �Zt from
the process, to which we then apply the Law of Large Numbers (30) in Assumption C.1.
Follow the proof of Lemma C.6 afterwards, supplemented with the de�nition of the limit
expression (42), in order to verify (43).
For (44) we combine Lemma C.8, the continuous mapping theorem and Johansen

(1995, Lemma 10.3).
For (45) we note B�0T

�
S10 � S11���0y

�
= B�0T S1": The Law of Large Numbers (30) in

Assumption C.1 implies B�0T S1" = B
�0
T (T � k)

�1PT
t=k+1Z1;t�1"0y�z;t + oP(1), in which Z1;t

is the demeaned version of X�
t as de�ned in (18). By (29) and the Granger-Johansen

representation in Theorem 2.2, we can replace B�0T Z1;t with the demeaned version of
(
Pt

s=k+1 "
0
s�?; tE

0
t): The stochastic integral (32) in Assumption C.1 then gives (45).

For (46) we follow the strategy used for (45); see also Johansen (1995, Lemma 10.3).�

C.3 Proofs of the theorems in Section 3

Proof of Theorem 3.4. Follow the proof of Theorem 11.1 in Johansen (1995) by using
Lemmas C.7 and C.9 given above instead of his Lemmas 10.1 and 10.3, and also utilise
invariance properties with respect to non-singular linear transformations as in the proof
of Theorem 1 in HJNR. �

Proof of Theorem 3.5. The proof presented here is based on Doornik (1998, Sec. 9).
The asymptotic distribution of the LR test statistic in the partial model in Theorem 3.4
is rewritten as

tr

(Z 1

0

dB(m�r)u G0u

�Z 1

0

GuG
0
udu

��1 Z 1

0

GudB
(m�r)0
u

)

=

m�rX
i=1

Z 1

0

dBi;uG
0
u

�Z 1

0

GuG
0
udu

��1 Z 1

0

GudB
0
i;u =

m�rX
i=1

Ti:

The process Ti for i = 1; : : : ;m � r is a function of Bi;u and Gu, both of which are
functions of the (p� r)-dimensional standard Brownian motion Bu: Inspection of these
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functions shows that they are invariant to the relabelling of the coordinates of Bu, so
that T1; : : : ;Tm�r are identically distributed and any pairs Tj;Tk are also identically
distributed. Hence,

E

 
m�rX
i=1

Ti

!
=

m�rX
i=1

E (Ti) = (m� r)E (T1) ;

Var

 
m�rX
i=1

Ti

!
=

m�rX
j=1

m�rX
k=1

Var (Tj;Tk) =
m�rX
j=1

Var (Tj) +
m�rX
j 6=k

Var (Tj;Tk)

= (m� r)Var (T1) + (m� r)(m� r � 1)Cov(T1;T2):

In order to relate the moments of the limit distributions of the LR test statistics in the
partial and full models, we evaluate the above expressions for m � r in general and for
m� r = p� r: For the means of the limit distributions, we �nd

E

 
m�rX
i=1

Ti

!
= (m� r)E (T1) and E

 
p�rX
i=1

Ti

!
= (p� r)E (T1) :

Solving both equations for E (T1) and equating the resulting expressions yield

E

 
m�rX
i=1

Ti

!
=

�
m� r
p� r

�
E

 
p�rX
i=1

Ti

!
:

For their variances, we obtain a set of equations similarly, which are solved for Var (T1)
to �nd the desired expression. �
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