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Abstract

Greenhouse gas emissions, such as carbon dioxide, nitrous oxide and methane, are a major cause
of climate change as they cumulate in the atmosphere and re-radiate the sun’s energy. As such emis-
sions are currently mainly due to economic activity, economic and climate time series share many
features such as considerable inertia, stochastic trends and distributional shifts. Consequently, tools
for empirically modelling non-stationary economic outcomes are also appropriate for studying many
aspects of observational climate-change data. Moreover, both disciplines lack complete knowledge
of their respective data generating processes (DGPs), so model search retaining viable theory but
allowing for shifting distributions is important. Reliable modelling of both climate and economic-
related time series requires finding an unknown DGP (or close approximation thereto) to represent
multivariate evolving processes subject to abrupt shifts. Consequently, to ensure that DGP is nested
within a much larger set of candidate determinants, model formulations to search over should com-
prise all potentially relevant variables, their dynamics, indicators for perturbing outliers, shifts, trend
breaks and non-linear functions, while retaining well-established theoretical insights.

The model selection approach at Climate Econometrics uses a variant of machine learning with
multi-path block searches commencing from very general specifications, usually with more candidate
explanatory variables than observations, to discover well-specified and undominated models of the
non-stationary processes under analysis. To do so requires applying appropriate indicator saturation
estimators (ISEs), a class that includes impulse indicators for outliers, step indicators for location
shifts, multiplicative indicators for parameter changes, and trend indicators for trend breaks, all of
which are illustrated here in simple settings. All ISEs entail more candidate variables than observa-
tions, often by a large margin when implementing combinations, yet can detect the impacts of shifts
and policy interventions to avoid non-constant parameters in models, as well as improve forecasts.
To characterize non-stationary observational data one must handle all substantively relevant features
jointly: a failure to do so leads to non-constant and mis-specified models and hence incorrect theory
evaluation and policy analyses. The approach is applied to empirical climate modelling including an
application to a model of UK CO2 emissions.
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1 Introduction

The four words in our title of ‘econometrics’, ‘modelling’, ‘climate’ and ‘change’ are obviously key to
this chapter, both singly and jointly, but closely connected because of change: Hepburn and Schwarz
(2020) provide clear answers to most common questions about climate change. Greenhouse gas (GHG)
emissions, especially carbon dioxide (CO2), methane and nitrous oxide, have been increasing at a rapid
rate, now cumulating in the atmosphere at more than 3 parts per million per annum (about 24 gigatons
of CO2) as shown in Figure 1a from 1958(1) to 2021(2). The single linear trend in Panel (a) is to
emphasize that the increases are also increasing. If humanity is to avoid catastrophic climate change, the
present upward trends in GHG emissions must be reversed to become rapid downward trends. However,
such changes will not be smooth, but rather erratic as different sources of emissions can be more easily
reduced and perhaps eliminated, as the United Kingdom has almost done with coal as shown in Panel
(d). Figure 1 also illustrates the shifts and changing trends in two other climate time series, namely ocean
heat content in Panel (b) and global mean surface temperature in Panel (c).1
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Figure 1: (a) Monthly atmospheric CO2 measured at Mauna Loa in parts per million (ppm); (b) annual
global ocean heat content to a depth of 700m over 1957–2019 in 1022Joules; (c) annual global mean
surface temperature deviations in degrees K since 1880; (d) annual UK coal use in millions of tonnes
(Mt) since 1860.

It is not all bad news, as the data on UK coal use (coal is one of the worst polluters and CO2 emitters)
show its near complete elimination over the same period when the UK economy actually grew consid-
erably in per capita terms. The other aspect of Figure 1 is to emphasize how great and how fast climate
change is occurring, especially since 1980, with substantial rises in ocean heat and air temperatures.

Atmospheric CO2 concentrations lay within the range of roughly 175ppm to 300ppm over 800,000
years of Ice-Ages before the Industrial Revolution. Back then, it took thousands of years to move from

1Sources: (a) https://sioweb.ucsd.edu/programs/keelingcurve/; (b) https://www.nodc.noaa.
gov/OC5/3M_heat_content/; (c) https://climate.nasa.gov/vital-signs/global-temperature/;
(d) http://www.carbonbrief.org/analysis-uk-cuts-carbon-record-coal-drop.
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its lowest level to its highest and down again (see e.g., Castle and Hendry, 2020, §6). Yet as Figure 2(a)
shows in dramatic detail, humanity has added almost 100ppm in 60 years.
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Figure 2: (a) Thousand-year changes in parts per million (ppm) of CO2 in the atmosphere, ending with
CO2 changes in the last 250 years; (b) reductions in CO2 during 2020 from the SARS-Cov-2 pandemic
(Mt).

The SARS-Cov-2 pandemic with its all too frequent occurences of intermittent ‘lockdowns’ and
associated sudden drops in toxic emissions like nitrogen oxides and in CO2 as seen in Figure 2(b),2 may
at last have driven home the need to handle both location shifts and trend breaks. However, it would take
an eagle eye to see the small fall during 2020 of less than 20Mt in Figure 2(b) relative to the trend in CO2

emissions in Figure 1a.
Greenhouse gases (GHGs) in the atmosphere, especially water vapour and carbon dioxide, are crucial

in maintaining life. The Earth’s climate may seem stable currently, but it is always in flux, and always
has been. When GHGs are too depleted, the planet cools, once being a ‘snowball’ (see e.g., Hoffman and
Schrag, 2000) with glaciation in Death Valley, whereas excessive GHGs lead to very warm periods as in
the Permian, Cretaceous and most ‘recently’, the Paleocene-Eocene Thermal Maximum (PETM) about
50 million years ago.

Past climate change was from natural forces, including plate tectonics, volcanism and developments
like photosynthesis, so before the Anthropocene, planet Earth had experienced a wide range of cli-
mates. Given the present proliferation of life, many forms of life had to have survived despite these great
changes. Indeed, the fossil record suggests life thrived in global temperatures much higher and lower
than today’s. Nevertheless, that same record reveals that large numbers of species have disappeared, be-
coming extinct in the process of climate change, even if much later, new species evolved from survivors.
In particular, the ‘mass extinctions’ visible in fossil records seem due to major climate changes, arising
from a variety of causes. Global cooling occurred at the end of the Ordovician and Devonian periods, the
latter from increased photosynthesis reducing atmospheric CO2, whereas temperatures were far higher

2https://public.wmo.int/en/programmes/global-climate-observing-system/
global-climate-indicators
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during the worst mass extinction at the Permian–Triassic (P/Tr) boundary from massive volcanism cre-
ating the large igneous province (LIP) in Siberia. The mass extinction at the end of the Triassic was
probably due to the massive LIP formation of the Central Atlantic Magmatic Province, whereas the well-
known extinction of non-avian dinosaurs at the Cretaceous–Tertiary (K/T) boundary is attributed to the
impact from a large meteor at Chicxulub near the Yucatan peninsula leading to large changes in climate,
perhaps exacebated by another LIP forming the Deccan Traps in India. Although all of these events
occurred many millions of years ago, the central message that climate change was the key determinant
in every case is still relevant: large scale warming or cooling both lead to major species extinctions.

Climate science has established a vast body of knowledge about the processes and causal links in the
Earth’s climate system. The climate of planet Earth depends on the energy balance between incoming
radiation from the Sun and re-radiation from the planet, mediated by the differential absorption and
reflection properties of the land, atmosphere, ice and oceans, respectively discussed in Section 2 in
terms of Earth, Air, Fire and Water. Climate-change analysis is primarily based on physical process
models which embody laws of conservation and energy balance at a global level: see reports by the
Intergovernmental Panel on Climate Change (IPCC: https://www.ipcc.ch/).

Such well-established climate theories can be retained in econometric models as their core theory
(see e.g., Kaufmann, Kauppi, Mann, and Stock, 2013, Pretis, 2019 and Brock and Miller, 2020). For
example, Kaufmann et al. (2013) link statistical models driven by stochastic trends to physical climate
systems; and Pretis (2019) establishes an equivalence between a cointegrated vector autoregressive sys-
tem (CVAR) and two-component (i.e., atmosphere and oceans) energy-balance models of the climate.

Nevertheless, climate science knowledge is incomplete. Greenhouse gas emissions depend on change-
able human behaviour, essentially unpredictable volcanic eruptions that can have global climate impacts,
and the rate of loss of sea ice, which both alters the Earth’s albedo and the oceans’ uptake and retention of
CO2. Moreover, which fossil fuels are burnt matters as their CO2 emissions per million British thermal
units (Btu) of energy produced differ substantially as Table 1 shows.3

Table 1: Pounds of CO2 emitted per million Btu of energy produced.
Coal (anthracite) 228.6

Coal (bituminous) 205.7
Coal (lignite) 215.4

Coal (sub-bituminous) 214.3
Diesel fuel & heating oil 161.3

Gasoline 157.2
Propane 139.0

Natural gas 117.0

Switching from coal to natural gas almost halves the GHG emitted per Btu even if it still produces
a considerable amount of CO2 so is hardly a ‘solution’. Economic, social and behavioural changes
all require empirically modelled relationships—hence the role for econometrics. Indeed, most social,
economic and environmental observational time series are evolving processes with stochastic trends and
sudden shifts, so are wide-sense non-stationary, and not just unit-root processes where differencing could
create a stationary time series. A wide-sense non-stationary process does not have a constant distribution
over time, and viable econometric methods must be able to tackle such changes. Moreover, the DGPs of
wide-sense non-stationary time series are almost certainly unknown, so have to be discovered from the
available evidence: see Hendry and Doornik (2014). Any approach to doing so will inevitably be heavily
data based even if guided by subject-matter theory (which is plentiful in the climate context), although
we note that physics itself has recently been approached in a similar vein: see Qin (2020).

3Source: US Department of Energy https://www.eia.gov/tools/faqs/faq.php?id=73&t=11.
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Our approach at Climate Econometrics (http://www.climateeconometrics.org/, capi-
talized to differentiate it from the general research area) to modelling observational time series is com-
plementary to physical-process climate models. Indicator saturation estimation is used to locate outliers,
shifts and breaks, so entails that there are usually more candidate explanatory variables N than obser-
vations T . We use Autometrics, a variant of machine learning that explores multi-path block searches
when N > T , to discover a well-specified and undominated model of the processes under analysis
(see Doornik, 2009, also available in R by Pretis, Reade, and Sucarrat, 2018, and as the Excel Add-in
XLModeler, https://xlmodeler.com/). While we focus on first moments in this chapter, En-
gle and Campos-Martins (2020) and Campos-Martins and Hendry (2020) provide studies of risk and
volatility.

The structure of the chapter is as follows. Section 2 sets the stage for the empirical approach to
modelling climate change by taking stock in the ancient, but still relevant, concepts of Earth, Air, Fire and
Water. This discussion highlights the imperative for rapid action to address climate change, and considers
where economics and social science enter. Given the context presented in Section 2 revealing the rapidly
changing state of nature, Section 3 juxtaposes stationary econometric theory with non-stationary time
series. Then Section 4 describes the unfortunate implications for statistical modelling theory and practice
of shifting distributions. Section 5 discusses the importance of handling location shifts and parameter
changes by saturation estimation in the simplest context of a first-order scalar autoregressive DGP, and
how that might be achieved, then considers detecting trend breaks. In both cases, the general approach
is aimed to tackle settings where shifts and breaks occur an unknown number of times at unknown dates
by unknown magnitudes and directions relative to the model in use.

Section 6 describes our approach to jointly tackling all the main problems facing analyses of empir-
ical evidence on wide-sense non-stationary processes in the framework of model discovery, from model
formulation, through selection, to evaluation, before addressing how to forecast in a wide-sense non-
stationary setting. The changing status from endogenous to exogenous regressors is observed in the
production of forecasts over 110,000 years into the future. We review two forecasting methods designed
to handle shifting distributions, Cardt (a univariate statistical predictor designed for non-stationary time-
series data) and a smooth robust differenced device (using local estimates of the long-run mean and
growth rates). Both are illustrated on UK productivity data. Section 7 updates a UK CO2 model with
two additional years of data. This enables the impact of the UK’s Climate Change Act of 2008, captured
in the model by a step dummy in 2010, to be evaluated as forecasts show it was key to a level shift down
in UK CO2 emissions. Section 8 concludes with data definitions and sources in the Appendix 9.

2 Taking Stock of Climate Change: Earth, Air, Fire and Water

Over the last 800,000 years, Ice-Ages have induced large switches in climate from cold to cool.4 Figure
3 graphs (a) the Ice volume measure; (b) atmospheric CO2; (c) Antarctic temperature; and (d) 3D plot of
Ice, Antarctic temperature and CO2. The first three are recorded at 1000-year intervals in Figure 3, where
the X-axes in such graphs are labelled by the time before the present starting 800,000 years ago. Visually,
one can see that ice volumes cumulate more slowly than they melt, suggesting a non-linear relation. The
changing albedo of ice coverage and the increasing release (rather than absorption) of CO2 as oceans
warm help explain the relative rapidity with which glacial periods switched. A second notable feature is

4Creating these data series has taken a massive international effort, collecting raw observations, where (e.g.) drilling in East
Antarctica was completed to just a few meters above bedrock (see Parrenin et al., 2007), then adjusting them to the common
time scale and frequency of the European Project for Ice Coring in Antarctica–EPICA–Dome C (EDC3). Synchronization
between the EPICA Dome C and Vostok ice core measures over the period −145, 000 to the present was based on matching
residues from volcanic eruptions (see Parrenin et al., 2012). Ice volume estimates are from Lisiecki and Raymo (2005) (based
on δ18O as a proxy measure). Antarctic-based land surface temperature proxies were taken from Jouzel et al. (2007), and the
paleo record from deep ice cores of atmospheric CO2 from Lüthil et al. (2008). Sea level data, based on sediments, can be
obtained from Siddall et al. (2003).
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the considerable increase in the variation of temperature and atmospheric CO2 after about 440,000 years
ago, with much higher peaks, and corresponding deeper troughs, in ice volume. The 3D plot shows how
the impact of a given temperature on ice volume changes with the level of atmospheric CO2.
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Figure 3: Ice-age time series: (a) Ice volume ; (b) atmospheric CO2 in parts per million (ppm); (c)
Antarctic temperature; (d) 3D plot of Ice, Antarctic temperature and atmospheric CO2 levels.

Variations in the Earth’s orbital trajectory round the Sun were first hypothesised to drive Ice Ages by
Croll (1875), and confirmed by Milankovitch (1969) (after whom the glacial cycles are usually named).
Milankovitch calculated the resulting solar radiation at different latitudes and corrected Croll’s assump-
tion that minimum winter temperatures precipitated Ice Ages by showing that cooler summer maxima
were key to glaciation.

Figure 4 records (a), the eccentricity of the Earth’s orbit (where zero denotes circularity); (b) the
‘tilt’ of Earth relative to its axis (obliquity, measured in degrees); (c) precession of the equinox (which
determines whether the Northern Hemisphere is closest to the Sun during its summer or winter, also
measured in degrees) and (d) the resulting summer-time insolation calculated at 65◦ south (how much
solar radiation reaches the planet at that latitude). The first three variables have periodicities of 100,000
years (varying from the gravitational influences of other planets in the solar system); 41,000 years for
obliquity; and 2 cycles of 23,000 and 19,000 years for precession (partly due to the Earth not being an
exact sphere). While these orbital series are strongly exogenous in any models of Earth’s climate, they
seem to be non-stationary from shifting distributions, not unit roots. Interactions between these orbital
variations also affect the lengths of glacial and interstadial periods as well as the timing of switches given
the existing extent of ice coverage.

As stressed above, change is the key word—and humanity is now changing the climate by its vast
emissions of greenhouse gases, especially from burning fossil fuels, dramatically highlighted by Figure
2. We now consider the Earth’s limited available land, atmosphere and water resources to show that
humanity really can alter the climate, and is doing so in myriad ways. Earth, Air, Fire and Water have
been ubiquitous concepts nearly globally from ancient times. Although they are not ‘elements’ as once
believed, all four are ‘essential ingredients’ of life. The next four sub-sections discuss their roles in
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Figure 4: Ice-age orbital drivers: (a) eccentricity (Ec); (b) obliquity (Ob); (c) precession (Pr); (d)
Summer-time insolation at 65◦ south (St).

climate change, the dangers of precipitating an anthropogenic mass extinction, and actions humanity
could take to avoid that.

2.1 Earth

Continents and their topography are shaped by plate tectonics and the resulting volcanic eruptions, both
of which also affect climate and have played a key role in past great extinctions. ‘Earth’ is being used
here as a place carrier for land, both as available living space and as providing soil for forests, other
‘wild’ areas, and agriculture for food supply—roughly 40% of the planet’s land area, or 50m km2.
Vegetation and soil together lock in about three times as much CO2 as the atmosphere currently holds,
as well as absorbing around a third of emissions. However, higher temperatures and greater rainfall will
release some of that carbon: see Eglinton, Galy and Hemingway et al. (2021). Inner-city vertical and
underground farms seem viable and may become essential as the climate warms.

Crops are frequently grown using artificial fertilizers (often made from methane, and leaching ni-
trous oxide in runoff) and based on farmland created by deforestation, wetland draining and mangrove
removal, all adding to GHG emissions. Together with the methane given off by animal husbandry,
especially by cattle, sheep and goats, these all lead to substantial GHG emissions–humanity’s climate
change ‘foodprint’. Reducing such emissions will not be easy, but steps can be taken as discussed
in https://committees.parliament.uk/writtenevidence/21638/html/. Land around volcanoes is
fertile, so basalt dust could be added as a fertilizer and also absorbs atmospheric CO2: see Nunes,
Kautzmann, and Oliveira (2014) and Beerling, Kantzas and Lomas et al. (2020). Biochar produced by
pyrolysis of biomass and added to soil could also increase crop yields while reducing GHG emissions:
see Woolf, Amonette and Street-Perrott et al. (2010).

Climate change is increasing extreme land flooding from ‘rivers in the sky’, which can hold 15 times
more water than the Mississippi River: witness the massive floods in Australia during mid-March 2021
spanning a large area, with almost a meter of rain falling at Nambucca Heads over 6 days. There have
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Figure 5: Rivers-in-the-sky; dust-storm; wild fire; coastal flooding.

also been massive floods in East Africa bringing locust swarms and diseases like cholera.
Climate change is also increasing extreme drought, leading to a loss of crops, with the resultant stress

on some plants like sorghums producing toxic hydrogen cyanide (see Shehab, Yao and Wei et al., 2020).
Flooding and drought both lead to loss of soil, either from erosion or dust storms. Sea level rises cause
coastal flooding, reducing usable land area, as well as forcing migration. Figure 5 illustrates.

2.2 Air

Air is again a place carrier, here denoting the atmosphere comprising mainly nitrogen (78%) and oxygen
(21%), with greenhouse gases like water vapour (0.4%), carbon dioxide (CO2), nitrous oxide (N2O) and
methane (CH4) as well as ozone and some noble gasses. Earth’s atmospheric blanket is essential to life,
but seen from the space station, the atmosphere is a thin blue line round the planet, not much thicker than
a sheet of paper round a soccer ball, so even small additional volumes of GHGs can have a large impact.
Earth’s gravity and magnetic field are essential to retain our atmosphere against the solar wind and also
to protect the ozone layer from damaging radiation.

Atmospheric gases have changed greatly over deep time, especially from volcanism and the ex-
change of CO2 for oxygen through photosynthesis, so Earth’s range has included Ice Ages and tropical
conditions, but Mars and Venus warn that atmospheric protection needs to be ‘just right’. Increased
greenhouse gases generated by human activity, especially burning fossil fuels, are now the major cause
of climate change. GHGs receive then re-radiate energy at different wavelengths between ultraviolet and
longwave infrared: this re-radiation is responsible for the atmospheric greenhouse effect. Eunice Foote
(1856) showed that a flask of CO2 heated greatly in the sun, whereas those of water vapour and dry
air did not, closely followed by the independent experimental evidence in John Tyndall (1859). Ortiz
and Jackson (2020) analyse Foote’s contribution and Levendis, Kowalski, Lu, and Baldassarre (2020)
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suggest an alternative experiment.
Nitrous oxide emissions from nitrogen and phosphate fertilizers have doubled in the last 50 years

so now are about 7% of greenhouse gas emissions (see Tian, Xu and Canadell et al., 2020). Catalytic
converters add to this growing problem as N2O is nearly 300 times more potent per molecule than CO2

as a greenhouse gas.
Atmospheric methane is now double the highest level over the past 800,000 years. CH4 is about

20 times as powerful as CO2 as a GHG with a half-life in the upper atmosphere of around 15 years,
gradually getting converted to CO2. Current estimates of methane in hydrates are over 6 trillion tonnes,
roughly twice the GHG equivalent in all fossil fuels: the release of even a small proportion of that would
be disastrous.

Chlorofluorocarbons (CFCs) were destroying the ozone layer before the highly successful Montreal
Protocol in 1987, a potential role model for a far more ambitious global commitment beyond the Paris
Accord at CoP21. However, replacement refrigerants like halons and halocarbons including hydrochlo-
rofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) remain dangerous greenhouse gases, meriting
research for safer alternatives.

2.3 Fire

Fire is the place carrier for energy, currently obtained from burning vast volumes of fossil fuels. Hu-
manity cannot continue to consume fossil fuels on the present scale yet stay within the ‘carbon budget’
required to achieve ‘net zero’ GHG emissions—essential to prevent dangerous climate change. The
resulting changing global temperatures are leading to increased frequency and severity of wild fires
from Australia, Amazon, and California to Siberia, which is a potential tipping point from tundra melt-
ing. Wild fires create fire-induced thunderclouds, known as pyrocumulonimbus clouds, which increase
aerosol pollutants trapped in the stratosphere and upper atmosphere, can generate fire tornados, and lead
to flash floods while also igniting further spot fires and temporarily cooling the planet like a moderate vol-
canic eruption. There is increased deforestation, especially in the Amazon and other tropical rainforests,
with a loss of biodiversity as well as increased emissions from the burning of some of the forests.

The current main hope is to replace fossil fuel based energy by renewable sources from Earth (using
thermal energy such as ground-heat and air-source heat pumps), Air (utilizing wind energy from onshore
and offshore wind turbines), Fire (from sunlight via solar cells, and nuclear, potentially including small
modular reactors) and Water (using hydroelectric energy from dams, diversion facilities or pumped stor-
age facilities). Table 2 records recent estimates of electricity generating costs in £/MWh by different
technologies. The costs of all renewable sources of electricity have been falling rapidly and seem likely
to continue to do so. The share of UK electricity generated by renewables reached a peak of 60.5 per
cent in April 2020, according to National Grid data.

Zero GHG electricity generation from renewables is technically feasible, but requires a huge increase
in output and storage capacity (for windless cloudy periods) dependent on a very large investment. Suf-
ficient supply could sustain electric transport, removing emissions from oil, and replace much household
use of gas for heating and cooking. However, an electricity grid needs second by second balancing
of electricity flows in an otherwise increasingly non-resilient system dependent on highly variable re-
newable supplies, so both backup and instantaneously accessible storage are essential, suggesting an
intelligent system that could exploit electric vehicle-to-grid storage: see Noel et al. (2019).

2.4 Water

Water may seem limitless and it surprises many people that in fact there is very little water, especially
fresh water. It is common to think that Earth is the ‘Blue Planet’ where we are surrounded by an abun-
dance of water, but we are fooled by widespread shallow oceans: the Atlantic is only about 2.25 miles
deep on average. The Pacific is wider and is deeper at about 2.65 miles on average: at its deepest in
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Table 2: Power generating technology costs in £/MWh
Source 2015 2025 2040

Solar Large-scale PV (Photovoltaic) 80 44 33
Wind Onshore 62 46 44
Wind Offshore 102 57 40
Biomass 87 87 98
Nuclear Pressurized Water Reactor 93 93 93
Natural Gas Combined Cycle Gas Turbine (CCGT) 66 85 125
CCGT with carbon capture and sequestration (CCS) 110 85 82

Nuclear power guaranteed price of £92.50/MWh for Hinkley Point C in 2023. Lowest cost in bold;
next lowest in italic; sans serif if less than 2015. Assumes increasing carbon taxes and falling CCS
costs over time. Source: Electricity Generation Costs 2020, UK Department for Business, Energy and
Industrial Strategy (BEIS)

the Challenger Deep of the Mariana Trench, it is roughly 6.8 miles down. In total, the Pacific holds 170
million cubic miles of water, just over half the 330 million cubic miles of water on Earth. If all sources of
water on the planet were collected in a sphere, it would be just just 860 miles in diameter. Consequently,
it is easy to heat the oceans by emitting excessive volumes of CO2 into the atmosphere (see Figure 1b),
pollute them, fill them with plastic waste, and turn sea water to a weak carbonic acid. Ocean acidification
impacts on many ocean species, especially calcifying organisms like oysters and corals, but also on fish
and seaweeds, affecting the entire ocean foodchain.

The worldwide ocean ‘conveyor belt’ circulates heat and nutrients, and carries oxygen to depths,
maintaining the health of the oceans. A key driver is that warm water from the Gulf Stream moves
north, evaporates, becomes saltier and denser, cools and so sinks, and flows south. Melting northern
hemisphere ice could disrupt this circulation by diluting the denser salty water, as well as increase sea
levels by about 18cm by 2100: see Hofer, Lang and Amory et al. (2020). Added to increasing volume
from thermal expansion, rising sea levels have serious implications for coastal flooding, although the
rises are not uniform, and recent coastal elevation measures have tripled estimates of global vulnerability
to sea-level rises: see Kulp and Strauss (2019).

Conversely, Southern Ocean sea ice can dramatically lower ocean ventilation by reducing the at-
mospheric exposure time of surface waters and by decreasing the vertical mixing of deep ocean waters
leading to holding 40ppm atmospheric CO2 less at its maximum: see Stein, Timmermann, Kwon, and
Friedrich (2020). Currently, oceans absorb almost a third of anthropogenic CO2 emissions, but as they
warm they will hold less.

Fresh water is a hugely important commodity and needs to be treated carefully. 19% of California’s
electricity consumption goes toward water-related applications, such as treating, transporting, pumping
and heating. Additionally, about 15% of its in-state electricity generation comes from hydropower, yet
the frequency of both high- and low-flow extreme streamflow events have increased significantly across
the United States and Canada over the last century (see Dethier, Sartain, Renshaw, and Magilligan, 2020).

Kelp ‘forests’ and seagrass ‘meadows’ absorb and store CO2, help offset increasing carbonic acidi-
fication, provide nurseries for young sea life and help protect coasts against rising sea levels. Improving
seaweed farming and raising aquaculture production by marine protection areas seem sensible, noting
that off-shore wind farms also act as marine reserves.

While we have discussed each of Earth, Air, Fire and Water separately, the interactions between them
are obvious. Given their roles in climate change, they form the basis of many of the time-series that we
use to analyse climate change. In the next section we explore the problems of assuming such data are
stationary when in fact they are highly non-stationary, in part due to the many changes discussed above.
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3 Stationary econometric theory and non-stationary time series

In contrast to shifting observational data, much of econometric theory and its applications to time-series
data implicitly or explicitly assumes that the data generating process (DGP) is stationary. Theory deriva-
tions all too often rely on proofs about the properties of estimators and tests that are invalidated by
failures of stationarity that cannot be resolved by differencing (perhaps after taking logs) to ‘remove’
stochastic trends, because the means and variances of the differenced series under analysis remain non-
constant. For example, the widely used theorem that the conditional expectation of a variable is the
minimum-variance unbiased predictor is false when distributions shift; and the famous law of iterated
expectations also fails: see Hendry and Mizon (2014). Before we consider these fundamental issues in
detail in Section 4, as a contrast we will first describe the outcomes under stationarity.

In a stationary setting, key results about asymptotic distributions of estimators rely on the fact that
‘later data’ can improve estimates based on earlier observations as follows. Consider the following
simple process over a period t = 1, . . . , T :

yt = β + εt where εt ∼ IN
[
0, σ2ε

]
(1)

where β is a constant and IN
[
µ, σ2ε

]
denotes an independent Normal distribution with mean µ and vari-

ance σ2ε . Based on a sub-sample t = 1, . . . , Tk < T the least-squares estimator of β denoted β̃Tk is:

β̃Tk =
1

Tk

Tk∑
t=1

yt ∼ N
[
β, T−1k σ2ε

]
(2)

The precision of estimation will be higher for larger T , so is improved by later data (i.e., future data
relative to Tk). Importantly, under the above assumptions, all sub-samples deliver unbiased estimates of
β, which is the parameter relevant to all the time periods analyzed.

Figure 6: Frequency of Central England Winter Temperatures below 2◦ per decade. Data from Met
Office Hadley Centre via https://www.metoffice.gov.uk/hadobs/hadcet/.

Another often implicit assumption is that the pre-specified model is the DGP, so ‘optimal estimation’
is the main issue, rather than the more realistic need to discover a reasonable approximation to that
DGP, in which case modelling is essential. If most time-series are non-stationary from unanticipated
shifts, then there is little likelihood of any pre-specified model being complete, correct and immutable,
so finding those shifts is important, a topic we return to in Section 5.
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The impacts of climate change show up in Winter Central England Temperatures (CET) and in sea-
sonal temperature trends. Building on data by Parker, Legg, and Folland (1992) and Manley (1974),
Figure 6 shows the frequency of Central England Winter Temperatures below 2◦ per decade from 1659–
2019, recorded in a figure by Simon Lee.5

Based on the same data as above for CET, and comparing to those for Boston over 1743–2015, Figure
7 shows that temperature trends across seasons are very marked: both figures are from Hillebrand and
Proietti (2017).6 In Central England, winters are warming but summers are not, whereas in Boston,
warming is similar across all months. These long-term temperature trends are due to climate change, not
weather variation, of which there is plenty. Temperature distributions are shifting on both sides of the
Atlantic.
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Figure 7: Trends across seasons. Left: CET over 1659–2019; Right: Boston over 1743–2015.

4 The key implications of shifting distributions

Given the manifest evidence of non-stationarity visible in the above graphs, we turn to consider how
that modifies the implications of (1) and (2). If instead of a constant mean, the intercept was β1 for
t = 1, . . . , T1 and β2 6= β1 for t = T1 + 1, . . . , T , then for Tk = T1 the estimator β̃T1 in (2) would
unbiasedly estimate β1, which is the relevant intercept at that time, whereas the full-sample β̂T when
Tk = T would be:

β̂T =
1

T

T∑
t=1

yt ∼ N
[
r1β1 + (1− r1)β2, T−1σ2ε

]
(3)

where r1 = T−1T1. Thus, β̂T is relevant neither historically nor at the sample end. Moreover, forecasts
based on β̂T will be systematically biased:

E
[
yT+1 − ŷT+1|T

]
= E

[
β2 + εT+1 − β̂T

]
= r1 (β2 − β1) (4)

Thus, any policy using either β̃Tk or β̂T would have incorrect implications at T or later so it is essential to
detect such shifts and reformulate empirical models accordingly. Examples highlighting how misleading
empirical models can be when large outliers or location shfits are not modelled include Hendry and

5https://theconversation.com/climate-change-is-making-extreme-cold-much-less-likely-despite-the-uk-plummeting-to-23-c-155177
6The Boston time series is from NOAA’s National Centers for Environmental Information Global Historical Climatology

Network (GHCN) Station Number 42572509000.
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Mizon (2011) showing a positive price elasticity for the demand for food in the USA, and Castle and
Hendry (2014) revealing the key role of a long-run mean shift in models of UK real wages.

Not only will estimates of coefficients in models be non-constant, so biased for both the before and
after shift parameters, as noted above, the basic statistical tools of conditional expectations and the law
of iterated expectations also fail.

When the underlying distributions shift, expectations operators need to denote not only the random
variables under analysis and their time, but also their distributions at that time and the information set
being conditioned on. This requires three-way time dating as in EDyt

[yt+1|It−1], which denotes the
conditional expectation using the information set It−1 formed at time t of the vector random variable
yt+1 integrated over Dyt(·):

EDyt
[yt+1 | It−1] =

∫
yt+1Dyt (yt+1|It−1) dyt+1 (5)

As knowledge of Dyt+1(·) is unavailable at t, the fundamental problem is obvious from (5): the ex-
pectatation is not over Dyt+1(·), so if Dyt(·) 6= Dyt+1(·) because the distribution has shifted, there is
no reason why EDyt

[yt+1|It−1] should be informative about EDyt+1
[yt+1|It−1], the correct conditional

mean as Figure 8 illustrates.
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Figure 8: Illustrating the impact of a distributional shift on expectations.

Simply using E to denote the expectation can potentially mislead as in letting:

yt+1 = E [yt+1 | It] + vt+1 (6)

so that by taking conditional expectations of both sides:

E[vt+1 | It] = 0 (7)

This merely establishes that at time t, it is expected that the next error will have a mean of zero, but
does not prove that the model used for E [yt+1 | It] will produce an unbiased prediction of yt+1, as it is
sometimes misinterpreted as doing.

Instead, when yt ∼ IN
[
µt, σ

2
y

]
is unpredictable because future changes in µt are unknowable (like

SARS-Cov-2 virus driving the pandemic outbreak), the expectation EDyt
[yt+1] need not be unbiased for

the mean outcome at t+ 1. From (5):

EDyt
[yt+1] =

∫
yt+1Dyt (yt+1) dyt+1 = µt (say) (8)
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whereas:
EDyt+1

[yt+1] =

∫
yt+1Dyt+1 (yt+1) dyt+1 = µt+1 (9)

so that EDyt
[yt+1] does not correctly predict µt+1 6= µt. Thus, the expectation EDyt

[yt+1] formed at t is
not an unbiased predictor of the outcome µt+1 at t+ 1, although the ‘crystal-ball’ predictor EDyt+1

[yt+1]
based on knowing Dyt+1 would be unbiased.

Returning to (6) at time t and subscripting the expectations operator as in (5):

yt+1 = EDyt
[yt+1 | It] + vt+1 (10)

so (7) becomes:
EDyt

[vt+1 | It] = 0 (11)

which does not entail that:
EDyt+1

[vt+1 | It] = 0 (12)

whereas (12) is required for an unbiased prediction. The conditional expectation is the minimum mean-
square error predictor only when the distribution remains constant, and fails under distributional shifts.

Moreover, the law of iterated expectations only holds inter-temporally when the distributions in-
volved remain the same. When the variables correspond to drawings at different dates drawn from the
same distribution so Dyt = Dyt+1 :

EDyt

[
EDyt+1

[yt+1 | yt]
]

= EDyt+1
[yt+1] . (13)

Thus, if the distributions remain constant, the law of iterated expectations holds, but it need not hold
when distributions shift:

EDyt

[
EDyt+1

[yt+1 | yt]
]
6= EDyt+1

[yt+1] (14)

as Dyt+1 (yt+1|yt)Dyt (yt) 6= Dyt+1 (yt+1|yt)Dyt+1 (yt) unlike the situation in (13) where there is no
shift in distribution.

Changes that alter the means of the data distributions are location shifts, so DGPs with such shifts
are obviously non-stationary. Unfortunately there is a widespread use of ‘non-stationary’ to refer just to
DGPs with stochastic trends, leading to the non-sequitur that ‘differencing induces stationarity’, as well
as our need to call time series with shifts and possibly also stochastic trends ‘wide-sense non-stationary’.
Further, stochastic trends are usually assumed to apply constantly to an entire sample, but unit roots
in DGPs are not an intrinsic property and can also change. Not only are there strong trends in Figure
1, these vary considerably over time as shown by their changing rates of growth. Thus, several of the
differenced time series are not stationary, as shown by Figure 9. In particular, changes in atmospheric
CO2 have continued to trend up despite the Paris Accord, and there have been large variance changes in
the differenced series for UK coal use. As documented in Castle and Hendry (2020), the distributions of
the UK’s CO2 emissions have shifted considerably over time.

Both the ‘Financial crisis’ of 2008 and the Sars-Cov-2 pandemic in 2020 were essentially unantic-
ipated, but have had major impacts on economic activity as well as on health, lives and livelihoods,
so the importance of non-stationarity replacing stationarity as the standard assumption for time-series
analysis may at last be realised. However, once the comfort blanket of stationarity is discarded, a fun-
damental problem is that there may be multiple unknown shifts in many different facets of DGPs at
different points in time, with differing magnitudes and signs. Many ‘proofs’ and statistical derivations of
time-series modelling become otiose, and some like the so-called ‘Oracle principle’ for model-selection
algorithms are irrelevant when parameters change over relatively short periods of time.

Since climate change is driven by economic activity—which is wide-sense non-stationary and riddled
with abrupt, usually unanticipated, changes—these difficulties confront empirical modelling of many
observational climate time series. The next section addresses why undertaking econometric modelling
of changing climate time series requires handling various forms of shift.
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Figure 9: (a) Monthly changes in atmospheric CO2; (b) annual changes in global ocean heat; (c) annual
changes in global mean surface temperature; (d) annual changes in UK coal use.

5 The importance of handling shifts

There are many methods designed either to reveal parameter non-constancy by estimation or testing,
or tackle the problem by formulating changing-parameter models. The first group uses recursive data
samples or moving windows thereof. In the recursive setting, Tk in (2) defines an initial sub-sample,
and observations are added sequentially to provide β̃Tk+j for j = 1, . . . , T − Tk. We reinterpret this
procedure as initially including impulse indicators 1t that are zero at all observations except unity at t
for t = Tk + 1, . . . , T , then sequentially removing these as the estimation sub-sample size increases.
The values of these impulse indicators can be very informative both about outliers and location shifts in
the remaining data but are usually ignored. Moreover, there may have been shifts in the initial sample
1, . . . , Tk, which will not be detected, so the initial estimate is already biased. Similar comments apply
to using moving windows.

A different issue confronts testing for non-constancy in that the model must already be available,
either specified a priori or more likely selected from some set of trial runs. But these estimates ignored
the changes that are then tested for, and if constancy is rejected, the model must be reformulated—
vitiating the earlier specifications. A similar difficulty faces methods for estimating changing parameters
after fitting a pre-specified model: not only are there all the other unknown aspects of non-stationarity
noted above, observational-data model specification is also uncertain in terms of the relevant variables,
their lags and non-linearities.

To illustrate the issues raised by location shifts, we generalise (1) to the dynamic model:

yt = β0 + β1yt−1 + εt, t = 1, . . . , T (15)

where T = 100, β1 = 0.5, with σ2ε = 0.1, but β0 = 1 till T = 80 then β0 = 0 for the remainder
of the sample. A draw from (15) is shown in Figure 10, Panel (a). The average simulation full-sample
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estimates from M = 1000 replications were:

ŷt = 0.914
(0.045)

yt−1 + 0.119
(0.082)

σ̂2ε = 0.14
(16)

The estimates in (16) are far from the DGP parameter values. The estimate of β1 being close to unity is
a standard outcome from a failure to model a step shift, and warns that near estimated ‘unit roots’ need
not signal a stochastic trend rather than a location shift. Also, σ̂2ε is 40% larger than σ2ε on average.
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Figure 10: (a) A time series from (15); (b), (c) recursive parameter estimates with estimated standard
errors (ESEs) and Monte Carlo standard deviations (MCSDs); (d) forecast Chow tests.

Providing the DGP is known, recursive estimation reveals the non-constant parameter estimates as
Figure 10, Panels (b) & (c) show, confirmed by high levels of rejection of the null of constancy on
forecast Chow (1960) tests (see Hendry, 1984, for an analysis of Monte Carlo methods). By themselves
the recursive plots show that there was change, but do not isolate the source. One ‘identification’ route
is to fit the model separately to the data before and after T = 80. For a single data draw, this delivers:

ŷt = 0.661
(0.084)

yt−1 + 0.68
(0.168)

t = 2, . . . , 80 σ̂2ε = 0.10
(17)

ŷt = 0.521
(0.105)

yt−1 + 0.009
(0.073)

t = 81, . . . , 100 σ̂2ε = 0.10
(18)

revealing the large shift in the intercept with little change in the other estimates. Our methods, here
step-indicator saturation (SIS) explained below, are designed to find location shifts and outliers while
selecting relevant variables. Applying SIS to the full sample, where S{j} = 1, t ≤ j, j = 1, . . . , T − 1,
and zero otherwise, but always retaining the intercept and yt−1 selecting which step indicators to retain
at 0.5% yields:

ŷt = 0.608
(0.066)

yt−1 − 0.011
(0.072)

+ 0.795
(0.138)

S{80} t = 2, . . . , 100 σ̂2ε = 0.10
(19)
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Thus, the intercept is estimated as 0.784 up to t = 80 and essentially zero thereafter. Despite having
started with a candidate variable set of 98 step indicators, all the data (less two degrees of freedom) can
be used in (19) to estimate β1, thereby delivering a more precise, as well as a constant, outcome.

5.1 Simulating SIS for (15) with an intercept shift

The results in (19) are for a single draw of the time series, but Autometrics can simulate SIS. Using the
same settings as for Figure 10 and selecting step indicators at 0.5% with no backtesting until the final
stage, yields the estimates reported in Figure 11.
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Figure 11: (a) One time series from (15); (b), (c) simulated recursive parameter estimates with estimated
standard errors (ESEs) and Monte Carlo standard deviations (MCSDs) when applying SIS; (d) resulting
forecast Chow tests.

The outcome is dramatically different from that in Figure 10. The estimate of β1 is now relatively
constant at between 0.4 and 0.5; the estimate of β0 switches quickly from around unity to zero after
t = 80; and the forecast tests reject at about their nominal significance levels. The step indicator at
t = 80 was selected with a probability of 0.84 rising to 0.97 within ±1 of t = 80. Irrelevant indicators
were selected with probability 0.008 (the empirical gauge), close to the nominal significance level of
0.005, so there is almost no over-fitting. The MCSDs are somewhat wider than the ESEs, so the latter
slightly underestimate the uncertainty.

5.2 Simulating SIS for (15) with a shift in dynamics

A legitimate question is what if, instead of β0 shifting, the intercept remained constant and the dynamic
parameter β1 changed? For example:

yt = β0 + β1yt−1 + εt, t = 1, . . . , T1

yt = β0 + β∗1yt−1 + εt, t = T1 + 1, . . . , T (20)
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Setting the same parameter values for β0, β1, σε and T1 = 80 as before with β∗1 = 0.75, we repeated the
above Monte Carlo leading to Figure 12.
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Figure 12: (a) A time series from (20); (b), (c) recursive parameter estimates with estimated standard
errors (ESEs) and Monte Carlo standard deviations (MCSDs); (d) forecast Chow tests.

Apart from Panel (a), the other panels are similar to those in Figure 10. The average simulation
full-sample estimates from M = 1000 replications are now:

ŷt = 0.911
(0.046)

yt−1 + 0.227
(0.113) (21)

so are also closely similar to (16). Indeed, for the single data draw, the sub-sample fits are identical to
(17) for the first period but for the second sub-period:

ŷt = 0.678
(0.125)

yt−1 + 1.28;
(0.466)

t = 81, . . . , 100, σ̂2ε = 0.10
(22)

so the estimate of β1 is barely altered but β̂0 is greatly shifted. Consequently, it may not surprise that
SIS can again capture much of the shift in the intercept:

ŷt = 0.71
(0.06)

yt−1 + 1.14
(0.22)

− 0.568
(0.119)

S80; t = 2, . . . , 100, σ̂2ε = 0.10
(23)

The simulation outcomes when applying SIS reinforce these conclusions. First Figure 13 shows that
the estimates of β1 increase after t = 80 although they remain close to 0.5 rather 0.75. As before, the
estimates of β0 change after t = 80 gradually rising to 2, and the forecast Chow tests reject close to their
nominal significance levels. The step indicator at t = 80 was selected with a probability of 0.46, rising
to 0.73 within ±1 of t = 80, 0.89 within ±2 and 1.0 within ±3 of t = 80, so detection is more spread
out. Irrelevant indicators were selected with probability 0.010, somewhat above the nominal significance
level of 0.005 reflecting the issue being a shift in dynamics of which only the induced location shift is
detected. The MCSDs are wider than the ESEs, so the latter again underestimate the uncertainty.
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Figure 13: (a) A time series from (20); (b), (c) simulated recursive parameter estimates with estimated
standard errors (ESEs) and Monte Carlo standard deviations (MCSDs) when applying SIS; (d) resulting
forecast Chow tests.

5.3 Why is SIS effective for a shift in dynamics?

It may seem puzzling that SIS can help facing a shift in the dynamics, but the crucial modelling problems
are those that arise from shifts in the long-run, or equilibrium, mean rather than in other parameters, as
emphasized in the forecasting context by Clements and Hendry (1998,1999). Indeed, notice that the
dominant visual feature of both data graphs above are the sudden departures from their previous average
locations. Let µ = β0/(1− β1) which shifts to µ∗β∗

0
= β∗0/(1− β1) in (15), so goes from 2 to 0 as seen

in Figure 10 Panel (a). Then µ∗β∗
1

= β0/(1− β∗1) in (20) changes from 2 to 4 as in Figure (12) Panel (a).
Defining∇µ∗ = µ∗ − µ and ∇β∗1 = β∗1 − β1, the two cases can be written as:

yt − µ = β1 (yt−1 − µ) + (1− β1)∇µ∗β∗
0
1{t>T1} + εt (24)

yt − µ = β1 (yt−1 − µ) + (1− β∗1)∇µ∗β∗
1
1{t>T1} +∇β∗1 (yt−1 − µ) 1{t>T1} + εt (25)

Expressed as mean-zero deviations about their equilibrium means, when either DGP shifts, the problem
is the sudden appearance of a non-zero intercept where previously it was zero. That is what SIS can
correct. For the β0 shift, removing the new intercept recreates the previous DGP, whereas the β1 shift
also induces a third term that has a mean of zero, so SIS cannot correct that. From (24) and (25),
predicted values for the step-indicator magnitudes can be calculated, leading to -1 and 0.5 respectively.
For example, from (19), µ = 2, so S80 should have a coefficient of unity, not significantly different from
the 0.8 found, whereas in (23), it should be −0.5, close to the outcome.

While this illustration is for a simple setting, the principles generalise to more general models in-
cluding selecting across variables as well as indicators.
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5.4 Tackling a shift in dynamics by multiplicative indicator saturation

Although SIS offsets much of the effect of the changing dynamics, the more appropriate approach is
to model the change in β1. Our tool for doing so is multiplicative indicator saturation, denoted MIS
(see e.g., Kitov and Tabor, 2015, and Castle, Doornik, and Hendry, 2020). In MIS, yt−1 is multiplied
by almost every step indicator creating the T − 2 additional candidate variables Sj × yt−1 for j =
2, . . . , T − 1. Thus, SIS is in fact MIS for the constant term, but is a special case of importance given the
pernicious effect unmodelled location shifts have on forecasts.

For one draw applying selection at 0.1% over the MIS regressors we obtain:

ŷt = 0.74
(0.05)

yt−1 + 1.02
(0.16)

− 0.25
(0.04)

S80 × yt−1 t = 2, . . . , 100, σ̂2ε = 0.08
(26)

which almost exactly replicates the DGP. The outcome shows a shift in β̂1 from 0.49 before t = 80 to
0.74 after, with a constant intercept. The simulation outcomes are reported in figure 14. The interaction
indicator at t = 80 was selected with a probability of 0.42, rising to 0.62 within ±1 of t = 80, 0.81
within ±2 and 0.89 within ±3 of t = 80. Irrelevant indicators were selected with probability 0.007,
which falls to 0.003 excluding the indicators within ±3 of t = 80. The MCSDs are again wider than the
ESEs, so the latter underestimate the uncertainty.
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Figure 14: (a) A time series from (20); (b), (c) simulated recursive parameter estimates with estimated
standard errors (ESEs) and Monte Carlo standard deviations (MCSDs) when applying MIS; (d) resulting
forecast Chow tests.

5.5 Tackling changing trends by trend-indicator saturation

As noted in the introduction, if humanity is to avoid catastrophic climate change, the present upward
trends in GHG emissions must be reversed to become rapid downward trends. Thus, graphs of fossil fuel
use and GHG emissions shaped like the ∩ in Figure 1(d) may become common, as may less extreme
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but still marked trend changes like those in Figure 1(a)–(c). Economics, demography and epidemiology
have all experienced sudden large changes in trend as Figure 15 illustrates.
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Figure 15: UK time series of (a) output per worker per year (productivity); (b) births per thousand of the
population; (c) employment; (d) cumulative confirmed COVID-19 cases.

Productivity has increased at varying rates since 1860, but has stagnated since 2008 as highlighted
by the ellipse, badly over-forecast by the UK Office of Budget Responsibility not adjusting to the ‘flat-
lining’, and much improved by the robust predictor proposed by Martinez, Castle, and Hendry (2021).
The birth rate was steadily increasing until the introduction of oral contraception in the mid-1960s, then
fell sharply till the late 1970s and has fluctuated since. Employment has expanded greatly since 1860 with
major fluctuations during world wars and severe depressions, but at a much more rapid rate since 2000
(which helps explain the productivity slowdown). Finally, panel (d) shows dramatic changes in the trend
of confirmed COVID-19 cases. To empirically model trends which change by unknown magnitudes
at unknown points in time an unknown number of times requires a general tool like trend indicator
saturation, denoted TIS (see Castle, Doornik, Hendry, and Pretis, 2019, and Walker, Pretis, Powell-
Smith, and Goldacre, 2019, for an application). In effect, TIS is MIS for the trend term but merits
a separate analysis because like the constant, a trend is a deterministic term and also that

∑T
t=1 t

2 =
1
6T (T + 1)(2T + 1) so grows at O(T 3) as against O(T 2) for sums of squares of stationary variables.

Much macroeconomic modelling is in differences of variables or their logs to eliminate trends and
possibly unit roots. However, the potency of detecting breaks is much higher when working in levels
than in changes. To illustrate, we create an artificial trend-break DGP and apply TIS to the levels of the
time series and compare break detection to that by SIS applied to the changes.

Figure 16 records a single representative draw of the resulting time series denoted yt, zt, ∆yt =
yt − yt−1 and ∆zt where:

yt = β0,t + β1,tzt + εt where εt ∼ IN[0, σ2ε ] (27)

and:
zt = γ0 + γ1t+ νt where νt ∼ IN[0, σ2ν ] (28)
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Figure 16: Time series from (27) and (28) of (a) yt; (b) zt; (c) ∆yt; (d) ∆zt.

so zt acts as the trend. We set β0,t = 10 and β1,t = 1 for t = 1, . . . , 60 then β0,t = −70 and β1,t = 2 for
t = 61, . . . , 100 with γ0 = 0, γ1 = 1, σ2ε = 1 and σ2ν = 0.001 deliberately set to a tiny value to mimic a
trend as Figure 16 confirms.

‘Ocular econometrics’ on Figure 16 shows an obvious trend break, but not an obvious shift in the
changes ∆yt. Applying TIS to the levels with a target nominal significance value of 0.001 picks up the
shift, but SIS applied to the changes needs to be at 0.005 to do so, as we now show. Although doubling of
the growth rate is a very large change, smaller changes, such as a 50% increase, barely registered in ∆yt.
We consider 4 cases: (i) estimating the relation between yt and zt without allowing for the trend shift;
(ii) estimating that relation with TIS at 0.001; (iii) regressing ∆yt = ψ0 + ψ1∆zt; and (iv) estimating
that last equation with SIS. Figure 17 shows the outcomes for (i) & (ii), and Figure 18 for the differenced
case (iii) & (iv).

Not handling the break in the trend as in Figure 17(a), (b) is disastrous–the deviations from trend
would be unrelated to ‘excess demand’ if yt was GDP–whereas in (c), (d) the shift is detected by TIS.7

Figure 18 records two cases with SIS in the top row (a), (b) when ∆zt is not forced, and when it
is (i.e., not selected over) in (e), (f), whereas (c), (d) in the middle row are with TIS when zt is forced.
SIS at 0.005 detects the shift, dropping ∆zt (when only the constant is forced), whereas ∆zt is retained
with an unrestricted constant. An intercept is equally good here at representing the mean change, but
would not work if zt was exactly the trend, so ∆zt was constant whereas ∆zt would matter more than the
intercept if σν was larger. There is a small loss of fit if SIS is not used, and as the residual autocorrelation
test is significant in all three cases, there is little sign of the step shift. Differencing doubles the error
variance so detecting the step shift rather than the trend break is harder, reflected in the need to use a less
stringent nominal significance level.

Although the fit is similar between (c) and (d) as measured by σ̂ε, there is nevertheless a substantial
impact on forecasts of yt derived from ∆yt as Figure 19 shows for multi-step forecasts. There is little
difference between (iii) & (iv) in the root mean square forecast errors (RMSFEs) for forecasts of the

7The shift did not quite match the node at the break point so is picked up by the implicit difference of the indicators at
t = 58: the timing in PcNaive starts at 0, so dates are shifted back, and the trend indicators end at the date shown.
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Figure 17: Actual and fitted values and residuals from (a), (b) regressing yt on zt without TIS and (c),
(d) with.

∆yt 
Fitted 

0 20 40 60 80 100

0.0

2.5

5.0

∆yt  =  − 1.0S59+ 2
(a)∆yt 

Fitted 

∆yt Scaled Residuals 

0 20 40 60 80 100
-2

0

2
(b)

∆yt Scaled Residuals 

yt 
Fitted 

0 20 40 60 80 100

50

100

150

 yt  =  + 2 zt  + 1.7T57  − 2.7T58  − 71

(c)
yt 
Fitted 

 yt Scaled Residuals 

0 20 40 60 80 100

-2

0

2
(d)

 yt Scaled Residuals 

∆yt 
Fitted 

0 20 40 60 80 100

0.0

2.5

5.0

∆yt  =  − 1.0S59  + 2.0∆zt
(Forced ∆zt) (e)∆yt 

Fitted 

∆yt Scaled Residuals 

0 20 40 60 80 100
-2

0

2
(f)

∆yt Scaled Residuals 

Figure 18: Actual and fitted values and residuals from selecting: (a), (b) ∆yt from ∆zt with SIS; (c), (d)
yt with TIS when zt is forced; (e), (f) ∆yt on SIS with ∆zt forced.

changes ∆yt, but cumulating these forecasts to derive the levels’ forecasts leads to the RMSFE for the
model without SIS being more than four times larger than that with, and those forecasts from (iii) being
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systematically too low.
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Figure 19: Actual and forecast values for changes and derived levels from models of ∆yt on ∆zt without
SIS (a), (b) denoted

( ̂ ) and with (c), (d),
( ˜ ).

Figure 20 records multi-step forecast values for the levels from models of yt on a forced constant
and forced zt with TIS (b) and without (a), as well as with a step intercept correction from t = 84
on. All three graphs also show robustified forecasts (see Hendry, 2006). The forecasts with TIS have
dramatically smaller RMSFEs than those without. While the robust device is a great improvement for
(a) when TIS was not used, being based on differencing the data, its RMSFEs are similar to those in
Figure 19 for the cumulated differenced forecasts without SIS.

Models in differenced data face this risk of appearing to have few or no step shifts when estimated
and produce respectable forecasts of future changes, but suffer systematic forecast failure for the entailed
levels of the data.

6 Modelling and forecasting wide-sense non-stationary processes

In this section, we describe our approach to jointly tackling all the main problems facing analyses of em-
pirical evidence on wide-sense non-stationary processes. The framework is one of model discovery, from
model formulation, through selection, to evaluation. Formulation entails commencing from a very large
initial specification intended to nest the DGP as closely as possible while retaining available theory infor-
mation. Selection requires searching over all non-retained potential determinants jointly with indicator
saturation estimation, to find which variables, lags, and functional forms are relevant and which obser-
vations need separate handling. Evaluation involves testing for a range of possible mis-specifications.
Forecasting hinges on the wide-sense non-stationarity of the data, with forecasting methods derived for
stationary settings otiose in the real world.
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Figure 20: Actual and forecast values for levels from models of (a) yt on a forced constant and forced zt
with TIS

( ̂ ) and (b) without TIS
( ˜ ), and (c) with a step intercept correction from t = 84 ( ).

6.1 Selecting models

The proposed framework begins by embedding the climate theory within a much more general model
specification that allows for influences that are not explicitly included in the theory models. This could be
due to the theory model itself being incorrect or incomplete, or it could be due to external effects that lie
outside of the climate theory, for example volcanic eruptions or economic responses to a pandemic. The
theory is the object of study, but the target for model selection is the data generating process for the set
of variables under analysis. In order to evaluate the objective or the postulated theory, the model must be
robust to outliers, shifts, omitted variables, non-linearity, mis-specified dynamics, incorrect distributions,
non-stationarity, and invalid conditioning.

The approach can orthogonalize all additional variables with respect to the theory variables so the
distributions of the estimators of parameters of the object are unaffected by selection, see Hendry and
Johansen (2015). The selection algorithm retains without selection all the variables in theory model when
selecting other features. This enables tighter than conventional significance levels, reducing the retention
of irrelevant candidates without jeopardizing the retention of theory relevant variables. This is a win-win
situation. When the theory model is complete and correct, the resulting model will deliver precisely the
same estimates as directly fitting it to data, even if selecting from a vastly larger specification, but if the
theory is not complete and correct the modeller would discover a better formulation.

The implication of commencing with much larger models than the theory would suggest is that the
starting point for model selection would include more candidate variables, N , than the number of obser-
vations, T . A search algorithm is needed that can handle such a situation and we use Autometrics which
implements a block search algorithm to handle more variables than observations, see Doornik (2009)
and Hendry and Doornik (2014). The regressors are divided into sub-blocks but the theory variables are
retained at every stage, selecting only over the putative irrelevant variables at a stringent significance
level. The sub-blocks include expanding and contracting searches to handle correlated regressors that
may need to enter jointly to be significant. It is almost costless to check large numbers of rival variables,
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so there are huge benefits if the initial specification is incorrect and the enlarged general unrestricted
model nests the local data generating process (LDGP).

Search is unavoidable as climate and economic variables are all interrelated with high correlations
There are many selection algorithms in the literature that assume a lack of correlation and therefore
pursue single path searches. These include forward search and stepwise regression, 1-cut selection and
backward elimination, and Lasso, see Tibshirani (1996), and its variants. The benefits of Autometrics
include formal tests for congruence to ensure all tests of reduction are valid, multipath search to avoid
path dependence and ensure that the initial ordering of regressors does not matter, increased efficiency
relative to estimating all 2N possible models, which is infeasible in most cases as N becomes even
moderately large, and a well-defined stopping point at terminal models using encompassing tests against
the general unrestricted model to ensure there isn’t a substantial loss of information. Although such a
multipath search is not as fast and simple as single path procedures, and there is some dependence on
how the blocking is implemented, increased computing power mean that these costs are not large.

Three important automatic generalisations for specifying the general unrestricted model include (i)
adding in many lags of the regressors to allow for a sequential factorization and the selection algorithm
will then apply a lag length reduction stage ensuring there are no unmodelled dynamics; (ii) including
non-linear transformations of the regressors to allow for general unspecified forms of non-linearity using
polynomial and exponential expansions; and (iii) a variety of indicator saturation estimators (ISEs) to
model many different aspects of wide-sense non-stationarity. As illustrated above, each ISE is designed
to match a specific problem: IIS to tackle outliers, SIS for location shifts, MIS for parameter changes,
TIS for trend breaks, as well as designed-indicator saturation for modelling phenomena with a regular
pattern, such as detecting the impacts on temperature of volcanic eruptions (DIS: see Pretis, Schneider,
Smerdon, and Hendry, 2016). Importantly, saturation estimators can be used in combination as we do
below, where IIS and SIS combined is called super saturation (see Ericsson and Reisman, 2012, and
Kurle, 2019). All saturation estimators can be applied when retaining without selection a theory-model
that is the objective of a study, while selecting from other potentially substantive variables. Saturation
estimators, and indeed our general approaches, have seen applications across a range of disciplines in-
cluding dendrochronology, volcanology, geophysics, climatology, and health management, as well as
economics, other social sciences and forecasting. Although theory models are much better in many of
these areas than in economics and other social sciences, modelling observational data faces most of the
same problems, which is why an econometric toolkit can help.

6.2 Forecasting in non-stationary worlds

‘Conventional’ economic forecasting uses a theory-based system that models the main variables of in-
terest. Examples include a dynamic-stochastic general equilibrium (DSGE) model, a variant of a vector
autoregression (VAR), or a simultaneous-equations model. Some systems are closed, in that all variables
are modelled, but most are open with ‘offline’ assumptions made about future values of unmodelled
‘exogenous’ variables. Almost all economic systems are equilibrium-correction models (EqCMs) or dif-
ferenced variants thereof. Clements and Hendry (1998, 1999) develop taxonomies of all forecast errors
in closed systems to show that the key determinant of forecast failure is an unmodelled shift in the equi-
librium mean. Hendry and Mizon (2012) extend the taxonomy to open systems and show that result still
holds, but there are additional potential sources of forecast failure deriving from changes in the ‘exoge-
nous’ variables. Introductions to forecasting facing breaks are provided by Castle, Clements, and Hendry
(2016, 2019).

Nothing can solve the problem of an unanticipated shift in the equilibrium mean over the forecast
horizon, of which this century has already witnessed several including the dot-com crash, the financial
crisis and the Covid-Sars-2 pandemic. Forecasting such shifts before they occur has not yet proved feasi-
ble even if ex post claims that they were predicted abound. However, a number of approaches have been
proposed to counter the problem of forecast failure due to in-sample shifts in EqCMs including differ-
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encing, and developing predictors that are robust after breaks: see e.g., Hendry (2006), Castle, Clements,
and Hendry (2015) and Martinez, Castle, and Hendry (2021) (described in Section 6.5). Nevertheless,
avoiding systematic mis-forecasting has a cost in larger root-mean square forecast errors (RMSFEs),
especially when there is no shift to offset.

The system we developed for forecasting Ice Ages data is a simultaneous-equations model where
the measures of Earth’s orbital trajectory are entered as unmodelled ‘exogenous’ drivers, so in Section
6.3 we address the extent to which it circumvents the problems raised by Hendry and Mizon (2012)
after discussing the role of the exogeneity assumptions in the Ice-Ages forecasts. We then describe our
forecasting device Cardt, a modification of the predictor we used in the M4 competition, see Doornik,
Castle, and Hendry (2020a). This will be applied to forecasts of UK productivity in Section 6.5 and
forecasting UK CO2 emissions in Section 7.2. Section 6.5 describes smooth robust forecasting methods
and applies them to 5-year ahead predictions of UK productivity, along with the Cardt forecasts, before
addressing a productivity puzzle.

6.3 Exogeneity in Ice-Ages forecasts

As Pretis (2019) remarks ‘Econometric studies beyond IAMs (integrated assessment models) are split
into two strands: one side empirically models the impact of climate on the economy, taking climate
variation as given ... the other side models the impact of anthropogenic (e.g., economic) activity onto
the climate by taking radiative forcing—the incoming energy from emitted radiatively active gases such
as CO2—as given... This split in the literature is a concern as each strand considers conditional mod-
els, while feedback between the economy and climate likely runs in both directions.’ Pretis (2021)
addresses the exogeneity issue in more detail. Examples of approaches conditioning on climate variables
such as temperature include Burke, Hsiang, and Miguel (2015), Pretis, Schwarz, Tang, Haustein, and
Allen (2018), Burke, Davis, and Diffenbaugh (2018), and Davis (2019). Hsiang (2016) reviews such
approaches to climate econometrics. Examples from many studies modelling climate time series include
Estrada, Perron, and Martı́nez-López (2013), Kaufmann, Kauppi, Mann, and Stock (2011), Kaufmann,
Kauppi, Mann, and Stock (2013) and Pretis and Hendry (2013).8

The dynamic simultaneous system in Castle and Hendry (2020) for modelling and forecasting Antarc-
tic Ice volume and Temperature, and atmospheric CO2 over the last 800,000 years of Ice Ages (see Figure
3) conditioned on the contemporaneous and lagged values of the Earth’s orbital variables of eccentricity,
obliquity and precession shown in Figure 4. The open model taxonomy in Hendry and Mizon (2012)
added nine potential sources of forecast error to the ten that occur in closed models, so we now address
their possible impacts on the forecast accuracy of the system 100,000 years into the future. They show
that despite the in-sample forecasting model being correctly specified and all unmodelled variables (de-
noted by the vector zt) are strongly exogenous with known future values, changes in dynamics can lead
to forecast failure when the zt have non-zero means.

To illustrate, let the DGP of a vector yt conditional on known zt be:

yt = Ψ1yt−1 + Ψ2zt + εt where εt ∼ IN[0,Ωε] (29)

which has a zero intercept. If zt has a non-zero mean, E[zt] = µ, then when Ψ1 has all its eigenvalues
inside the unit circle:

E[yt] = ψ = (I −Ψ1)
−1Ψ2µ (30)

which is the equilibrium mean. In terms of deviations from equilibrium means:

yt = ψ + Ψ1(yt−1 −ψ) + Ψ2(zt − µ) + εt. (31)

8See https://us5.campaign-archive.com/?u=d1bdd6126f95e7ead3788a350&id=1cd67a8763 for
summaries of many contributions to climate econometrics from members of our network https://www.jiscmail.ac.
uk/cgi-bin/webadmin?A0=climateeconometrics.
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If any of the parameters in (30) change, then the equilibrium mean shifts leading to forecast failure until
the model is updated despite the future zt being super-strongly exogenous and known.

Forecasting after the other parameters shift at T + 1, so that the DGP becomes:

yT+1 = Ψ∗1yT + Ψ∗2zT+1 + εT+1 (32)

from a forecast origin at T where yT is known using:

ŷT+1|T = Ψ̂1yT + Ψ̂2zT+1 (33)

leads to the forecast error eT+1|T = yT+1 − ŷT+1|T :

eT+1|T = (Ψ∗1 −Ψ1)yT + (Ψ1 − Ψ̂1)yT + (Ψ∗2 − Ψ̂2)zT+1 + εT+1. (34)

When the in-sample parameter estimates are unbiased:

E[eT+1|T ] = (Ψ∗1 −Ψ1)ψ = (Ψ∗1 −Ψ1)(I −Ψ1)
−1Ψ2µ. (35)

Thus the equilibrium mean shifts when µ 6= 0 and would also do so if there was an intercept φ 6= 0 in
the DGP. If neither µ nor φ shift, then the key problem appears to be shifts in Ψ1, although if ŷT has to
be estimated, then yT − ŷT could also cause a systematic forecast error.

The Earth’s orbital drivers of eccentricity, obliquity and precession are super-strongly exogenous and
known into the distant future, albeit that a sufficiently large rogue object intruding into our solar system
could perturb our orbit in unanticipated ways. Excluding that last possibility for the next 100,000 years,
so that µ does not change, then the forecasting system being open does not by itself create additional
problems. Instead, the change to the system from CO2 being endogenously determined to being created
anthropogenically is a fundamental shift in the DGP seen in Figure 2. Castle and Hendry (2020) tackled
this by computing two scenarios where the model for Ice volume and Temperature remains constant, but
CO2 is determined exogenously. The impact on the forecasts is dramatic as Figure 21 shows. The top
plot is for Ice under the three scenarios and the lower plot for temperature.

Forecasting 110,000 years ahead under ceteris paribus, so there is no human intervention shown as
long-dashed with ±2σf bars, mimics the Ice-Age data. Forecasting conditional on atmospheric CO2

remaining at 400ppm (roughly the present level) shown as dotted with solid ±2σ̃f error bands leads to
less Ice than the Ice-Age minimum over the last 800,000 years and higher temperatures than the peak
of the Ice Age. Finally, at 560ppm (roughly Representative Concentration Pathway, RCP8.5), shown
as thick dashed with ±2σ̂f fans, temperatures are far higher than during the Ice Ages and Antarctica is
almost ice free.

6.4 Explaining Cardt

For a non-stationary time series, we decompose the data into a trend, a seasonal and an irregular compo-
nent, then forecast the components separately before aggregating their results. The forecasts for the trend
and the irregular are computed using Cardt (see Castle, Doornik, and Hendry, 2021), which is a modified
version of our M4 competition submission predictor (see Makridakis, Spiliotis, and Assimakopoulos,
2020) described in Doornik, Castle, and Hendry, 2020a. Any seasonal component is extrapolated from
most recent estimates of the seasonal pattern. Cardt denotes a Calibrated Average of Rho (ρ), Delta (δ)
and THIMA where ρ estimates a simple autoregressive model with seasonality, forcing a unit root if the
estimates are close to unity, so then switches to a first-difference model with dampened mean; δ esti-
mates the growth rate based on first differences, but dampened by removing large values and allowing
for seasonality; and THIMA is a trend-halved integrated moving average model, namely a dampened
trend arbitrarily halved, with an intercept correction estimated by a moving-average model.

Cardt computes the arithmetic average of these three forecasts, which are then calibrated by treating
the forecasts as if they were observed: a richer autoregressive model is estimated from this extended data
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Figure 21: Three scenarios of different atmospheric CO2 levels: endogenous, and fixed at 400ppm and
560ppm for (a) Ice volume; (b) temperature.

series. The fitted values from this calibrated model are the final forecasts, undoing any transformations
such as logs and differencing to obtain the levels. Higher orders of integration (e.g. I(2) and damped I(2))
can be handled: see Doornik, Castle, and Hendry (2020b). A second ‘average forecast’ is also calculated
by computing forecasts commencing from one, two and three observations earlier, adjusted to match the
last known observation.

Figure 6.4 provides a graphical explanation using our COVID-19 forecasts (see Doornik, Castle,
and Hendry, 2020c): dates like 2020-10-25 denotes 25th October, 2020. Panel (a) shows a very short
section of the data and the current estimated trend (dotted). This is calculated by saturating moving
windows of data by linear trends (as with TIS) so initially there are as many trends as observations, from
which significant ones are selected using Autometrics. These selected linear trends are averaged to yield
an overall flexible trend: see Doornik (2019). Panel (b) shows the forecast computed from separately
forecasting the trend and irregular using Cardt, dampening the trend, where the seasonal is extrapolated
and added to the forecasts for trend and irregular. The 80% uncertainty bands are shown by the thin
dotted lines. Panel (c) adds the forecasts made commencing from up to three days earlier shown by thin
lines with circles. Finally, the thick dashed line in Panel (d) shows their average forecast. Differences
between the thick dashed line added in (d) and the first Cardt forecasts in (b) indicate shifts: when
the average lies above the Cardt forecast, the most recent data have led to lower values, which in the
pandemic raises hopes it may be being brought under control.

6.5 Smooth robust forecasts

UK productivity measured as GDP per employee per annum has stagnated since 2008 as shown in Figure
23 (also see Figure 15). The principle underlying robust forecasting devices is to use local estimates of
the equilibrium mean rather than full sample ones. Many moving windows approaches implement a
similar idea but applied to all the parameters rather than just the equilibrium mean which is the key souce
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Figure 22: Explaining forecasting by Cardt: (a) trend line; (b) Cardt forecast; (c) 3 earlier-based fore-
casts; (d) average forecast added.
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Figure 23: (a) UK productivity since 1860 with overall and six separate trend lines at roughly 25-year
subperiods; (b) UK productivity since 1860 with seven TIS trend lines selected at 0.01%.

of systematic mis-forecasting. Simply differencing all variables eliminates the equilibrium-correction
mechanism (EqCM), often of importance to policy. The initial approach in Hendry (2006) sought to
retain the EqCM but just used the previous observation so although it avoided systematic forecast errors,
could be very volatile. Consequently, Castle, Clements, and Hendry (2015) proposed a class of methods
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that used moving averages of recent data to smooth the forecasts. Martinez, Castle, and Hendry (2021)
show that robust forecasts can be interpreted as alternative local estimators of the long-run mean so
develop smoothed estimates thereof.

Figure 24 Panel (a) records the five-year-ahead forecasts made by the Office for Budget Respon-
sibility (OBR) forecasting UK productivity since 2008. As can be seen, these systematically greatly
over-predict future productivity year after year. This is a typical example of the problem with EqCMs
noted above where the model returns to the in-built equilibrium (here an underlying trend) irrespective of
the data having a different trajectory. Panel (b) from Martinez, Castle, and Hendry (2021) reports fore-
casts from a robust predictor, namely a smooth random walk which differences the data when forecasting
then the forecasts are re-integrated to the level. Panel (c) shows the forecasts from the smooth double
difference device. While these are far better than OBR, they highlight the erratic nature of some forecasts
as does Panel (d) for the smooth double robust device. In the last two cases, despite the smoothing, small
dips in the data are extrapolated into the distant future highlighting the trade-off between the delay in
responding and the length of the smoothing period.
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Figure 24: Forecasts of UK productivity: (a) Office for Budget Responsibility; (b) a smooth random
walk; (c) smooth double difference device; (d) smooth double robust device.

Figure 25 records the Cardt forecasts for UK productivity, both for the annual time series in figure
23, plotted in the top panels and the quarterly series in Figure 24 plotted in the bottom panels. For both
data frequencies the Cardt forecasts adjust too slowly to the break in trend in 2008, predicting higher
productivity over the next few years than actually materialised, but it only takes a couple of observations
for the forecasts to adapt to the changed trend. The RMSFE is 1.7 for the quarterly 5 year ahead Cardt
forecasts, produced every 6 months and commencing evaluation in 2009 to match those of the OBR,
delivering substantial gains over the OBR forecasts. Only the smoothed random walk forecasts were
more accurate over 5 years ahead. The uncertainty bands on the annual forecasts are extremely wide
(from 1.3–7.7) because of the very small sample size used for estimation (just from 2000 onwards), so
are not shown, but those for the quarterly data (estimating from 1997Q1 onwards) illustrate their range
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for the initial forecasts but rapidly narrowing. Again there is a trade-off between a shorter estimation
sample which avoids non-modelled in-sample breaks that would bias the estimates of the forecasting
models in Cardt, versus a longer sample needed to narrow down the forecast uncertainty bands. When
multiple breaks occur, the RMSFEs are smaller using shorter estimation samples.
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Figure 25: Forecasts of UK productivity using Cardt: (a) annual dynamic forecasts estimated from 2000
onwards; (b) the annual dynamic forecasts recorded on a longer time-series; (c) 5 year ahead forecasts
for the quarterly data estimated from 1997Q1 onwards with uncertainty bands; (d) the quarterly 5 year
ahead forecasts (produced every two quarters) recorded on a longer time-series.

6.6 The ‘Paradox’ of stagnant real wages yet rising real incomes

Real wages and productivity in the UK have stagnated since 2007. The concern of a failure of ‘living
standards’ to rise at the same rate as post-WWII rates obscures the fact that real GDP has grown by more
than 20% over the period despite the ‘Great Recession’, so aggregate living standards have in fact risen.
The issue matters for climate analyses since it might be falsely thought that because the productivity
stagnation followed the Climate Change Act of 2008 (CCA2008) to reduce the UK’s CO2 emissions, it
was due to the changes implemented therein. Rather, the bigger events of 2008—the Financial Crisis and
‘Great Recession’—are more likely culprits for the stagnation. Although the apparent paradox remains,
it has an easy resolution: before the pandemic, employment rose considerably faster than population.

Figure 26 records UK log real wages and log output per worker per year (Panel a), along with the
wage share (Panel b), employment and population (Panel c) and log real GDP per capita and log real
GDP per employee, aka productivity (Panel d). Employment has risen by about 4.6 million since 2000,
an increase of around 18% of the previous labour force. Pre-pandemic, the level of employment was
the highest ever for the UK and has grown much faster than population over the last quarter century.
With so many more employees and real wages relatively constant, total earnings must have increased
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considerably and indeed have risen by almost 35% this millennium and 15% since 2008. In fact, real
GDP per capita of the population has increased by almost 22% since 2000. The explanation for the
dramatic difference from stagnant productivity growth lies in this remarkably different behaviour of
aggregate employment and population. The ratio of employment to population has been mostly rising
since the 1980s and is currently at the highest ever peacetime level, leading to the divergence between
real GDP per capita and real GDP per employee.
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Figure 26: (a) UK log real wages and log output per worker per year; (b) Log wage share since 1995; (c)
Logs of employment and population; (d) Log real GDP per capita and log real GDP per employee.

7 Updating the UK CO2 model

Since modelling UK CO2 emissions reported Castle and Hendry (2020), two more annual observations
have been produced, allowing an important update of their equation. This enables us both to check the
role of the step indicator S2010 for the UK’s CCA2008, and to test the constancy of the relationship. At
the time of their model, only two data points were available for estimating the coefficient of S2010 when
using the final four observations for forecasting; again keeping the last four data points for forecasts
doubles to four that number of observations. In turn, the updated estimate is sufficiently precise that
S2010 can be included in the cointegrating vector.

Figure 27 records the extended UK data series together with US CO2 emissions per capita, in tons
p.a., 1850–2019. UK per capita CO2 emissions have continued to fall, as has fossil fuel usage, whereas
wind+solar has risen rapidly, albeit still less than both oil and gas. However, the US per capita CO2

emissions remain higher than the highest UK values.
The distributional shifts of total UK CO2 emissions in Mt p.a. shown in Figure 28 continue to

emphasise the need to handle them in modelling. Hendry and Mizon (2011) highlighted how failing to
handle shifting and evolving relationships can lead to rejecting a sound theory. Consequently, denoting
impulse (IIS) and step (SIS) indicators by 1{abcd} and S{abcd} respectively where observation abcd is an
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Figure 27: (a) UK CO2 emissions per capita in tons per annum (p.a.) to 2018; (b) UK coal (millions of
tonnes, Mt), oil (Mt), natural gas (millions of tonnes of oil equivalent, Mtoe) and wind+solar (Mtoe), all
to 2018; (c) ratio of CO2 emissions to the capital stock on a log scale to 2017; (d) US CO2 emissions per
capita, in tons p.a., 1850–2019
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Figure 28: Shifting sub-period distributions of UK CO2 emissions.
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outlier or the end of a step shift, the general unrestricted model (GUM) was formulated as:

Et = β0 + β1Et−1 + β2Ct + β3Ct−1 + β4Ot + β5Ot−1 + β6kt + β7kt−1

+ β8gt + β9gt−1 + indicators + εt. (36)

The model was re-selected from data over 1861–2013, testing constancy for 2014–2017, first se-
lecting by super-saturation combining IIS and SIS at α1 = 0.001, with all other explanatory variables
retained. Equation (37) records the outcome at this stage.

Êt = 0.49
(0.06)

Et−1 − 47
(13)

1{1921} − 161
(20)

1{1926} − 44
(10)

1{1946} + 54
(11)

1{1947}

+ 28
(9.8)

1{1996} − 39
(14)

S{1925} + 71
(13)

S{1927} − 32
(7.5)

S{1969} + 35
(7.0)

S{2010}

− 189
(91)

+ 1.86
(0.12)

Ct − 0.84
(0.18)

Ct−1 + 1.70
(0.26)

Ot − 1.01
(0.28)

Ot−1 + 0.94
(0.33)

gt

− 1.12
(0.33)

gt−1 + 7.97
(1.8)

kt − 7.32
(1.8)

kt−1 (37)

σ̂ = 9.62 R2 = 0.995 Far(2, 131) = 1.59 χ2
nd(2) = 4.98 Farch(1, 150) = 2.73

FHet(21, 124) = 0.79 FReset(2, 131) = 2.29 FChow(4, 133) = 1.48 Fnl(27, 109) = 1.08

Coefficient standard errors are shown in parentheses, σ̂ is the residual standard deviation, R2 is coefficient
of multiple correlation, Far tests residual autocorrelation (see Godfrey, 1978), Farch tests autoregressive
conditional heteroscedasticity (see Engle, 1982), FHet tests residual heteroskedasticity (see White, 1980),
χ2
nd(2) tests non-Normality (see Doornik and Hansen, 2008), FChow is a parameter constancy forecast

test over 2012–2016 (see Chow, 1960), FReset tests non-linearity (see Ramsey, 1969), as does Fnl (see
Castle and Hendry, 2010). Also, the PcGive unit-root t-test value of tur − 9.33∗∗ strongly rejects no
cointegration: see Doornik and Hendry (2018), and Ericsson and MacKinnon (2002), for critical values.

No mis-specification tests were significant and five impulse and four step indicators were selected
from the 307 candidate variables despite α1 = 0.001. Of these, 1{1926} and S{1927} can be combined to
∆1{1926}, and 1{1947}−1{1946} = ∆1{1947} leaving three step indicators: σ̂ was unaffected by these. SIS
indicators in Autometrics terminate at the dates shown, so reflect what happened earlier. Thus, a positive
coefficient for S1925 entails a higher level prior to 1926, the date of the Act of Parliament creating UK’s
first nationwide electricity grid, enhancing its efficiency, but also the General Strike. However, as coal is
a regressor, indicators for miners’ strikes should only be needed to capture large changes in inventories,
perhaps as in 1926. The Clean Air Act of 1956 did not need a step indicator as the drop in CO2 should
again be captured by fall in coal use. Next, 1969 was the start of converting burner equipment from
coal gas (about 50% hydrogen) to natural gas (mainly methane) with a considerable expansion in the use
of gas over the following decades. The shift in 2010 seems to be a response to the CCA2008 and the
European Union Renewables Directive of 2009, rather than the Great Recession, as the larger GDP fall in
1921–1922 did not need a step although there was an impulse indicator for the large outlier in 1921. We
did not impose that any policies had an effect–the data tell us it did. The coefficients of all these location
shifts have the appropriate signs of reducing and increasing emissions respectively. Selecting the fuel
and economic regressors at α2 = 0.01, including the indicators in (37) retained all those variables.

7.1 Cointegration

The cointegrating, or long-run, relation was derived from that equation after transforming the indicators
as noted. When mapping to a non-integrated specification that reparametrizes levels variables to first
differences, step indicators should be included in the equilibrium correction mechanism (EqCM) to avoid
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cumulating to trends. However, they need to be led one period as the EqCM will be lagged in the
I(0) formulation. Impulse indicators and differenced step indicators are left unrestricted: see the survey
articles by Hendry and Juselius (2000, 2001) and Hendry and Pretis (2016). Applications of cointegration
analysis in climate econometrics include Kaufmann and Juselius (2010), Kaufmann, Kauppi, Mann, and
Stock (2013) and Pretis (2019). This yielded:

ẼLR = 2.0
(0.06)

C + 1.4
(0.19)

O + 1.25
(0.28)

k − 0.35
(0.29)

g + 61
(7)

S{1924} − 62.0
(14)

S{1968}

+ 70.0
(13)

S{2009} − 234
(170)

. (38)

All variables are significant at 1% other than g which enters negatively. The coefficients of coal and oil
are close to their values in Table 1. With 4 observations on 1−S{2010}, S2010 is now precisely estimated
so could be included in ẼLR.
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Figure 29: (a) Et and Ẽt; (b) Q̃t without impulse indicators, centered on a mean of zero.

Transforming to a model in first differences and the lagged EqCM from (38), then re-estimating,
revealed a significant non-normality test, so IIS was re-applied at 0.5%, which yielded (for 1861–2013,
testing constancy over 2014–2017):

∆̂Et = 1.88
(0.10)

∆Ct + 1.72
(0.21)

∆Ot + 7.16
(1.10)

∆kt + 0.88
(0.28)

∆gt − 0.50
(0.05)

Q̃t−1 − 59.2
(9.2)

− 79.4
(8.77)

∆1{1926} + 50.3
(6.42)

∆1{1947} − 45.9
(11.1)

1{1921} − 28.3
(8.93)

1{1912}

+ 26.8
(8.95)

1{1978} + 27.5
(8.94)

1{1996} (39)

σ̂ = 8.88 R2 = 0.94 Far(2, 139) = 0.49 χ2
nd(2) = 1.68 FHet(14, 134) = 1.02

Farch(1, 151) = 0.54 FReset(2, 139) = 1.5 Fnl(15, 126) = 1.34 FChow(4, 141) = 1.76.
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Changes in coal, oil, k and g all lead to changes in the same direction in emissions, which then equili-
brates back to the long-run relation in (38). Figure 30 provides a graphical description of the selected
model. We have put ‘forecasts’ in inverted commas since they are for the past, although the data points
were outside the sample period used for selection and estimation. As the top-left graph is dominated by
the fluctuations in the 1920s, Figure 31 plots the levels outcome from modelling, with the impulse and
step indicator dates.
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Figure 30: (a) Actual, fitted and ‘forecast’ values for ∆Et from (39); (b) residuals and ‘forecast’ errors
scaled by the equation standard error; (c) residual density and histogram with a Normal density; (d)
residual autocorrelation.
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Figure 31: Actual, fitted and ‘forecast’ values for UK CO2 emissions.

7.2 ‘Forecast’ evaluation

Figure 32 Panel (a) records the change in CO2 emissions and the fitted values from (39), along with the
1-step conditional ‘forecasts’, denoted ∆̂ET+h|T+h−1, with ±2σ̂f shown as bars, estimating the model
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up to 2014. In the same panel, the robust forecasts described in Section 6.5 (differencing the EqCM
but without smoothing) are also reported. The forecasts are similar. Panel (b) integrates the forecasts to
obtain 1-step ahead forecasts of the level of CO2 emissions from both the model in (39) (with ±2σ̂f )
and the robust forecasts (denoted with ±2σ̂f ). Again, the forecasts are similar, with no clear advantage
to using either the econometric model or its robustified form. Panel (c) shifts the forecast origin forward
to 2009, so data up to 2008 is available to estimate the model. Again, the 1-step conditional ‘forecasts’
from the econometric model, denoted ∆̂ET+h|T+h−1 with±2σ̂f bars, are recorded along with the robust
forecasts ∆̃ET+h|T+h−1. There is a clear benefit to using the robust forecasts over the longer forecast
period. The conditional ‘forecasts’ come before the implementation of the CCA2008, leading to forecasts
that are too high from 2012 onwards. The robust device remains accurate even when the CCA2008 is not
explicitly modelled, as it differences out the previous in-sample mean for the change in CO2 emissions,
which was higher prior to the CCA2008, leading to biased 1-step ahead forecasts if not handled.
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Figure 32: Conditional 1-step ‘forecasts’ for ∆Et (a) from (39) over 2014–2017 (denoted ̂ ) with ±2
forecast standard error bars and the robust forecasts ∆̃ET+h|T+h−1; (b) the derived ‘forecasts’ in levels;
(c) same as (a) but commencing in 2009.

The 1-step ahead ‘forecasts’ highlight the impact of the CCA2008 which needs to be either modelled
or accounted for (via robustification) for accurate forecasts. Modelling CO2 emissions within a system
allows for unconditional forecasts to be produced, so does not rely on data over the forecast period and
hence is feasible ex ante. A vector autoregression (VAR) with 2 lags is sufficient to model the dynamics.
Figure 33 plots the unconditional system 1-step and dynamic ‘forecasts’ from a VAR in all five variables,
either including the indicators found in (39) or without the indicators. In the former case, all outliers and
shifts will be captured in the VAR, whereas in the latter they will be ignored, which is a common approach
in the economics literature that uses VARs as forecasting benchmarks. Panel (a) plots the 1-step ahead
‘forecasts’ from the VAR without and with indicators, and panel (b) records the dynamic ‘forecasts’.
The importance of the step indicators is readily apparent, yielding huge reductions in RMSFEs and
correcting the bias evident in the VAR without the steps. The role of the CCA2008 in producing a level
shift reduction in CO2 emissions is clear so needs to be modelled for accurate forecasting.
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Figure 33: (a) Outcomes and 1-step ‘forecasts’ ±2 forecast standard errors as bars and fans, without and
with indicators; (b) Outcomes and h-step ‘forecasts’ and a comparison with Cardt ‘forecasts’.

Figure 33 also records the ‘forecasts’ for UK CO2 emissions, comparing Cardt ‘forecasts’ to the VAR
‘forecasts’. The sample estimation period for the Cardt ‘forecasts’ is kept short (2005–2011) to avoid
contaminating the estimates of ρ, δ and THIMA with earlier in-sample breaks. As a consequence, the
uncertainty bands around the Cardt ‘forecasts’ are very wide, so are not shown. Extending the in-sample
estimation period reduces the uncertainty bands but results in a larger bias due to unmodelled shifts in-
sample, especially 2010. The Cardt ‘forecasts’ are close to the VAR ‘forecasts’ using SIS, which has a
mean ‘forecast’ error of −3, compared to a mean error for the Cardt ‘forecasts’ of −20. In contrast, the
VAR model without SIS has a mean error of−83. The key characteristics of the Cardt forecasting device
is that it dampens trends and growth rates, it averages across predictors and it robustifies to breaks by
over-differencing. As such, it is comparable to the ‘forecasts’ from the VAR with SIS which models step
shifts explicitly with step indicators, and is superior to the VAR ‘forecasts’ that do not model location
shifts explicitly.

7.3 Super exogeneity tests

Parameter invariance is essential in policy models because without it, a model will mis-predict under
regime shifts. The concept of super exogeneity combines parameter invariance with valid conditioning
so is crucial for policy, see Engle and Hendry (1993), Krolzig and Toro (2002), Hendry and Massmann
(2007), and Hendry and Santos (2010). To test the joint super exogeneity of the regressors, a natural
procedure here is to check if any of the indicators in the conditional model enter the equations for the
marginal variables. This requires no ex ante knowledge of the timing or magnitudes of breaks, or the
data generating process of the marginal variables. The test has the correct size under null of super
exogeneity for a range of sizes of marginal-model saturation tests, and it has power to detect failures of
super exogeneity when location shifts occur in the marginal models.

Having created a VAR, we can test for super exogeneity by a likelihood ratio test of the VAR with the
indicators only entering the equation for Et against entering every equation. This yields χ2(37) = 161∗∗
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which strongly rejects. However, the rejection is due to the indicators for the 1920s also occurring in the
equations for GDP and coal, which is not surprising as the post-war crash and the 1926 general strike
affected both. Retaining 11921, 11926, S1925 and S1927 in the coal equation and 11921 and 11926 in GDP
delivers χ2(31) = 25 which is insignificant, implying the regressors in the CO2 emissions model are
super exogenous, so they are weakly exogenous and the parameters of the conditional model (39) are
invariant to structural breaks in the marginal models.

7.4 Evaluating the UK’s 2008 Climate Change Act

The most important implication of the above evidence is that substantial CO2 reductions have been
feasible, so far with little impact on GDP. The UK’s CCA2008 established the world’s first legally-
binding climate-change target to reduce the UK’s GHG emissions (6 gases including CO2, which is
approximately 80% of the total) by at least 80% by 2050 from a 1990 baseline. The policy produced a
series of five-year carbon budgets, which we mapped to annual targets by starting 20Mt above and ending
20Mt below them in each period. Allowing 20% for other GHG emissions, we call these the Targets for
CO2. Figure 34 Panel (a) plots the Targets and CO2. TargDiff denotes the difference between these
targets and CO2 emissions, and (40) records the result from selecting step indicators by SIS to describe
it over 2008–2020.

̂TargDifft = 52.3
(9.1)

S2013 + 49.9
(17)

S2019 − 101
(16)

(40)

σ̂ = 15.7 R2 = 0.85 Far(1, 9) = 0.38 χ2
nd(2) = 0.48

Farch(1, 11) = 0.02 FReset(2, 8) = 0.00 T = 2008− 2020

Thus, emissions were approximately 52Mt below target after 2013, and fell another 50Mt further below
after 2019, part of which is undoubtedly due to the impacts from pandemic lockdowns. Nevertheless,
these are large reductions. Farmer et al. (2019), suggest exploiting ‘sensitive intervention points’ to
accelerate the post-carbon transition, and include the UK’s CCA2008 as a timely SIP with a large effect,
corroborated here.

A similar approach could be used to evaluate the extent to which countries met their Paris Accord
Nationally Determined Contributions (NDCs), given the appropriate data. The NDCs agreed at COP21
in Paris are insufficient to keep temperatures below 2◦C so must be enhanced, and common time frames
must be adopted to avoid a lack of transparency in existing NDCs: see Rowan (2019). Since the base-
line dates from which NDCs are calculated is crucial, 5-year NDC reviews and evaluation intervals are
needed.

In 2019, the UK Government revised its target to one of net zero GHG emissions, entailing no use of
coal, oil and natural gas, with no emissions coming from agriculture, construction and waste (currently
about 100 Mt p.a.) beyond what can be captured or extracted from the atmosphere. Increases in the cap-
ital stock could make the target harder to achieve unless they were carbon neutral. As capital embodies
the technology at the time of its construction and is long lived, transition to zero carbon has to be gradual,
and necessitates that new capital, and indeed new infrastructure in general, must be zero carbon produc-
ing. ‘Stranded assets’ in carbon producing industries face a problematic future as legislation imposes
ever lower CO2 emissions targets to achieve zero net emissions (see Pfeiffer et al., 2016)).

7.5 Implications of the UK’s CO2 emissions model

Despite more candidate variables than observations, the econometric approach presented in this chapter
developed a model to explain the UK’s extremely non-stationary CO2 emissions time-series data over
1860–2017 in terms of coal and oil usage, capital stock and GDP. It was essential to take account of both
stochastic trends and distributional shifts. Detection of major policy interventions by indicator saturation
estimators yielded a congruent model of CO2 emissions and accurate forecasts since the CCA2008 came
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Figure 34: (a) UK CO2 emissions and CCA2008 CO2 targets; (b) deviations from the target values with
step indicators.

into force. The policy implications highlight that CO2 emissions are reducing rapidly, but far greater
reductions are needed if the UK is to achieve its net-zero emissions target requiring all coal, oil and
natural gas to be eliminated or their GHG emissions sequestrated. The UK was initially a net CO2

exporter through embodied CO2, but is now a net importer, although this component will decrease with
falls in the GHG emissions of exporting countries.9

The aggregate data provided little evidence of high costs to the large domestic reductions in CO2

emissions—dropping by 202Mt from 554Mt in 2000 to 352Mt (39%) by end 2019, before the pandemic—
whereas real GDP rose by 39% over that period despite the ‘Great Recession’. As new ‘green’ technolo-
gies are implemented, careful attention must be paid to local costs of lost jobs: mitigating the inequality
impacts of climate induced changes has to be achieved to retain public support.

8 Conclusions

The role of human behaviour in climate change entails that methods developed to model human be-
haviour in the economic sphere are applicable to modelling climate phenomena as well. There is a two
way interaction between the climate and human actions, characterised by wide-sense non-stationary data
interacting in complex and non-constant ways. As such, the tools needed to understand these interactions
must be able to handle the complex, evolving and shifting interactions over time due to changing human
behaviour. In this chapter we outline an approach to modelling such phenomena using time-series econo-
metric tools designed to handle wide-sense non-stationary data from unknown generating processes. The
key role that anthropogenic forces play in determining climate can be drawn out by careful modelling
of the relationships, embedding our understanding of the climate with economic theory but allowing for
data-based search to handle the non-constant distributions. Such an approach allows for testing climate
and economic theories, forecasting and policy studies, without contaminating the analyses by unmod-
elled phenomena. This is essential to provide reliable guidance on how countries can achieve net zero

9See http://www.emissions.leeds.ac.uk/chart1.html and https://www.biogeosciences.net/9/3247/2012/bg-9-3247-2012.html.
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emissions to maintain stable global land surface temperatures.
Climate science provides the background to climate econometrics and Section 2 noted the Earth’s

limited atmosphere and its water resources, establishing that humanity really can alter the climate, and
is doing so in many ways. Past climate changes can be related to the ‘great extinctions’ seen in the
geological record, emphasising that it is climate change that matters, and the rapidity of change over the
most recent past is dramatically faster than any previous changes experienced except perhaps after the
meteor impact 65 million tyears ago. The mid-18th Century Industrial Revolution brought huge benefits,
but led to a global explosion in anthropogenic GHG emissions. Emissions are subject to shifts from
wars, crises, resource discoveries, technological innovations, pandemics and policy interventions, and
the resulting stochastic trends, large shifts and numerous outliers must be handled for viable empirical
models of climate phenomena.

Section 3 outlined time-series econometric theory under the assumption of stationarity. Such an
assumption is violated by every climate and economics data series imaginable, but is often the premise
for climate econometric modelling. Discarding this infeasible setting, Section 4 outlined the implications
of shifting distributions for econometric theory. Indicator saturation estimators (ISEs) were described in
Section 5, emphasising their key role in robust model discovery. ISEs work well despite creating more
candidate variables to select over than observations. A series of simulation experiments highlighted the
importance of modelling shifts in both the intercept and the slope parameter. Under the null of no outliers
or shifts, there is little loss of efficiency in selecting over T indicators using a tight nominal significance
level, even in dynamic models, but the gains under the alternative can be large.

This leads to a more general framework aimed at model discovery rather than model building or
theory testing, discussed in Section 6. The theory of reduction underpins economic modelling, where
the data generating process for the variables under analysis is the target while the theory is retained as
the object. As the DGP is unknown, it must be discovered and so automatic model selection is essential.
Such discovery needs to be able to handle all the non-stationarities due to outliers, shifting distributions,
changing trends, possible non-linearities and omitted variables. Commencing from very general models,
models with no losses on reduction are congruent and those that explain rival models are encompassing.
Model selection theory poses great difficulties as all statistics for selecting models and evaluating them
have distributions, usually interdependent, and are generally altered by every modelling decision. Since
congruent and encompassing models are needed we address how they should be selected by discussing
Autometrics, a multi-path search machine learning algorithm.

The theory for forecasting in a wide-sense non-stationary world is sketched, along with robust fore-
casting devices including Cardt and a smoothed robust forecasting device which uses localised estimates
of the long-run mean and growth rates. One aspect of wide-sense non-stationarity is that the status of
regressors can switch from being endogenous to exogenous or vice versa. This was illustrated in a model
of past climate variability over the Ice Ages, where a simultaneous-equations system was developed to
characterise Antarctic land ice volume, temperature and atmospheric CO2 levels as non-linear functions
of Earth’s orbital path round the Sun. The resulting approach clarified the role of CO2 as a result, rather
than a cause of changes in ice volume, with scenario simulations warning of an near ice-free planet with
temperatures far above those experienced over the last 800,000 years.

Section 7 updated a model of the UK’s CO2 emissions allowing for two additional years of data.
This enabled the UK’s Climate Change Act, captured by a step indicator in 2010, to be explicitly mod-
elled, and was shown to matter hugely for the forecast performance of the model. A single equation
analysis was developed in four steps to produce a conditional representation. First, impulse and step
indicators were selected at very tight significance levels retaining all other regressor variables. Then re-
gressors were selected at looser significance levels. The selected model was solved for the cointegrating
(long-run) relation which included step indicators and the non-deterministic terms were reparametrized
to differences. Finally, the non-integrated formulation was estimated and used to produce conditional
forecasts. A VAR of emissions, coal, oil, GDP and capital stock was constructed to obtain unconditional
system forecasts, which were compared with the forecasts from the statistical forecasting device, Cardt.
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The importance of modelling in-sample breaks and shifts for forecast performance was emphasised.
The econometric techniques allow for direct linking of climate models with empirical data to further

improve econometric research on human responses to climate variability. The approach to jointly ad-
dressing all aspects of wide-sense non-stationarity for an unknown data generating process seems most
appropriate in climate modelling, where the theory is incomplete, the data are evolving and subject to
sudden shifts, there are huge measurement issues, and feedbacks generate non-constant and non-linear
relationships. Such an approach should improve our ability to test climate-change mitigation proposals
and the role of human behaviour within the climate system, produce more accurate forecasts and scenar-
ios based on differing emissions paths, and provide useful policy analysis to guide the policy response to
this most imperative of issues.
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9 Appendix

Data definitions and sources

Et = CO2 emissions in millions of tonnes (Mt) [1], [2].
Ot = Net oil usage, millions of tonnes [3]: 1 tonne = 0.984 imperial tons.
Ct = Coal volumes in millions of tonnes [4].
Gt = real GDP, £10 billions, 1985 prices [5], [7], p.836, [8]a (1993), [10] code:YBHH.
Kt = total capital stock, £billions, 1985 prices [6], [7], p.864, [8]c (1972,1979,1988,1992)
Pt = implicit deflator of GDP, (1860=1 [7], p.836, [8]a (1993), [10] code:ABML.
Po,t = price index, raw materials & fuels [9]
1abcd = impulse indicator equal to unity in year abcd
Sabcd = step indicator equal to unity up to year abcd
∆xt = (xt − xt−1) for any variable xt
∆2xt = ∆xt −∆xt−1

Sources:
[1] World Resources Institute http://www.wri.org/our-work/project/cait-climate-data-explorer

and https://www.gov.uk/government/collections/final-uk-greenhouse-gas-emissions-national-statistics;
[2] Office for National Statistics (ONS)
https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2015;
[3] Crude oil and petroleum products: production, imports and exports 1890 to 2015 Department for
Business, Energy and Industrial Strategy (Beis);
[4] Beis and Carbon Brief http://www.carbonbrief.org/analysis-uk-cuts-carbon-record-coal-drop;
[5] ONS https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts#
timeseries;
[6] ONS https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/bulletins/capitalstocksconsumptionoffixedcapital/2014-11-14#

capital-stocks-and-consumption-of-fixed-capital-in-detail;
[7] Mitchell (1988) and Feinstein (1972);
[8] Charles Bean (from (a) Economic Trends Annual Supplements, (b) Annual Abstract of Statistics, (c)
Department of Employment Gazette, and (d) National Income and Expenditure);
[9] UN Statistical Yearbook and Christopher Gilbert;
[10] ONS, Blue Book and Annual Abstract of Statistics and Economic Trends Annual Supplement.
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