Analytics of Sovereign Debt Restructuring

Andrew G Haldane Adrian Penalver Victoria Saporta*

Hyun Song Shin†

Revised, July 2003

Abstract

Over the past year there has been an active debate on appropriate mechanisms for the restructuring of sovereign debt, particularly international bonds. Several proposals have been put on the table: a market-based solution relying on contractual provisions such as collective action clauses (CACs) and statutory approaches akin to an international bankruptcy court. This paper develops a simple theoretical model to analyse the merits of these proposals. The analysis finds that CACs can resolve the inefficiencies caused by intra-creditor coordination problems providing that all parties have complete information about each other’s preferences. In such a world, statutory mechanisms are unnecessary. This is no longer the case, however, when the benefits from reaching a restructuring agreement are private information to the debtor and its creditors. In this case, the inefficiencies induced by strategic behaviour - the debtor-creditor bargaining problem - cannot be resolved by the parties themselves: removing these inefficiencies would require the intervention of a third party.

Keywords: Sovereign Debt; Restructuring Mechanisms; Collective Action Clauses; International Bankruptcy Court; International Monetary Fund

JEL classification: F33; F34

*Corresponding author. Tel.: +44-207-601-5683; fax: +44-207-601-5080. E-mail address: v.saporta@bankofengland.co.uk

†Haldane, Penalver and Saporta are all at the Bank of England, Threadneedle Street, London EC2R 8AH, UK. Shin is at the London School of Economics, Houghton Street, London WC2A 2AE, UK. The views expressed in this article are those of the authors and not necessarily those of the Bank of England. We would like to thank Chris Salmon, Ashley Taylor, David Wall, seminar participants at the Bank of England and two anonymous referees for helpful comments.
1. Introduction

Recent years have seen an increasing incidence of large-scale sovereign debt crises — for example, Mexico in 1995, Russia in 1998, Brazil in 1999, Turkey in 2000 and 2001 and most recently and seriously, Argentina in 2001 and 2002. These crises have proven costly for the debtor country and private creditors. The financial commitments of the official sector have often also been very large. As a result, resolving sovereign debt crises in a less painful way than in the past has become a key preoccupation of the international financial community. In particular, in the past year there has been an active debate on appropriate mechanisms for the restructuring of sovereign debt, especially international sovereign bonds.

Broadly-speaking, two approaches to the restructuring of sovereign debt have been proposed — the so-called “contractual” and “statutory” approaches. The contractual approach relies on inserting clauses into bond contracts which set out procedures for initiating and negotiating a restructuring and which allow a qualified majority of creditors to modify the financial terms of the bond (so-called collective action clauses (CACs)). One purported merit of the contractual approach is that creditors agree to be bound by these clauses when they purchase the bond and therefore are not subject to retrospective adjustment by outside parties.

There has been an active debate on the benefits of CACs in international bonds, beginning with Eichengreen and Portes (1995) and the Rey Report (1996). CACs are currently included in international bonds issued under English law, but unanimity has been the market practice in bonds under New York law. Most recently, the official community has made a strong push for CACs to be a standard element of international bond contracts (see, eg, G7 (2002)). Having rejected previous calls for action, private creditors have recently shown a greater acceptance of CACs (IIF (2002)). But these private sector views are by no means universal. And even among those in favour, there is still disagreement about the appropriate qualified majority threshold for
amending financial terms, with some favouring a very high threshold close to unanimity (EMCA (2002)). Others remain opposed to the introduction of such clauses. They favour voluntary, market-based approaches such as debt exchanges. Nevertheless, Mexico, South Africa and prominently Brazil have recently issued a series of bonds in New York which contain CACs with no discernible premium being paid.

The statutory approach would involve the creation of an international body or mechanism, underpinned by international law, which would oversee the restructuring of sovereign debt. This idea is not a new one (see Rogoff and Zettelmeyer (2002)), but it has recently been given impetus by the IMF’s Deputy Managing Director Anne Krueger (Krueger (2001,2002)), who proposed a Sovereign Debt Restructuring Mechanism (SDRM). Several versions of the SDRM have been considered. A “Fund-heavy” SDRM would involve the IMF or some other supranational agency playing a central role in the initiation and approval of debt restructuring (see Krueger (2001)). A “Fund-lite” SDRM would be initiated by the debtor with the restructuring deal approved by a qualified majority of creditors, with the IMF only acting in a signalling capacity through its decisions to provide programmes (Krueger (2002)). The latter version has considerable similarities with the contractual approach.

The debate on the SDRM has been heated. Prior to the Spring Meetings of the IMF in 2003, the official sector pursued a “twin-track” approach, with work on the SDRM and CACs proceeding in parallel (G7 (2002)). At the Spring Meetings, however, the requisite consensus to proceed further with the SDRM was not available.

Some of this debate about the two approaches concerns technical or legal questions – for example, the scope of debt to be included in the SDRM and its legal status (see IMF (2002)). But sovereign debt restructuring also raises some fundamental behavioural issues. This paper seeks to develop an analytical framework within which these behavioural issues can be explored.

These issues would include: Under what circumstances are CACs
helpful in a debt restructuring? Can the same benefits be delivered by bonds issued under the prevailing market convention in New York? What factors determine the choice of optimal majority voting threshold in CACs? Under what circumstances might an SDRM add value over contractual approaches? Is it better to have an SDRM-heavy or SDRM-lite approach? And should we think of the contractual and statutory approaches as complements or substitutes?

The analytical framework, although simple, aims to capture many of the key features of sovereign debt restructuring. Much of the existing debate has focussed on potential co-ordination problems within the creditor community - for example, free-rider problems, “rogue” creditors and litigation risks. These risks may have been over-emphasised. Sovereigns, for example, cannot be liquidated and it is difficult to attach their assets. Nonetheless, we show that when these co-ordination inefficiencies are important, CACs can deal with them.

A second potentially significant co-ordination problem comes from the interaction between creditors and the debtor. In a sovereign context, the debtor’s payment capacity is usually dependent on their own actions. And these actions, in turn, are subject to domestic political constraints. So the debtor may have an incentive not to reveal its “true” payment capacity. Creditors, in turn, may have little incentives to reveal the minimum deal they are prepared to accept. The resulting bargaining game between the debtor and creditors under incomplete information may give rise to inefficiencies. These have been little discussed in the debate to date, but are likely to be fundamental to the design of sovereign debt restructuring mechanisms.

In short, the restructuring of sovereign debt gives rise to potential co-ordination failures at two levels - among creditors and between creditors and the debtor. The second of these failures in particular is likely to be more acute than in a corporate context. Both have efficiency costs. The paper explores analytically the mechanisms that might best mitigate these inefficiencies.

By using an analytical framework, we hope to identify some of the key characteristics that are likely to determine the optimal restruc-
turing regime. The model suggests that no one mechanism is always and everywhere optimal – contrary to what much of the existing debate would have us believe. But it provides clues on the shape of an optimal sovereign debt restructuring regime.

We are not aware of many previous papers to have tackled these types of question from a theoretical perspective. In a repeated game setting, Kletzer (2002) shows that CACs with renegotiation can resolve the debtor commitment and intra-creditor coordination problems. Using a standard model of sovereign debt with a willingness to pay problem and costly default, Bolton and Jeanne (2002) show that contractual incompleteness – in the form of countries not being able to write state-contingent contracts – can result in serious inefficiencies. Unlike in our framework, neither paper analyses the robustness of their results to a relaxation of the complete information assumption. This problem could be an important impediment to sovereign debt restructurings, even in the absence of willingness to pay or debtor commitment problems.

The paper is planned as follows. Section 2 sets out the model and derives a welfare benchmark against which different contractual arrangements can be compared. Sections 3 and 4 characterise the equilibrium for an exchange offer with conventional New York law bond provisions and CACs respectively. Section 5 illustrates the potential importance of debtor-creditor bargaining problems given informational incompleteness. Section 6 discusses policy implications and concludes.

2. The Model

There is a single debtor and a continuum of external creditors of unit mass, each holding one unit of a bond\(^1\). For the purpose of our analysis, we will take it as given that the debtor finds itself without sufficient resources to repay this debt, and must make an offer to all creditors to write-down the value of outstanding obligations. In this sense, our analysis has an \textit{ex post} focus. A more complete analysis
of sovereign debt would also need to address the ex ante issue of the borrower’s access to the international capital markets. Haldane et al. (2002) addresses some of these issues.

The debtor’s resources at the start of the game that can be used to repay creditors is given by y_0, but this falls short of the total outstanding face value of the bond, which is $1 + r$. However, the debtor has an opportunity to exert effort to augment the total resources available. If the debtor exerts effort a, then the total resources available to repay creditors is given by

$$y(a).$$

If no effort is expended, then total resources remain at y_0. That is, $y(0) = y_0$. For the purpose of our analysis, we can interpret $y(a)$ as the total value of claims that are attachable by the creditors in the jurisdiction in which the bond was issued. Such claims include not only the assets owned by the debtor in the creditors’ jurisdiction, but also the present value of future receivables. In practice, there are very few tangible assets that creditors can attach in foreign jurisdictions. The existence of outstanding claims can, however, disrupt future market access\(^2\). In what follows, we assume that the court either upholds the original claim at face value if $y(a)$ is high enough, and allocates $y(a)$ on a pro rata basis among the remaining creditors if $y(a)$ is insufficient to pay the original claims. The important aspect of this assumption is that the more output is available, the greater the payout to hold-out creditors\(^3\). Other aspects of our model can be generalized, as long as this key feature remains.

The cost of effort for the debtor is given by $c(a)$, an increasing function of a. The objective of the debtor is to maximize resources net of the cost of effort and net of the repayment to creditors. The debtor’s objective can thus be written as

$$y(a) − c(a) − \text{repayment to creditors}.$$

We assume that the difference $y(a) − c(a)$ is single peaked, concave and differentiable in a. We rule out instances of strategic default\(^4\) where
the debtor would still gain a surplus by exerting effort and paying off
debt but chooses not to do so\cite{5}. Debtors default in our model because
they are unable to repay debt rather than unwilling.

Since the debtor cannot repay in full, the debtor makes an offer
\(\omega(1 + r)\) to each creditor, where \(0 < \omega < 1\). Creditors who participate
in the exchange receive this payment. If the offer fails or creditors
choose to hold out, we call their fallback option “going to court”,
although this can include any action to disrupt the debtor’s output
and prolong the restructuring process.

All creditors have a claim \(1 + r\) on the debtor, but they differ
according to the costs of rejecting the offer and holding out. Each
creditor \(i\) has a private cost of \(l_i\) of holding out. There are many
reasons why such costs may differ across creditors. For example, some
creditors (eg, bond mutual funds) may have investors with shorter in-
vestment horizons than others (eg, pension funds and life insurance
companies). There may also be differences in balance sheet struc-
tures, in agency problems related to compensation structure, and in
accounting and regulatory rules. Equivalently, \(l_i\) can be thought of
as measuring the relative degree of risk aversion of different sets of
creditors, in deciding between choosing a certain option (accepting
the offer) and an uncertain one (holding out). These costs are given
by:

\[l_i = \bar{I} + \varepsilon_i, \]

where \(\bar{I} \geq 0\) is the average cost across creditors and \(\varepsilon_i\) is a mean
zero random variable with commonly known cumulative distribution
function \(F(\cdot)\) with support on \([\underline{\varepsilon}, \overline{\varepsilon}]\). All creditors have non-negative
costs, so that the lowest possible realization of \(l_i\) is non-negative.

The sequence of moves in the game is as follows:

1. The debtor offers payment \(\omega(1 + r)\) to each creditor.

2. Creditors vote simultaneously either to accept this offer or to
hold out.
3. The debtor learns the outcome of the vote and chooses policy effort, \(a \).

4. Total resources \(y(a) \) is realised.

5. Payoffs are distributed. Creditors who accepted the offer receive \(\omega(1 + r) \). Creditors who rejected the offer receive the face value of the claim \(1 + r \), net of legal costs if \(y(a) \) is large enough. Otherwise, they receive an equal share of the remaining resources, net of legal costs. The debtor’s payoff is given by

\[
y(a) - c(a) - \text{total payout to creditors}.
\]

The social welfare function is given by the sum of the debtor’s and creditors’ payoffs, less the sum of legal costs paid by the holdouts. Formally, it is given by

\[
W = y(a) - c(a) - \int_{l_h}^{\bar{l} + \varepsilon} z f(z) dz,
\]

(1)

where \(l_h \) is the marginal holdout creditor. Since 1 is decreasing in \(l_h \), the socially optimal outcome is attained when there are no holdout creditors (i.e. \(l_h = \bar{l} + \varepsilon \)), and adjustment effort \(a \) solves:

\[
y'(a) = c'(a).
\]

(2)

Denote by \(a^* \) this socially optimal level of policy effort. So if we denote welfare \(W(a, h) \), first-best welfare is \(W(a^*, 0) \). We use this as the welfare benchmark when comparing different contractual arrangements.

3. **Equilibrium under New York Law**

We first consider contractual arrangements that require the unanimous consent of all creditors to adjust financial terms. Several countries have recently issued bonds in New York containing CACs, but
unanimity remains the market convention in international sovereign bonds issued under New York law (Dixon and Wall 2000, Buchheit and Gulati 2002). The usual means of restructuring bonds under New York law is an exchange offer. The debtor offers creditors $\omega(1 + r)$ in return for the existing bonds of face value $(1 + r)$. Creditors who decline the offer can seek full repayment through the courts. If there are sufficient resources to pay each hold-out creditor in full, then we assume that the creditor receives the face value of the original bond less the costs associated with taking the legal route. But if there are too many hold-outs and the debtor’s resources are insufficient to repay in full, hold-out creditors receive instead a pro-rated share of residual output after creditors who accept the offer have been paid.

On practical grounds, we rule out cases in which the debtor deliberately makes an offer that no creditor will accept, adjustment effort is zero and all creditors foreclose, as this is worst case scenario for all parties. So we consider cases in which

$$\omega(1 + r) > y(0) - \bar{\ell} - \tau. \quad (3)$$

The payoff to a holdout creditor j is given by

$$\min \left\{ (1 + r) - l_j, \frac{y(a) - \omega(1 + r)(1 - h)}{h} - l_j \right\} \quad (4)$$

and the payoff to a creditor who accepts the offer is $\omega(1 + r)$.

The debtor’s strategy in making the offer $\omega(1 + r)$ is to maximise $y(a) - c(a)$ net of total payout to creditors, based on 4. Ideally, the debtor would like to cap the total payout to creditors and then exert optimal effort a^\star. One option would be to make an offer that every creditor would accept. If the debtor sets the lowest feasible offer consistent with $h = 0$, total repayments are

$$(1 + r) - \bar{T} - \varepsilon. \quad (5)$$

This strategy, which is feasible when average legal costs are high, involves paying all creditors the fall back option of the creditor with
the lowest legal costs. The debtor, however, may be better off by lowering the total payout to creditors by paying out some creditors in full in return for lower repayments to all accepting creditors. If the marginal creditor who accepts the deal has legal costs $\tilde{\ell} + \hat{\epsilon}$, then total repayments are:

$$h(1 + r) + (1 - h)[(1 + r) - \tilde{\ell} - \hat{\epsilon}].$$

Total repayments when some creditors hold out and are paid in full are lower than repayments when no creditor holds out if $6 < 5$, which in turn implies

$$\tilde{\epsilon} - \xi > \frac{h}{1 - h}(\tilde{\ell} + \xi).$$

If we assume legal costs are uniformly distributed, then we can write down a closed form solution for the proportion of holdout creditors. In this case:

$$h = \frac{\tilde{\epsilon} - \xi}{\tilde{\epsilon} - \xi}.$$

Substituting this expression into 7, it follows that 6 is lower than 5 when

$$\tilde{\epsilon} - \xi - \hat{\epsilon} > \tilde{\ell}.$$

To see whether there is any incentive to follow this strategy, this last inequality needs to be evaluated at $\tilde{\epsilon} = \xi$, the demeaned legal cost for the toughest creditor. So, if $\tilde{\epsilon} - 2\xi > \tilde{\ell}$ the debtor will always prefer to payout some creditors in full and will do so until $\tilde{\epsilon} = \tilde{\epsilon} - \xi - \tilde{\ell}$. The proportion of holdouts will then be given by $h = 1 - \frac{\tilde{\ell} + \xi}{\tilde{\epsilon} - \xi}$. Condition $\tilde{\epsilon} - 2\xi > \tilde{\ell}$ is more likely to be met when the distribution of legal costs is widely dispersed relative to its mean. If the debtor does prefer to pay out some creditors in full, this can be very profitable for these hold-out creditors. This is the strategy of the so-called “vulture funds”.

Both these options cap total payments to creditors and motivate the debtor to exert the socially optimal level of effort. But these
strategies are only feasible if average legal costs are very high. As legal costs fall, the number of hold-outs increases and the second argument of 4 binds. In equilibrium, the payoff to holding out and accepting must be equalised for the marginal creditor denoted l_h, that is:

$$\omega^*(1 + r) = \frac{y(a) - \omega^* (1 + r)(1 - h)}{h} - l_h,$$

(8)

implying

$$\omega^*(1 + r) = y(a) - hl_h.$$

(9)

The debtor’s payoff will be given by

$$y(a) - c(a) - (1 - h) \omega^*(1 + r) - h \left(\frac{y - \omega^*(1 + r)(1 - h)}{h} \right)$$

$$= y(a) - c(a) - (1 - h)[y(a) - hl_h] - y(a) - (1 - h)[y(a) - hl_h]$$

(10)

which is maximised at $a = 0^8$.

Thus, depending on the legal costs of the lenders, we can identify three possible outcomes of the game under New York law.

1. If legal costs are high on average but differ widely among the creditors so that

$$\bar{\epsilon} - 2\epsilon > \bar{l}$$

(11)

then the optimal offer of the debtor is to make type $\bar{\epsilon} \equiv \bar{\epsilon} - \epsilon - \bar{l}$ indifferent between accepting and rejecting the offer. All creditors with legal costs lower than this marginal type hold out. Nevertheless, the debtor’s payoff is positive in this outcome, the debtor exerts optimal effort.

2. If condition 11 fails, but legal costs are high enough that

$$y(a^*) - c(a^*) > (1 + r) - \bar{l} - \epsilon$$

(12)

then the optimal offer by the debtor is $(1 + r) - \bar{l} - \epsilon$ to all creditors, and no creditor holds out. In this outcome, the debtor exerts optimal effort.
3. In all other cases, $h > 0$ and the incidence of holdouts is too high to enable holdout creditors to be paid out in full. Total resources are exhausted by payments to creditors and the debtor has no incentive to exert effort. Social welfare is reduced by suboptimal effort and the legal costs incurred by hold-out creditors.

We discuss the policy implications of these different outcomes in Section 6.

4. **Equilibrium under CACs - common information**

Now consider a device, such as CACs, for binding-in creditors when a sufficient proportion of them have accepted an offer. CACs are common in sovereign bonds issued under English and Japanese law and can be used to change a number of provisions in bond contracts - see Liu (2002) for more details. The focus of the international debate is on the use of CACs under which a suitable majority of bondholders can agree to change financial provisions of bonds. Under English law, this threshold is typically 75% of outstanding principal at a meeting of bondholders. In this paper we assume that all bondholders are represented. We further assume for now that information on the distribution of legal costs across creditors is common knowledge; incomplete information will be considered in the next section.

Let κ be the critical voting threshold written into the bond. If the incidence of voters who accept the offer is greater than or equal to κ then the offer by the debtor is applied to all creditors, including those that have voted against it. If the offer fails because fewer than κ creditors accept it, then creditors pursue their claims through the courts and the debtor remains in default. In this event, we assume each creditor will eventually receive a share of total output less the resources spent pursuing their claim. As in the New York law case, we assume the legal costs per unit of debt l_i characterise uniquely the “type” of each creditor. In the event that the deal fails, the debtor will not obtain any surplus, so it will not exert any effort. So in going
to court a creditor i would expect to receive $y(0) - l_i$. If the offer is accepted, the debtor secures all the surplus and therefore has an incentive to exert effort. So the debtor’s payoffs are:

$$\begin{cases}
 y(a) - \omega^*(1 + r) - c(a) & \text{if } \kappa \text{ or more creditors accept} \\
 0 & \text{otherwise.}
\end{cases}$$

The payoff to the creditor in the $(1 - \kappa)$-th quantile of the distribution of legal costs from an offer $\omega(1 + r)$ is:

$$\begin{cases}
 \omega(1 + r) & \text{if } \kappa \text{ or more creditors accept} \\
 y(0) - l_{1-\kappa} & \text{otherwise.}
\end{cases}$$

So it is a weakly-dominant action to vote to accept the offer provided that $\omega(1 + r) \geq y(0) - l_{1-\kappa}$.

Since $y(a^*) - y(0) - c(a^*) > 0$ and legal costs are non-negative, it will always be feasible for the debtor to make an offer that is large enough to persuade a proportion of κ creditors (or more) to accept the offer but small enough to ensure that the first equation in 13 is non-negative. The weakly-dominant action for the debtor would be to make an offer which is just large enough to persuade the $(1 - \kappa)$-th creditor to accept the offer9:

$$\omega^*(1 + r) = y(0) - l_{1-\kappa}. \quad (14)$$

So collective action clauses can always elicit the socially efficient level of holdouts: zero. Moreover, this offer will also induce the debtor to exert optimal adjustment effort. To see this, note that debtor surplus is given by

$$y(a) - y(0) + l_{1-\kappa} - c(a). \quad (15)$$

This is maximized when $y'(a) = c'(a)$, which yields the socially efficient level of adjustment effort a^{*10}.

How does changing the threshold κ change the outcome? From above we know that

$$y(a^*) - c(a^*) - y(0) + l_{1-\kappa} > 0, \quad (16)$$
and socially optimal effort will always be achieved. There are, therefore, a range of threshold values, \(\kappa \), which satisfy \textit{ex post} efficiency. Altering \(\kappa \) within this range does, however, have distributional consequences. Lowering the value of \(\kappa \) gradually transfers any surplus from creditors to the debtor through a lowering of the equilibrium offer. Debtors will clearly prefer a low value of \(\kappa \) \textit{ex ante} because it increases their share of the surplus but creditors, on the other hand, prefer a high value of \(\kappa \) because it raises the debtor’s offer. This result, though, is highly dependent on the assumption of complete information. Under incomplete information, as discussed in the next section, satisfying 16 is no longer guaranteed.

It is also worth noting that, in this set-up, since 16 is satisfied, a SDRM-type of mechanism or a bankruptcy court would be redundant. Given a choice of \(\kappa \) satisfying 16, the debtor will always be able to make an offer that will be accepted by the requisite majority of creditors and which will elicit socially optimal adjustment effort. The first-best obtains without the need for a centralised body or mechanism to oversee the restructuring.

5. Equilibrium under CACs - incomplete information

So far, the analysis of CACs has assumed complete information. We consider now the more plausible situation in which there are information asymmetries between the debtor and private creditors at the time the debtor makes the offer. In most real-world situations, the value of creditors’ outside options and debtor disutility from adjustment effort are private information to both parties. This, in turn, might induce gaming or bargaining behaviour. Creditors may have an incentive to understate the costs of holding out, to induce the debtor to make a larger offer. And debtors may have an incentive to overstate the true disutility of adjustment effort, to try to get away with making lower offers. We set out an example of this strategic debtor-creditor bargaining behaviour, based on Chatterjee and Samuelson (1983), and assess the efficiency of different mechanisms for debt restructuring.
We assume, as before, that the κ threshold has been specified in the bond contract and is determined in advance. Majority voting with a continuum of creditors is essentially equivalent to a bilateral bargaining game between the debtor and the marginal creditor at the voting threshold. In what follows, we utilise this equivalence by characterising the restructuring as a simultaneous offer from the debtor to a representative creditor\[11\].

The debtor makes an offer, $\Omega = \omega(1 + r)$ and the representative creditor chooses a minimum offer they are prepared to accept (M). If the debtor’s offer exceeds the creditor’s minimum, $\Omega \geq M$, then the vote is passed. Ω is paid by the debtor to all the creditors and the debtor has an incentive to exert effort because it keeps all the surplus, $y(a^*) - c(a^*) - \Omega$. On the other hand, if the deal is rejected, the debtor receives no surplus and exerts no effort, as before, and each creditor gets $b_{\kappa} = y(0) - l_{1-\kappa}$. For notational simplicity, in what follows we will denote the output surplus $y(a^*) - c(a^*) = \pi$. In summary, the debtor receives

$$
\begin{cases}
\pi - \Omega & \text{if the offer is accepted} \\
0 & \text{otherwise}
\end{cases} \quad (17)
$$

and the κ-th creditor receives

$$
\begin{cases}
\Omega & \text{if the offer is accepted} \\
\hat{x}_{\kappa} = y(0) - l_{1-\kappa} & \text{otherwise.}
\end{cases}
$$

But the debtor’s surplus when exerting optimal effort, and the creditor’s return after going to court, are private information and provide the incentive for each party to act strategically. For simplicity, we normalise the debtor’s surplus and the representative creditor’s reservation value to be defined uniformly on $[0, 1]^{12}$. Nature draws π and \hat{x}_{κ} from their respective distributions\[13\]. The ranges of these distributions are common knowledge, but the precise outcomes are not known to the creditor and the debtor respectively.

What strategies would both sides pursue? To simplify matters, we focus on linear strategies. The strategy of the debtor, $s_{d}(\pi)$, maps
any surplus from $[0, 1]$ into an offer to creditors. Since π is bound by $[0, 1]$, so is the offer, Ω. Similarly, the strategy of the representative creditor, $s_c(\bar{x}_\kappa)$, maps the creditor’s reservation value from $[0, 1]$ into a minimum acceptable offer. The strategy of the debtor is given by $s_d(\pi) = d_1 + d_2\pi = \Omega(\pi)$ and the strategy of the creditors is given by $s_c(\bar{x}_\kappa) = c_1 + c_2\bar{x}_\kappa = M$.

In the Appendix it is shown that under these assumptions the equilibrium strategies are given by

$$\Omega = s_d(\pi) = \frac{1}{2}\pi$$

$$M = s_c(\bar{x}_\kappa) = \bar{x}_k,$$

implying that a deal is agreed if

$$\pi \geq 2\bar{x}_k.$$

This equilibrium is inefficient because gains from a restructuring agreement are possible for all $\pi \geq \bar{x}_k$. Fewer voluntary agreements will be struck between creditors and the debtor than would be optimal. Given our assumptions about the distribution of creditor legal costs and debtor surplus, the probability of reaching a deal in the absence of strategic behaviour is equal to $\frac{1}{2}$. Strategic behaviour, however, reduces the ex ante probability of reaching an agreement from $\frac{1}{2}$ to $\frac{1}{4}$.

Intuitively, the debtor exploits the mutual uncertainty about outside options to rise their expected surplus. It is optimal for the debtor to risk failing to secure a deal to lower the amount it has to pay if a deal is reached.

Consider now what occurs if a higher collective action threshold is chosen so the representative creditor is more stringent and the distribution of the debtor’s and creditor’s reservation values no longer perfectly overlap. Specifically assume the creditor’s reservation value is uniform over $[\frac{1}{4}, 1]$ instead of $[0, 1]$. Clearly, one implication is that
offers over the interval $[0, \frac{1}{4}]$ are no longer feasible even under full information. If deals are possible, we show in the Appendix that the strategy rule for the debtor is to offer:

$$\Omega = \sigma_d(\pi) = \frac{1}{8} + \frac{1}{2}\pi.$$ \hfill (19)

Comparing 19 with 18 one can see that for a value of π in the feasible region of the deal, the debtor must offer $\frac{1}{2}$ more. This increases the return to all creditors in the event that a deal is struck. Equally, the debtor now receives less in the event that a deal is struck. By comparing 19 with the debtor’s strategy under 18, we can see that in the relevant region deals can be struck whenever $\pi \geq 2\tilde{x}_k - \frac{1}{4}$. But, overall, the ex ante probability of a deal being struck falls from $\frac{1}{4}$ to $\frac{3}{16}$.

Returning to the question of the optimal threshold, we can see that debtors will prefer a lower threshold because it simultaneously lowers the amount they have to pay in a successful deal and increases the range of outcomes in which a deal is feasible. Creditors will prefer a higher threshold as long as the benefit of a higher return in the event of a deal is not offset by the fact that the deal is less likely. The official sector will prefer that deals are struck, but be uncomfortable if low offers encourage debtor moral hazard. This might explain why there are differences between debtors, creditors and the official sector, and indeed among the private creditor community itself, about the appropriate choice of the threshold14.

This problem could also arise when there is more than one class of creditor (e.g., banks, various bondholders classes and the official sector). These classes of creditor may differ in many ways including in the value of their outside options and in their majority voting thresholds. These differences lower the chances of simultaneously reaching agreement across all classes of creditor. More generally, the probability of simultaneously successful deals falls rapidly as the number of separate deals increases.

One might argue that general conclusions should not be drawn from the above example on three grounds: first, the linear equilibrium
outlined above is not unique; second, it refers to a particular game (a double auction); and third, the game does not allow for sequential bargaining. In fact, these generalisations do not alter the basic result.

A strong and very general conclusion from the literature on bargaining with two-sided incomplete information is that when individual rationality constraints bind and when participation in a deal is voluntary, private information leads to \textit{ex post} bargaining inefficiencies. In particular, the Myerson and Satterthwaite theorem (1983) establishes that two players are unable to exhaust the mutual gains from reaching an agreement if they have incomplete information about each other\(^{15}\).

Voluntary, market-based solutions to the bargaining problem will generate suboptimal outcomes under imperfect information. This is the case regardless of how the strategies of the players are formulated, how trading mechanisms for the debt are specified and how the bargaining process is sequenced\(^{16}\).

6. Policy implications

We conclude with some policy implications of our analysis:

(a) The welfare implications of New York law bonds depend on the bargaining strength of creditors. If this is low - for example, if legal costs are very high - then even a low debtor offer will be capable of satisfying most or all of the creditors. In this situation, even New York law bonds can achieve a socially optimal restructuring outcome by attracting unanimous creditor support and providing the debtor with incentives to put in policy effort.

In the majority of cases of interest, however, we might not expect the efficient outcome to obtain under New York law bonds. Two potential interrelated inefficiencies arise: (i) a hold-out inefficiency, whereby some creditors hold out from the offer and cause output disruption; and (ii) an adjustment inefficiency, whereby the debtor knowing that surplus output will be usurped by holdouts fails to exert sufficient policy effort. Both inefficiencies de-
rive from intra-creditor coordination failures. These are more likely to arise the greater is the bargaining strength of creditors (the lower their legal costs) and the greater the heterogeneity of creditors. The move towards bonds and away from loans during the 1990s is likely to have amplified these effects. So too has some of the evidence that creditors may be becoming more adept in attaching sovereign assets, following the Elliott Associates versus Peru case in 2000. Indeed, it is probably these trends in capital markets that explain the renewed focus on other (than New York bond) instruments to help resolve these inefficiencies.

The model does help demonstrate, however, how existing contractual provisions in New York law bonds might be used to improve outcomes. For example “exit consents” were used in the debt exchange by Ecuador in 2000 and recently in Uruguay. These change the non-financial terms of bonds for hold-out creditors, lowering their value. In our model, this is equivalent to raising the legal costs of rejecting an offer. As the model illustrates, this can be welfare-enhancing as a second-best means of overcoming some of the inefficiencies otherwise associated with New York law bonds.

(b) CACs provide a potentially first-best means of overcoming these inefficiencies. They potentially resolve intra-creditor coordination problems: the holdout inefficiency, by binding-in creditors (above the contractual threshold κ); and the adjustment inefficiency, by allowing debtors to enjoy more of the benefits of their policy effort. Where the voting threshold is set is a potential source of disagreement between the debtor and creditors, as it determines how the surplus will be divided between them. This helps explain the on-going debate between the two parties on the optimal setting for κ. Wherever this bargain is struck, however, it is capable of securing a first-best outcome - provided importantly, that debtors and creditors have complete and com-
mon information on each others’ preferences. In this world, the SDRM - whether SDRM-lite or SDRM-heavy - would be redundant. Voluntary, market-based solutions with instruments containing CACs would deliver the social optimum.

(c) This policy conclusion, however, does not survive relaxation of the common information assumption. Incomplete information results in an inefficiency which CACs cannot resolve. In our example, CACs resolve the intra-creditor coordination problem. But the outcome is still ex post inefficient. This is because in a world of incomplete information, the optimal offer and the optimal decision rule of each player depends not only on their private valuations, but also on their beliefs about other players’ payoffs. Uncertainty over payoffs creates incentives for strategic behaviour that market-based co-ordinating devices cannot solve. Or put another way, the information friction introduces a bargaining problem between the debtor and its creditors, even in the absence of intra-creditor coordination problems. The upshot is that fewer voluntary debt exchange offers are done than would be optimal. And the higher the collective action threshold the more difficult it is to strike a deal. These inefficiencies are potentially greater, the greater the number of debt instruments held by disparate creditor groups - that is, aggregation problems compound this bargaining inefficiency.

(d) How could these inefficiencies be resolved? As Myerson and Satterthwaite (1983) show, no voluntary bilateral exchange is able to resolve this inefficiency, however sophisticated, with or without CACs. One solution is some sort of third-party intervention - in the sovereign context, a bankruptcy court or SDRM. The nature of this intervention will depend on the nature of the friction. If it is a private information friction between debtors and creditors, the role of the third party is to observe private valuations and arbitrate between them in seeking an efficient exchange value. If the friction is due to strategic behaviour, the role of the
third party would be to observe true valuations by the debtor and creditors and ensure that a true exchange value is enforced, balancing the interests of debtors and creditors.

In either of these roles, the third-party intervention is much closer to the SDRM-heavy than the SDRM-lite approach. Under SDRM-lite, it would be left in the hands of private creditors to vote and approve voluntarily any exchange offer by the debtor. So with uncertainties and/or gaming on both sides, there is little scope for an efficient outcome. Only with the involuntary imposition of an exchange value by some neutral third-party would an efficient allocation obtain - the SDRM-heavy approach.

Indeed, it is possible - although this possibility is not a direct implication of the model - that the mere threat of the SDRM would be sufficient to secure an efficient equilibrium. For example, if differences in creditor and debtor valuations are due to strategic behaviour, then the expectation that the SDRM would be invoked if a voluntary exchange offer failed may induce debtors and creditors to reveal their true valuations at the time of the exchange offer. In this role, the SDRM would backstop CACs.

The statutory approach would be a necessary complement to the contractual approach. If the differences in creditors’ and the debtor’s valuations is due to private information, then the role of the SDRM would be to step in after an exchange offer had failed to arbitrate. Again, the SDRM would backstop CACs. But in this case the statutory approach would substitute for the contractual approach. In either role, the SDRM would be a necessary ingredient of an efficient work-out.

(e) So what are the necessary conditions for an SDRM type of approach to be welfare-enhancing in a sovereign context? There are broadly two. First, co-ordination problems between debtors and creditors need to be sufficiently acute to rule out an efficient bargaining outcome. This is ultimately an empirical question. Debt work-out experience suggests no hard and fast rules. Some
of the sovereign debt work-outs during the 1990s were resolved fairly expeditiously – for example, bond exchanges involving Ukraine and Pakistan in 1999 and Uruguay in 2003. But other experience points towards a lengthier and more acrimonious bargaining game – for example, Russia in 1998, Ecuador in 1999 and prominently Argentina during 2002. Indeed, perhaps the best case study was the Latin American debt crisis in the 1980s, when the workout persisted in some cases for almost a decade. Interestingly, the 1980s debt crisis was only resolved following third-party intervention in the form of the Brady plan. Past experience suggests that the creditor-debtor bargaining problem is a very real one in a sovereign context. It has nevertheless been largely overlooked in the recent debate on sovereign debt resolution. Once it is placed centrestage, it suggests quite striking public policy implications: voluntary, creditor-led market mechanisms are no longer adequate. Supra-national intervention can support efficient outcomes.

Second, for this intervention to be welfare-enhancing, however, the third-party needs to have adequate information and enforcement powers, as well as well-aligned incentives. The last of these has often been a bone of contention with the private sector (eg, IIF (2002)). For example, it is often argued that any third-party – for example, the IMF – would be subject to political pressures (Shleifer (2003)). Whether it is possible to design a supra-national agency whose governance structure is immune to such pressures is a question for political scientists, as well as economists. Economics suggests, however, that this is a question well worth asking.
Appendix: Solution to the linear asymmetric information case under collective action clauses

Let \(G_d(\cdot) \) and \(G_c(\cdot) \) be the equilibrium distributions of the debtor’s offer and the creditor’s minimum acceptable offer. The probability that the debtor can extract a surplus that induces them to make an offer less or equal to \(\xi \) is equal to \(G_d(\xi) \) and the probability that the creditor’s reservation value is such that induces them to accept an offer only if it is greater than or equal to \(\xi \) is equal to \(G_c(\xi) \).

The maximisation problem for the debtor is to choose an offer that maximises the expected payoff, that is

\[
\text{Max}_\Omega \int_0^\Omega [\pi - \Omega] dG_c(s_c(\tilde{\kappa}))
\]

where \(\Omega = s_d(\pi) \). The first-order condition is given by

\[
[\pi - s_d(\pi)] g_c(\Omega) = G_c(\Omega).
\]

At the margin, the surplus that the debtor can expect to extract by offering less must be equal to the probability that the creditor’s minimum acceptable offer will still allow a deal to be reached. The analogous maximisation problem for the creditor is given by

\[
\text{Max}_M \int_M^1 [\Omega - \tilde{\kappa}] dG_d(s_d(\pi)),
\]

which yields the following first order condition

\[
-[M - \tilde{\kappa}] g_d(M) = 0.
\]

Therefore, the creditor can do no better than follow the strategy \(M = \tilde{\kappa} \), regardless of the strategy of the debtor. The creditor can do no better than to guarantee a deal for any offer which exceeds the reservation value.

Given our assumption that the creditor’s reservation value is drawn from a uniform distribution over \([0, 1]\), \(G_c(\Omega) = \Omega \) and \(g_c(x) = 1 \).
Substituting this density and the conjectured linear strategy $\Omega = s_d(\pi) = d_1 + d_2\pi$ into 21, we obtain:

$$\pi - d_1 - d_2\pi = d_1 + d_2\pi$$

Equating coefficients on both sides we get $d_2 = \frac{1}{2}$ and $d_1 = 0$.

Therefore, the debtor follows a strategy of making an offer

$$\Omega = s_d(\pi) = \frac{1}{2}\pi$$

and the representative creditor sets a minimum offer $M = s_c(\hat{\pi}_k) = \hat{\pi}_k$. Recall that an offer is only accepted when $\Omega \geq M$ which means a deal is only struck when $\pi \geq 2\hat{\pi}_k$. But efficiency would require deals to be struck whenever $\pi \geq \hat{\pi}_k$, so the result under uncertainty is inefficient.

Now consider what happens if the creditor’s distribution of potential reservation values is uniform over $[\frac{1}{4}, 1]$ instead of $[0, 1]$. The maximisation problems and conditions 20 to 23 are unchanged but $G_c(\Omega) = \frac{4}{3}[\Omega - \frac{1}{4}]$ and $g_c(x) = \frac{4}{3}$. Substituting these values into 21 we get

$$\pi - d_1 - d_2\pi = d_1 + d_2\pi - \frac{1}{4}$$

and equating coefficients on both sides we obtain a strategy rule for the debtor to offer

$$\Omega = s_d(\pi) = \frac{1}{8} + \frac{1}{2}\pi.$$ \quad (26)

Comparing 26 with 24 one can see that for a value of π in the feasible region of the deal, the debtor must offer $\frac{1}{8}$ more when the voting threshold is higher. This increases the return to all creditors in the event that a deal is struck. Equally, the debtor now receives less in the event that a deal is struck. The probability of striking a deal in the first place, however, drops from $\frac{1}{4}$ to $\frac{3}{16}$. This is because the probability of the debtor striking a deal for draws of π in the range $[0, \frac{1}{4}]$ is zero and rises linearly with π to a probability of $\frac{1}{2}$ for a draw of $\pi = 1$.
References

International Monetary Fund (2002), *Sovereign Debt Restructuring Mechanism - Further Considerations*.

Notes

1 A model with different sizes of creditor, each with different degrees of power, is explored in Corsetti, Dasgupta, Morris and Shin (2001).

2 In June 2000, Peru paid $56 million to Elliott Associates after the latter succeeded in getting a Brussels court to make a judgement that Euroclear could not distribute payment on Peru’s Brady bonds unless it paid pre-Brady commercial loans which Elliott had bought for $20 million in 1997. It’s not clear that Elliott’s case would have survived an appeal but the decision would only have been overturned after Peru was declared in default on its Brady bonds. This threat was enough for Peru to pay. For more details, see Box 2.6 in IMF (2001).

3 A debtor who exerts effort may, for example, have developed a number of positive net present value investment opportunities but before it can reaccess international markets may have to pay-off outstanding claims. The more such investment opportunities the debtor has, the more leverage outstanding claimants have and the greater the payoff they can expect to receive. A similar rationale underlies the debt-overhang models of Krugman (1989) and Sachs (1989).

4 The distinction between willingness and ability to pay was first emphasised by Eaton and Gersovitz (1981).

5 We also rule out an equilibrium in which the debtor price discriminates, paying each creditor the amount owed less their individual legal costs and keeping the rest. We do not think this equilibrium is practical (how could the debtor tell what each creditor’s legal costs actually are?) or legal (it violates pari passu clauses).
Trivially, we require \(y(a^*) - c(a^*) > y(0) \) to get \(a^* > 0 \).

As those accepting the offer are paid out in full from the debtor’s resources.

The conclusion that the debtor will exert zero effort is not meant to be taken literally. For convenience, we have set to zero the minimum additional amount of effort exerted by the debtor, but this could be scaled up to a positive number.

As the voting threshold, \(\kappa \), is increased the debtor needs to convince creditors with increasingly lower legal costs. So for example, if \(\kappa = 0.9 \), the debtor’s offer would need to persuade the marginal creditor in the first decile of the legal cost distribution.

The move ordering here is important. If creditors could coordinate \textit{ex ante}, they could offer \(\omega^*(1+r) \) such that \(y(a^*) - c(a^*) - \omega^*(1+r) = 0 \), i.e. extract all the surplus. This is a better offer than they will receive from the debtor and also secures first-best effort. But this would remove by assumption any potential intra-creditor coordination problems.

The example can be easily reworked on the assumption that the debtor or creditor moves first, with the main conclusions remaining unaltered. An exact analogy between CACs and a bilateral bargain would require that the marginal creditor could be identified and would know they were the representative negotiator. Nothing of substance is lost by making this assumption.

We assume that the distributions of the debtor’s surplus and the creditor’s reservation values are identical for simplicity. Chatterjee and Samuelson (1983) show that results carry across when the upper and lower supports of the two distributions are not the same, provided there is some overlap in the distributions which generates mutual benefit from agreeing a deal.
To make matters interesting, we only consider situations in which a restructuring deal is actually feasible which implies $\pi \geq \bar{x}_\kappa$. If this condition fails, the debtor gets nothing and the creditors get $\bar{x}_\kappa = y(0) - l_{1-\kappa}$.

Haldane, Hayes, Penalver, Saporta and Shin (2002) develop a model which nests both liquidity and solvency crises. They find that expected creditor returns in the event of insolvency are key in determining the probability of a liquidity run by short-term creditors. The higher the expected recovery rate, the lower the probability of liquidity runs. In such an extended framework, debtors may be better off sacrificing surplus ex-post by issuing bonds with high voting thresholds because it lowers the probability of a liquidity run.

Laffont and Maskin (1979) also arrive at an inefficiency result in a more general model with more than two agents (but with an additional regularity assumption on acceptable equilibria that Myerson and Satterthwaite do not need to make). A number of extensions to the Myerson and Satterthwaite result exist. For references, see Fudenberg and Tirole (1991).

The key difference between one-stage and multi-stage models is that in the latter the bargaining inefficiency does not result from lack of agreement but from a delay in the eventual agreement caused by information being revealed over time during the bargaining process (Chatterjee 1985). Using a different framework, Eaton (2002) also discusses how imperfections in information and in enforcement in a sovereign debt context can generate a role for a supranational agency or international bankruptcy court.

Roubini (2002) believes these were sufficiently successful to rule out the need for non-market solutions. He also argues the hold-out problem is overstated.