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‘Abstract

This paper analyzes the measurement of interdependence among n random vari-
ables. We adopt the stochastic dominance approach, relating concepts of interde-
‘pendence expressed directly in terms of joint probability distributions to concepts
expressed indirectly through properties of objective functions whose expectations are
used to evaluate distributions. Since the expected values of additively separable ob-
jective functions depend only on the marginal distributions, attitudes towards cor-
relation must be represented through non-separability properties. For the bivariate
case, we present two stochastic dominance theorems, characterizing rankings of dif-
ferent strengths. For the multivariate case, we propose and chacterize three different

rankings, each a natural extension of one of the bivariate ones.

This analysis of interdependence is applicable to a wide range of problems in
choice theory and welfare economics. Qur results are presented in the context of
one such application: the measurement of inequality in an uncertain environment.
This context friotivates the “tournament axiom”, which we view as a requirement for
an objective function to represen’; a suitably strong aversion to negative interdepen-
dence. We apply our three multivariate stochastic dominance conditions to verify
that the corresponding classes of objective functions satisfy the tournament axiom.
We also analyze the relationships between our dominance conditions and the concepts

of affiliation and association.



1. Introduction

" The problem of the measurement of multidimensional correlation arises in sev-
eral areas of choice theory and welfare economics. Its most familiar form involves
an investor deciding how to allocate his endowment among several different risky
assets within a given period; this decision requires assessing joint distributions of
random asset returns (Hadar and Russell (1974), Levy and Paroush (1974), Epstein
‘and Tanny (1980)). Similarly, an individual making investment decisions in a mul-
tiperiod context must evaluate joint distributions of random consumption levels in
several different periods (Litzenberger and Ronn (1981)). In welfare economics, the
analysis of inequality with respect to several different indicators of economic status,
e.g. income and life expectancy, requires an assessment of the joint distribution over
the population of these indicators (Atkinson and Bourguignon (1982)). The measure-
ment of economic mobility focuses on the correlation between individual incomes at
different points in time (Atkinson (1981)). A related example is the measurement of
horizontal equity in the tax-benefit system: some proposals for assessing horizontal
equity focus on the correlation between individuals’ ranks in the pre-tax and post-tax
income distributions (Feldstein (i976), Plotnick (1982)).1

. In all of fhese settings, the decision maker’s or social planner’s evaluation of the
multivariate distributions will reflect his preferences for positive or negative interde-
pendence among the variables, as well as his preferences over their marginal distri-
butions. Some work in these areas has concentrated on the development of indices
for measuring correlation: for mobility, see Shorrocks (1978) and Cowell (1985), and
for horizontal equity, see Plotnick (1982), King (1983), and Jenkins (1989). An index
‘allows any two multivariate distributions to be ranked. An alternative approach to
measuring interdependence, the stochastic dominance approach, seeks td characterize
avpartial ordering of multivariate distributions such that one distribution is ranked
above another if and only if, for all objective functions W in a specified class, the ex-

pectation or sum of W is higher under the former distribution than under the latter.

1 The problem of assessing the degree of concordance of several rankings of a given
set of alternatives also involves measuring multidimensional correlation. The welfare-
economic examples given above can be formulated in this way; in other settings, the

rankings may represent individual preferences or beliefs (Reid (1990)).
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Stochastic dominance theorems relate concepts of interdependence expressed directly
in terms of proba,bility distributions to concepts represented indirectly through prop-
erties of the objective function used to evaluate distributions. Theorems of’this form
have been presented for portfolio allocation by Levy and Paroush (1974), Hadar and
‘Russell (1974), and Epstein and Tanny (1980), for multidimensional inequality by
Atkinson and Bourguignon (1982), and for mobility by Atkinson (1981) and Kanbur
and Stiglitz (1986). Despite providing only a partial ordering of distributions, the
stochastic dominance approach is appealing (see especially Atkinson (1970)) because
the assumptions on the underlying objective function are both explicit and fewer in
number than in the development of indices. Furthermore, this approach highlights
the inverse relationship between the strength of these assumptions and the stringency

of the dominance conditions for ranking distributions.

For the most part, the stochastic dominance results for interdependence in mul-
tivariate distributions that appear in the economics literature are confined to the case
of two dimensions.? While in some applications, such as the assessment 'o’f horizontal
equity, the restriction to two din}ensions is natural, in other contexts n-dimensional
distributions Wiil frequently need to be compared. The statistics literature contains
numerous concepts of dependence for the bivariate case (see the survey by Jogdeo
(1982)), but for more than two dimensions, attention has largely focused on the con-
cepts of affiliation (Karlin and Rinott (1980)) and association (Esary, Proschan, and
Walkup (1967)). The properties of affiliation and association arise naturally in many

‘statistical settings, and affiliation in particular has many useful implications. How-
ever, affiliation and association are concepts of positive intérdependence of random
variables and do not represent notions of greater or less interdependenpe. Further-
more, these properties are both quite strong (see Section 4.6), and for economic ap-
plications weaker notions can be useful (for example, when considerable structure can
be put on the preferences of the decision-maker or planner). There is thus consider-

able scope for the development, for economic applications, of stochastic dominance

2 An exception is the paper by Hadar and Russell (1974), but they prove only a
sufficiency result for preference between multivariate distributions and provide little

interpretation of the assumptions on the objective function.
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theorems characterizing concepts of greater interdependence for more than two di-

mensions.

This paper develops such stochastic dominance theorems in the context of a
specific welfare-economic problem: the assessment of inequality in an uncertain envi-
ronment. Such an assessment requires concepts of interdependence if one adopts the
ex post approach to welfare evaluation under uncertainty, taking as a welfare objective
the expected value of a social welfare function, W, defined on individual ex post util-
ities in each state.® Specifically, if (Uy,...,U,) represent the random utility levels of
n individuals, the welfare objective is EW(ﬁl yeens Ijn) This welfare objective repre-
sents preferences over probability distributions of utility profiles. It seems reasonable
to argue that a social planner or a society which, ex post, will value equality among
realized utilities should, ex ante, prefer joint distributions of utilities which, for given
marginal distributions, display greater positive interdependence. |

- This argument implies that, under uncertainty, an additively separable ex post
welfare function W cannot represent an aversion to ex post inequality, since if W is
additively separable its expectation depends only on the marginal distributions of in-
dividual welfare and is completely insensitive to the correlation properties of the joint
distribution. Non-separability assumptions on W are therefore needed. The stochas-

tic dominance theorems we derive characterize concepts of greater interdependence

| among random utilities (random variables) in terms of a preference for one joint dis-

tribution over another by all welfare functions (objective functions) possessing specific
non-separability properties.

Section 2 motivates in greater detail the ex post approach to inequality measure-
ment under uncertainty and discusses two contexts, organizations and taxation, in
which considerable significance is attached to ex post equality (or ex post horizontal
equity).

Sections 3 and 4 present the formal results on the measurement of interdepen-

dence. In Section 3, which treats the bivariate case, we propose two types of non-

8 Hammond (1983) provides an axiomatic foundation for such a welfare objective.
Meyer and Mookherjee (1987) discuss the relationship between such an objective and

attitudes towards correlation of utilities.



separability property for the welfare function, which we term “weak complementarity”
.and “strong complementarity”. Each of these properties represents a preference for
a different type of “elementary transformation” of the joint distribution of utilities
which, while leaving the marginal distributions unchanged, can be viewed as increas-
ing the correlation. ‘We present two stochastic dominance theorems, the first char-
acterizing in different ways partial orderings equivalent to preference by all weakly
complementary welfare functions and the second doing the same for strongly com-
plementary functions. The first theorem is new, while the second extends existing
economic and statistical results by providing a new representation of the partial or-
dering (which possesses a natural extension to n dimensions). These theorems are

useful as both intuitive and formal stepping stones to the n-dimensional case.

- Section 4 begins with a heuristic discussion of the issues involved in developing
useful extensions of these results to more than two dimensions. If the only assump-
tion on the welfare function is that it prefers joint distributions producing no ex post
inequality at all to joint distributions, with the same marginals, producing some ex
post inequality, then although we can characterize the associated partial ordering,
it is so stringent as to be of little use. Developing weaker partial orderings requires
| specifying how the welfare function will rank distributions neither of which generates
complete ex post equality. Any such specification, however, implicitly involves assess-
ing the level of inequality in realized utility profiles for the n individuals, and there is
considerably more scope for choice in this assessment than in the two-individual case.
Consequently, the scope for choice among non-separability properties of the welfare
function is considerably broader in the n-dimensional than in the two-dimensional

case.

To gauge whether any particular set of assumptions on the welfare function cap-
tures a sufficiently strong aversion to ex post inequality (negative interdependence),
we impoée an axiom, referred to as the “tournament axiom”. This axiom is motivated
by the negative correlation of utilities generated by tournament reward schemes and
requires that for' every member of a class of welfare functions, any tournament gener-
ate lower expected ex post welfare than the corresponding reward scheme which gives

each individual the same marginal distribution of rewards but determines rewards
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independently.

In Sections 4.2 through 4.4, we propose and characterize three stochastic domi-
nance rankings for interdependence among n random variables. The appeal of these
rankings has three sources. First, each ranking is a very natural extension of one of
the dominance conditions derived for the bivariate case. Second, the classes of non-
separable objective functions which correspond to the rankings each contain specific
forms adopted in the choice theory and welfare economics literatures. Third, each
ranking can be used to show that the corresponding class of welfare functions satis-
fies the tournament axiom and so represents a sufficiently strong aversion to negative
intcrdependenée. Section 4.5 analyzes the relationships among the three stochastic
dominance conditions and amdng the three classes of welfare functions, and Section
4.6 treats the relationships of the stochastic dominance conditions with the concepts

of affiliation and association.

Section 5 discusses several directions for future research. All proofs are in the

Appendix.

2. The Ex Post Approach to Measuring Inequality under Uncertainty, and

the Tournament Axiom

The ex post approach to welfare evaluation under uncertainty takes as a wel-
fare objective the expected value of a welfare function, W, defined on individual
ex post utilities in each state: EW(U,...,U,). In contrast, the ex ante approach .
takes individuals’ ex ante expected utilities as the arguments of the welfare function:
W(EU:,...,EU,).4 In the latter case, welfare depends only on the marginal distribu-
tions of individual utilities, whereas in the former case, the entire joint distribution of
utilities is in general relevant. A social planner or a society which, ex post, will value
equality a,niorig realized utilities should, ex ante, prefer joint distributions of utilities
which display greater positive interdependence, for any given marginal distributions

and hence for any given degree of risk faced by individuals. Such preferences can

4 The contrast between the ex ante and the ex post approaches has been examined
by, among many others, Diamond (1967), Mirrlees (1974), Myerson (1981), Hammond

(1981), (1982), (1983), and Broome (1984).
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be expressed with the ex post approach, but not with the ex ante approach. How-
ever, such preferences cannot be represented by an ex post welfare function that is

additively separable, since the expectation of such a function depends only on the |
marginal distributions. Thus, whereas concavity assumptions on the welfare function
may be sufficient for expressing aversion to inequality in ex ante utility levels or in
deterministic utility levels, non-separability assumptions are needed to express aver-
sion to ex post inequality when probability distributions of utility profiles are being

compared.

* In what contexts involving uncertainty might a group possess strong preferences
for ex post equality? Organizations are obvious settings. Sociologists have exten-
sively studied how social comparisons Withiﬁ peer groups shape workers’ assessments
of fairness within organizations and thereby influence worker morale, unity, and co-

operation (Baron (1987)). Baron has hypothesized that social comparisons are more

_influential, and hence that ex post inequality is less, when co-workers are demographi-

cally homogeneous and have frequent contact with one another and when information
about wage differentials is public.® In the economics literature, Lazear (1989) argues
that reducing ex post inequality 'in rewards when compensation is based on relative
performance can benefit organizations by reducing incentives for employees to “sab-
otage” the work of others. In a similar vein, Milgrom (1988) suggests that reducing
ex post inequality can deter employees from expending resources on activities to in-
fluence those who wield authority. Ex post inequality within organizations can be
increased not only by narrowing wage (or utility) differentials, but also by enhancing

the correlation of rewards across individuals.8”

5 Pfeffer and Davis-Blake’s (1985) findings on patterns of wage dispersion across ad-

ministrative positions in colleges and universities are consistent with these hypotheses.

6 Meyer and Mookherjee (1987) illustrate this point in their analysis of compensa-

tion schemes under moral hazard in an organization which values ex post equality.

" In some settings, increasing the correlation of rewards for the group as a whole
may be difficult, as when the total number of promotions is fixed in advance. How-
ever, the concern for ex post equality may be significantly stronger within particular
subgroups than between these subgroups, for the reasons suggested by Baron (above).
In such cases, the organization can largely satisfy preferences for ex post equality by
enhancing the correlation of rewards of individuals within subgroups. (The constraint
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Preferences for ex post equality may also be important in the evaluation of tax
systems. While random taxes can sometimes increase the ex ante expected utility of
all individuals (Stiglitz (1982)), they are horizontally inequitable ex post. Yet ex ante
welfare functions and ex post utilitarian ones are both completely insensitive to ex
post horizontal inequity. A non-additively-separable ex post welfare function would
capture the tradeoff between the efficiency benefits of random taxation and its equity

costs.

The Tournament Axiom

The formal analysis that follows, when interpreted in the context of inequal-
ity measurement under uncertainty, applies to a group within which the concern for
‘ex post equality is strong. The welfare objective is the expected value of an ex post
welfare function W defined on the n-dimensional space of utility profiles for the n indi-
viduals.® We will impose non-separability conditions on W to incorporate an aversion
to negative interdependence of utilities. Since as we will see, there is considerable
scope for choice among non-sepa:rability properties in n dimensions, we develop an
axiom, the “tournament axiom”, to gauge whether any class of non-separable welfare

functions represents a sufficiently strong aversion to negative interdependence.

The tournament axiom is motivated by the correlation properties of rank-order
tournament reward schemes. In a tournament, a set of prizes is pre-specified, and
they are awarded, one to each individual, on the basis only of the rank order of
individual performance indicators. Focusing solely on the distribution of rewards
and ignoring effort decisions, we see that a tournament generates extreme negative
correlation of rewards. If the prizes are all distinct, no two agents can receive equal
utility. Furthermore, a rise in one agent’s rank and reward is necessarily accompanied

by a reduction in the rank and reward of at least one other agent. The tournament

on the overall distribution of rewards will then generate negative correlation between

‘rewards of different subgroups.)

8 Since we will always compare joint distributions with identical marginals, all of
our results would continue to hold if the welfare objective also contained an ex ante

component, W(EUj, ..., EU,), capturing a concern for ex ante fairness.
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axiom we develop requires that for every member of a class of welfare functions, the
prize distribution under any given tournament yield lower expected welfare than the
prize distribution under the scheme which imposes the same risks on individuals as

the tournament but determines their rewards independently.

* Formally, the probability distribution over utility profiles generated by an arbi-
trary tournament can be described by a set of prizes in utility terms (¢;,...,t,) and
- a set of n! probabilities, one for each possible allocation of prizes to individuals. If

the welfare function is symmetric over individuals, ex post welfare is the same for all
allocations. We can summarize the n! probabilities by an n X n matrix P = {p;;},
~where p;; is the probability that agent ¢ receives the jth prize. The matrix P is
bistochastic, since each agent is certain to win exactly one of the n prizes and each
prize is certain to be awarded to exactly one person. Note that this representation
allows for the marginal distributions over the n prizes to differ across individuals. (In

the special case of a symmetric tournament, p;; = & for all ,j.)

For any tournament, we can use the associated P matrix to construct a reward
scheme that, for each individual,'generates the same marginal distribution of utility
as the tournament but determines individuals’ rewards independently. This random-
ized independent scheme (RIS) conducts n independent lotteries, with the lottery for
individual ¢ assigning probability p;; that he receives the jth prize.

A tournament and its associated RIS impose exactly the same degree of risk on
each individual and differ only in the correlation among utilities that they induce.
An additively separable welfare function therefore has the same expected value under
the two schemes. Since a tournament produces negative correlation and the RIS
independence, an ex post welfare function which is averse to negative correlation
should always prefer a RIS to the tournament from which it was derived. Formally,

'we impose the

Tournament Axiom: For all symmetric welfare functions in a specified class and
for all tournaments, expected ex post social welfare is at least as high under the RIS

associated with the tournament as under the tournament itself, i.e. for all symmetric
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W in the class,
- n n n
33 T pein Wltiss -0 tin) 2 Wita, ... ) (1)
Si1=1 tn=1 k=1

for all vectors (t;,...,t,) and all n X n bistochastic matrices P = {p;;}.

The right-hand side of (1) represents the deterministic social welfare under a
tournament (when W is symmetric). The left-hand side is the expected value of W

_over the n™ possible prize allocations under the RIS.®

For any n x n bistochastic matrix P, there exists a tournament, described by n!
probabilities, that gives rise to the marginal distributions represented by P.1° Thus,
in checking (1) for all bistochastic matrices, we are not examining a set larger than
the set of all tournaments. On the other hand, for n > 2, many tournaments map into
the same P matrix, so some information is lost in summarizing the n! probabilities
by the matrix. Nevertheless, for symmetric welfare functions, all information relevant

for comparing the tournament and the RIS is contained in the P matrix.

For each class of welfare functions we examine, we verify that the tournament
axiom is satisfied by using the stochastic dominance condition we show to be equiv-

alent to preference by all welfare functions in the class. If every tournament and

® We have stated the tournament axiom in “weak form”, requiring only a weak
inequality in the expected welfare comparison. Similarly, throughout the paper we
present the dominance theorems with only weak inequalities. All of our results, how-
ever; are easily carried over to “strong forms”. The strong form of the tournament
axiom entails the additional requirement that, for each tournament, there exist a W
in the specified class for which the inequality in (1) is strict (as long as the tournament
and the RIS do not produce identical distributions of utilities). This version of the
~axiom can be verified by the strong forms of the dominance theorems, which involve
at least one strict inequality in the stochastic dominance conditions and at least one
W in the specified class for which the inequality in expected welfare is strict. We
have chosen to present the weak forms purely for expositional convenience, but note
that it is the strong form of the tournament axiom that rules out additively separable

welfare functions.

10 This follows from a result in Mirsky (1963), which ensures that we can solve (n—
1)2 + 1 linearly independent equations (corresponding to the number of independent
entries in the bistochastic matrix, plus the constraint that the n! probabilitigs sum to

1) for n! variables, despite the restriction that these variables be non-negative.
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its _associated'RIS can be ranked according to the appropriate stochastic dominance

condition, then (1) follows.

In order to focus purelybon measures of, and attitudes to, correlation, we compare
only joint distributions with identical marginals. Thus, tradeoffs between correlation
and risk, or between correlation and ex ante expected utility, are suppressed.!! Since
it is natural that the welfare function be non-decreasing in the utilities of individuals

(though not intrinsically relevant to representing a preference for correlation), we will
show that, for our stochastic dominance theorems, the pa,rtia,llordering of distributions

is the same whether or not the requirement that W be non-decreasing is imposed.

The analysis that follows treats distributions with discrete supports. In a discrete
setting, the intuition behind the theorems and their proofs emerges much more clearly.
This setting is also the natural one when considering tournaments, where the set of

prizes is discrete.

3. Measures of Interdependence for Bivariate Distributions

Given a bivariate distribution of utilities (I, U2), call a transformation of the
following form an elementary transformation on identical intervals (ETI). Given any
UL < UE, the probabilities of (UH,UH) and (UL, UL) are increased by d (d > 0),
while the probabilities of (UH#,UL) and (UL,U¥) are decreased by d. ETI’s leave
the marginal distributions of individual utilities unchanged, but they increase the
likelihood of ex post equal inferpersonal utility distributions and reduce the likelihood
of unequal ones. The expected value of an additively separable ex post welfare function
s unchanged by the increased correlation in utilities resulting from an ETI. We will

call a welfare function weakly complementary if its expected value is never decreased

by an ETI:

11 Qur focus on attitudes to correlation, and on the non-separability properties
of objective functions which represent these attitudes, distinguishes our multivariate
stochastic dominance theorems from those of Kolm (1977), developed in the context of
multidimensional inequality. Kolm focuses on preferences between distributions whose
marginals display different degrees of riskiness; these preferences can be represented

by concavity assumptions on the objective function.
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Definition: W(Uy,Us) is weakly complementary if and only if, for all UL < UH,
wUHE, UE + wur,vt) - wuE, vl -wut,uH) > 0. (2)

Observe that in an ETI, the same values of U¥ and U’ must épply for both
‘individuals, so that when they both do well or both do badly there is no ex post
inequality at all. A more general type of transformation, without this requirement, is
an elementary transformation on non-identical intervals (ETN). Given UL < U¥ and
Uf < U4, the probabilities of (UH,UH) and (UL, UF) are increased by d (d > 0),
while the probabilities of (U ,Uf) and (UL,Uf?) are decreased by d.}? A welfare
function that weakly prefers all ETN’s is strongly complementary:
Definition: W(U,,U,) is strongly complementary if and only if, for all U¥ < UE,
UE<UH,

WU, U + WU, Uy) = W(Uf, Uy) - WU, U 2 0.

- To understand what is implied by adopting strong, rather than weak, comple-
mentarity, consider how the cons.equences of an ETN for the distribution of ex post
equality, as measured by — | Uy — U, |, vary with the relative positions of the intervals
(UE,UF) and (Uf,UH). If one interval is a subset of the other, then the distribu-
tion of — | Uy — U, | after the ETN first-order stochastically dominates the original
distribution. On the other hand, if the intervals are disjoint, the ETN generates a

‘mean-preserving reduction in the variability of — | Uy — Uz |, i.e. a second-order
stochastic improvement in ex post equality. In the intermediate case where the inter-
vals partially overlap, the ETN always raises the mean of — | U; —U; | and, depending
on the degree of overlap, the distribution of — | Uy — Us | after the ETN either first-
order or second-order stdchastica,lly dominates the original distribution. Therefore, if
welfare were a function only of — | U; — Us |, the assumption that all ETN’s weakly
increased expected welfare would imply that welfare was increasing and concave in

— | Uy = U, |; in contrast, the weaker assumption that all ETT’s weakly increased

12 Transformations of this form were initially discussed (under a variety of names)
by Hamada (1974), Tchen (1976), and Epstein and Tanny (1980).
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expected welfare would imply only that welfare was smaller when — | Uy — Uz | was

negative than when it was 0.13
ETI’s are useful for characterizing the stochastic dominance conditions which are

equivalent to preference by all weakly complementary welfare functions.

Proposition 1: Let the random vectors (Xl;Xz) and (Y;,Y2) each have symmetric
joint distributfons, with identical discrete support {ai,...,am} % {a1,...,am} and
identical marginals. Then the following statements are equivalent:

() PXi=a,Xo=a)<P(Yi=ar,Ya=a) VkI€{l,...,.M}, k#l

(ii) The distribution of (X1, X,) can be derived from that of (Y1,Y;) by a finite
sequence of ETDs. | \

(iii) For all weakly complementary W, EW(X,,X,) > EW(Y1,Y2).

(iv) For all non-decreasing and Weakly complementary W, EW(X1,X3) > EW(Y1,Y2).

Before presenting several stochastic dominance conditions equivalent to pref-
_erence by all strongly complementary welfare functions, we state the definition of
second-order stochastic dominance for discrete distributions with identical means.
Definition: Let the random variables ) and 8 have identical discrete support {b1,. .., bn}.

Assume that the expectations of A and 8 are equal, which implies

N-1 N-1
> (bra1 = b)PA < b)) = Y (b1 — b )P(6 < by).
r=1 r=1

The distribution of A second-order stochastically dominates the distribution of 6

(equivalently, is less risky in the sense of Rothschild and Stiglitz (1970)) if and only if
Z(br+1 - br)P(/\ < br) < Z(br+1 - br)P(e < br) Vs € {1, .. °aN - 2}' (3)
r=1 r=1 :

Given the assumption of equal means, an equivalent set of conditions is

: N N
> (b — b )PA2 b)) <Y (b —br—1)P(820)  Vs€{3,...,N}. (4)

13 This interpretation reveals the existence of categories of transformations inter-
mediate between ETI’s and ETN’s. The “inequality reducing reversals” defined by
Plotnick (1982) in developing a ranking for horizontal inequity are an example of an

intermediate category.
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Proposition 2: Let the random vectors (X1, X2) and (Y1,Y2) have identical discrete
support {ai,...,apm} % {a1,...,ap} and identical marginal distributions. Then the
following statements are equivalent:

() Pi2anXe2a)2 PVi2anYs>a) VhiIe{l,...,M}

() P(X,<anXo<a)2P(Yi<apYr<a) VhIe{l,...,M}

(ili) The distribution of (X1,X;) can be derived from that of (Y1,Y2) by a finite
sequence of ETN’s. |

(iv) For all noh-decreasing functions f! and f? defined on R, the distribution of
() + £, ) second-order stochastically dominates the distribution of f1(X;) +
fA(X2).

(v) For all non-decreasing functions f' and f? defined on R, cov[f!(X1), f2(X2)] 2
cov[f* (Y1), f3(Y2)].

(vi) For all strongly complementary W, EW(X;,X;) > EW(Y;,Y,).

| (vii) For all non-decreasing and strongly complementary W, EW(X;, X,) > EW(Y1,Y2).

The equivalence of (i), (ii), (iii), (vi), and (vii) was proved in the statistics liter- -
ature by Tchen (1976) and in the economics literature by Epstein and Tanny (1980).
The equivalence of (v) and (i) is noted in the statistics literature (see the survey by
Jogdeo (1982)). The equivalence of (iv) to the other conditions is a new result, and
is particularly useful in suggesting an extension to n dimensions. The Appendix in-
cludes proofs that (iv) and (v) are equivalent to the other conditions, making use of

the existing results.

Propositions 1 and 2 characterize two distinct concepts of greater interdependence
in bivariate distributions. Both concepts are partial orderings of distributions. The
sto.chastic dominance conditions in Proposition 1 imply those in Proposition 2 (since
every ETI is an ETN) but, as is easily checked, the reverse implication does not hold.

The condition cov(X;, X;) > cov(Y;,Y?) defines a complete ordering of distribu-
tions and clearly is implied by, but does not imply, the stochastic dominance condi-
tions in Proposition 2 (see (v)). Epstein and Tanny (1980, Theorem 7) showed why

‘the covariance is of limited usefulness as a measure of interdependence when distri-

butions are not restricted to be normal: the condition cov(Xj, X2) > cov(Y¥1,Y2) is
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equivalent to the condition that, for all welfare functions of the form W(Uy,Us) =
F1(U1) + f3(U2) + aU U, (where a > 0), EW(X1,Xz) > EW(Y;,Y2), and further-
more this is the largest class of welfare functions for which the equivalence holds.
Thus, if one is not willing to restrict attention to welfare functions of this special

form, a larger covariance is not sufficient to guarantee higher expected welfare.

Proposition 3: The tournament axiom is satisfied for the set of symmetric, weakly
complementary welfare functions (and a fortiori for the set of symmetric, strongly

complementary welfare functions).

With two individuals, there are only two possible utility levels for each of them
‘in the tournament and the RIS. The tournament axiom is satisfied because, for a €
(0,1), there is a positive probability under the RIS that the individuals will receive
equal rewards, compared to zero probability under the tournament, and any weakly

complementary welfare function therefore prefers the former scheme.

4. Measures of Interdependence for Multivariate Distributions

4.1 The First Step

A very natural extension of an ETI to n dimensions is a tra,nsforxhation of the
following form; to be called a NETI (where the “N” stands for “n-dimensional”):
given any set ofv utility levels {U*,...,U™}, not all equal, the probability of each of
the n! outcome vectors which are permutations of (U!,...,U") is decreased by d,
while the probability of each of the n outcome vectors (U?,...,U?),...,(U™,...,U")
is increased by (n — 1)!d. A NETI leaves the marginal distributions unchanged but
transfers probability mass from outcomes with some ex post inequality to outcomes
‘with no ex post inequality at all. Call a welfare function perfect correlation loving if

its expected value is never decreased by a NETIL:

Definition: W(Uy, ..., Uy) is perfect correlation loving if and only if, for all {U,...,U"}
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for which it is not the case that U = U2 =...=U",

(n—l.)!zn:W(U‘,...,U‘)z > wU*,...,U). (5)
=1

($1+.08n),
permutations of
(1,...,n)

This definition captures an appea,ling, and very basic, notion of ex post inequality
aversion in n dimensions: the expected value of any perfect correlation loving welfare
function is (weakly) increased by replacing an arbitrary symmetric multivariate dis-
tribution by one which has the same marginals but in which individual utilities are
perfectly correlated (so all the probability mass lies along the grand diagonal). While
-appealing, this notion is,‘however, extremely weak, as is shown by the stringency of

the corresponding stochastic dominance conditions:

Proposition 4: Let the random vectors X = (Xy,...,X,) andY = (Y3,...,Y,) each

have symmetric joint distributions, with identical discrete support {ay,...,apm}Xx++ X

{ai,...,ap} and identical marginals. Then the following statements are equivalent:

(i) P(X1 = aiy,...,Xn = a;,) < P(Y1 = a;,,...,Y, = a;,) for all (41,...,1,) for
which it is not the case that 11 =i, = ... = i,.

(ii) The distribution of (Xy,...,X,) can be derived from that of (Y1,...,Yy) by a
finite sequence of NETI's.

(iii) For all perfect correlaﬁon loving W, EW(X;,...,X,) 2 EW(Y1,...,Yy).

(iv) For all symmetric and perféct correlation lovingW, EW(X;,...,X,) > EW(Y1,...

The stochastic dominance condition (i) for (Xj,...,X,) to be more interde-
pendent than (Y,...,Y;) requires that every outcome vector in which there is not
complete ex post equality have lower probability under X than under Y. This is a
_strong condition even for two dimensions, but it becomes increasingly stringent as
the number of dimensions increases: while the number of outcomes with no ex post
inequality remains unchanged, the number of outcomes with some ex post inequality
rises rapidly. The stringency of the condition is highlighted by the fact that it is

violated if Y represents the distribution of utilities under a symmetric tournament

s Ya).

(pij = % for all ¢,7) and X the distribution under the corresponding RIS. (Given any
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outcome vector in which the utilities are neither all equal nor all distinct, the tourna-
ment assigns it zero probability, while the RIS assigns it strictly positive' probability.)
From Proposition 4, it then follows that the class of symmetric, perfect correlation
loving welfare functions fails to satisfy the tournament axiom. This failure results
because the tournament axiom requires a preference for independent distributions
over negatively correlated ones, whereas the weak condition defining perfect correla-
tion loving functions requires only a preference for distributions with perfect positive

correlation over all others.

The implication is that developing useful rankings of interdependence in n dimen-
sions requires imposing stronger conditions on W than that it be perfect correlation
loving. Equivalently, we need to specify preferences over a larger set of transformations
than the set of NETI’s — over transformations which do not add probability mass
only to outcomes with no inequality and thus do not completely equalize individual

utilities. However, two complications arise.

First, there are many types of marginal-preserving transformations which could
be considered. How many individuals (dimensions) should a transformation affect?
When n = 2, the only possible answer is 2, but when n > 2, we can consider prob-
abilistically equalizing the utilities of any subset of individuals. Also, should the
utility levels whose probabilities are altered by a transformation be the same for all
individua,ls affected, as with ETI’s, or potentially different, as with ETN’s?

Second, specifying preferences over any particular type of transformation implic-
itly involves reckoning the level of inequality in each n-dimensional outcome vector
whose probability is altered by the transformation and then assigning weights to the
different inequé,lity levels. When n = 2, there is scope for choice in the assignment
-of weights, but the measure of inequality itself is straightforward: |U; — Uz|. When
n > 2, however, there is no unambiguously best measure of inequality for realized

profiles of utilities (Uy,...,U,).1

As a consequence of these complications, there is considerably more scope in the

14 Because NETI’s add probability mass only to outcomes with all utilities equal, a
preference for NETI’s does not rest on the adoption of any particular cardinal measure

of inequality for realized profiles of utilities.
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n-dimensional than in the two-dimensional case for a diversity of views as to which
typés of marginal-preserving transformations increase interdependence. Correspond-
ingly, there is considerably broader scope for judgments about which non-separability
properties of the welfare function incorporate a preference for greater interdependence
in multivariate distributions.

In Sections 4.2, 4.3, and 4.4, we propose three classes of non-additively-separable
-welfare functions, each one a subset of the set of perfect correlation loving welfare
~ functions. In each case, we characterize the stochastic dominance conditions for mul-
tivariate distributions which are equivalent to preference by every member of the
specified class. The appeal of these classes as representations of preferences for inter-
dependence has three sources: 1) members of each class have been used in the choice
theory and welfare economics literatures; 2) each class is narrow enough to satisfy the
tournament axiom; and 3) each of the corresponding stochastic dominance conditions
extends in a natural way one of the concepts of greater interdependence analyzed in

Section 3 in the bivariate case.

4.2 Stochastic Dominance Condition A
" One appealing approach to the multidimensional problem is to assume that the
interdependence among n random utilities can be assessed by considering each pair of
utilities in turn and assessing the interdependence of that pair, independently of the
correlation of those utilities with the others. This assumption is captured by an ex post
welfare function whose expectation depends only on the pairwise joint distributions
~of utilities , or equivalently, which is pairwise separable across individuals :
n n _
w=3 S ViU, (6)
i=1 j=1
With this assumption, the n-dimensional problem is reduced to a set of two-dimensional
problems. Let us define Class A as the set of ex post welfare functions of the form
(6), where for each i # j, V¥ is weakly complementary.
To interpret Class A in terms of preferences over marginal-preserving transfor-
mations, define a GETI (where the “G” stands for “generalized”) as follows: given

any configuration of utilities for individuals other than i and j, denoted U-i—j, and
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given any UL < UH, the probabilities of (U, UH;U_;-;) and (UL,UL; U_i—;) are
increased by d, while the probabilities of (UH,UL;U_;_;) and (UL, U¥;U_;_;) are
decreased by d. GETI’s reduce ex post inequality between a pair of utilities, for any
fixed realizations of the other n — 2 utilities. The expected value of any welfare func-
‘tion in Class A is (weakly) increased by any GETI, and furthermore the increase is
independent of U_;_;.

Further perspective on Class A is provided by the fact that any perfect correlation
loving W that is symmetric and pairwise separable is a symmetric member of Class
AW =31, 2(U)+ Xisy Xieiv1 V(Ui Uj), where V is symmetric and weakly
complementary).

The stochastic dominance condition equivalent to preference by all welfare func-
tions in Class A is simply the stochastic dominance condition (i) in Proposition 1,

applied to each of the pairwise joint distributions.

Proposition 5: Let the random vectors X = (X,,...,X,) andY = (Y1,...,Y,) each
have symmetric joint distributions, with identical discrete support {ay,...,apm}X- X

{a1,...,an} and identical marginals. Then the following statements are equivalent:

(i) (SDA) P(Xi=ar,Xj=a) < PY;=ar,Yj=a) Vi, je{l,...,n}i#]
and Vk,le{1,....M},k#1

(ii) For all W in Class A, i.e. representable as > ;. , E?=1 V¥4 (U;,U,), where for all
i # j V¥ is weakly complementary, EW(Xy,...,X,) > EW(Y;,...,Y,).
(iii) For all non-decreasing W in Class A, EW(Xy,...,X,) > EW(Y1,...,Yy).

The stochastic dominance condition (SDA) in Proposition 5 is applied to prove

Proposition 6: The tournament axiom is satisfied for the set of symmetric welfare

functions in Class A.

The class of symmetric, perfect correlation loving welfare functions fails to sat-
isfy the tournament axiom (Section 4.1), but when pairwise separability is imposed

(reducing the class to the symmetric functions in Class A), the tournament axiom
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is satisfied (Proposition 6). With pairwise separability imposed, the stochastic dom-
inance condition, (SDA), requires only that every unequal utility pair have lower
_probability under one distribution than under the other; this is significantly weaker
than the requirement in the absence of pairwise separability ((i) in Proposition 4),
that the probability ranking hold for every utility vector displaying some degree of
inequality.!®

We could consider the subset of Class A in which each V¥ is strongly com-
plementary: the correspondihg stochastic dominance conditions would be those in
Proposition 2, applied to each of the pairwise joint distributions. Our reason for fo-
cusing on Class A and (SDA) is to stress that, when pairwise separability is adopted,
only weak complementarity is needed for the tournament axiom to be satisfied.

The assumption of pairwise separability derives additional appeal from the fact

that the Gini coefficient, expressed in terms of utilities, is based on a welfare function

of this form (see Sen (1973, p. 31) and Sheshinski (1972)):

1 n n ) .
=3 me(Ui, Uj))=U(1-G)
=1 j=1
where
1 n n
G = oot 22 21U = Uil

=1 j=1

In this formula, U represents average utility and G the Gini coefficient. The function
min(U;, U;) is in fact strongly complementary. As Sen (1973), Yitzhaki (1979), and
Hey and Lambert (1980) have noted, n?UG can be viewed as the aggregate level
(over all pairs of individuals) of “relative deprivation”, where the relative deprivation
of individual ¢ with respect to j is max(0,U; — U;). By generalizing the definition
of relative deprivation, and summing over all pairs, one can derive other measures of

total welfare that belong to Class A.

4.3 Stochastic Dominance Condition B

15 It can be shown by example that the tournament axiom is not satisfied by the
class of symmetric welfare functions whose expectation is (weakly) increased by any

GETI, but which are not necessarily pairwise separable.
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An alternative approach to the multidimensional problem is to confine attention

to welfare functions that can be represented as

n
W=W0_ fiU)),
i=1
for some set {f?,..., f*} of non-decreasing functions and some convex function W.
The expression Y i, f{(U;) is a one-dimensional sufficient statistic for the vector of

utilities. Call the set of such welfare functions Class B.

To interpret Class B in terms of preferences over marginal-preserving transfor-
mations, call a GETN a transformation which, given any U_;—;, Uf < UH, and
UE < UH, increases by d the probabilities of (UH, UH;U_;_;) and (UE,UF; U—i—;)
and decreases by d the probabilities of (UH,U};U_i—;) and (UF,Uf;U-i-;). For
any U_;- j» GETN’s increase the interdependence between U; and U ; in the same sense
that, in the bivariate case, ETN’s increase interdependence. The expected value of
any welfare function in Class B is (weakly) increased by any GETN: by the mono-
tonicity of the f and the additive separability of 3, f'(U;), any GETN produces a,
mean-preserving spread in the distribution of ¥, f(U;), and convexity of W guaran-

-tees that this spread (weakly) increases expected welfare. Furthermore, the increase
in expected welfare varies with U_;_; only if Dokt if k(U) varies.

In a one-period porffolio problem in which the returns U; on different assets are
additive, a risk averse decision-maker will have an objective function of this form,
except that W will be concave instead of convex. Such an objective function incorpo-
rates a preference for negative, rather than positive, interdependence of the random
variables U;; any inequalities derived for Class B will be reversed if W is concave. A
welfare function in Class B could provide a natural representation of the preferences
of a union facing uncertainty and concerned about the ex post equality of its mem-
bers. Most models of union behavior (see the survey by Oswald (1985)) assume that
the objective function is the sum of members’ utilities or the expected utility of a
representative member; being additively separable, these functions are sensitive only
to the riskiness and not to the correlation of workers’ utilities. By contrast, a welfare
function that is a convex transform of the sum of members’ utilities, and hence in

Class B, favors joint distributions that display positive interdependence. Further-
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N
more, this form of non-separable function is convenient for analyzing the effects on
union behavior of a preference for ex post equality, since its indifference curves are
identical to those of the utilitarian objective function: only under uncertainty do the

two functions generate different behavioral predictions or prescriptions.

A welfare function in Class B arises naturally if we confine attention to distri-
butions in which each random utility has an identical two-point support {UL,U Hy,

Then if the welfare function is symmetric, it can be expressed as

n
W=W0_ Iy=umy)
i=1
and convexity of W follows as ldng as GETT’s are assumed to increase expected welfare.
This case would arise in the union setting if wages and unemployment benefit were
uniform across workers and if all workers not laid off worked a common number of
hours. It would arise for a group of employees currently receiving the same salary and
all facing the same possible promotion. It would arise with random taxation when it
“Wwas optimal to use no more than two tax rates for identical individuals.!® Finally, and.
more generally, a symmetric ob_fective function would take this form in any setting
where a classification of each component into two categories was significantly easier
than a finer classification, and where the categories naturally took the same form for

each component.

The stochastic dominance condition equivalent to preference by all welfare func-
tions in Class B is the natural n-dimensional extension of condition (iv) in Proposition

2:

Proposition 7: Let the random vectors X = (X;,...,X,)andY = (Y1,...,Y,) have
identical discrete support and identical marginal distributions. Then the following

statements are equivalent:

(i) (SDB) The distribution of .1, f'(¥;) second-order stochastically dominates
the distribution of Y5, f'(X;), for all non-decreasing functions {f*,..., f"}.

16 In Stiglitz’s (1982) model, an optimal random tax takes only two levels when the

tax is determined before the labor supply decision.
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(ii) For all W in Class B, i.e. representable as W(E:;l fi(U;)), where W is convex
and f! is non-decreasing for all i, EW(Xi,...,Xn) = EW(Yy,...,Ys).
(iii) For all non-decreasing W in Class B, EW(X1,...,Xs) > EW(Y1,...,Y5).

Furthermore, statements (i), (ii), and (iii) remain equivalent if in each case we require

Fi() = () for all i # j.

For welfare functions in Class B, the multivariate problem reduces to the com-
parison of the riskiness of the univariate distributions of 3, fi(X;) and =, f*(¥3), for
all non-decreasiﬁg functions {f?,..., f*}. When the sufficient statistic for the vector
of utilities naturally assumes a particular form, Y, fi(U;), as in the examples dis-
cussed above, so the welfare function is known up to the form of W, the equivalent
stochastic dominance condition is the requirement (weaker than (SDB)) of second-
order stochastic dominance of the distribution of Y0, fi(U;). We work with the
‘stronger condition (SDB) in what follows; this makes our results more powerful and

applicable to a wider class of welfare functions (all those in Class B).

Proposition 8: The tournament axiom is satisfied for the set of symmetric welfare

functions in Class B.

Proposition 8 is easily proved, because symmetric functions in Class B take
the form ’.1/17'(2z f(U;)), for W convex and f non-decreasing, and the corresponding
stochastic dominance condition is (by Proposition 7) second-order stochastic domi-
nance of y_; f(¥;) over 3, f(X;) for all non-decreasing f. With f the same for all
i, >; f(U;) is deterministic under any tournament but variable under the associated

RIS, so the dominance condition is clearly satisfied for any tournament /RIS pair.

4.4 Stochastic Dominance Condition C

Proposition 2 shows that, when n = 2 and the distributions of X and Y have

" identical marginals, the conditions
P(X: >z Vie{l,...,n})>P(Y; >z Vie{l,...,n}) Vz=(z1,...,2:)Ta)
P(Xi<z Vie{l,...,n})> P(Y; <z Vie{l,...,n}) Vz=(21,...,2)(7b)
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are equiVale_nt to each other and to the condition (SDB) that 3, f#(¥;) second-order
stochastically dominates Y, f(X;) for all non-decreasing {f!,...,f"}. Givenn =2
and identical marginals, the following two conditions are also equivalent to (SDB) and

to each other:17?

.- - - -
E H fiX)| >E H FiY)|, for all non-negative-valued, non-decreasing {f,..., f*}
i=1 d Li=1 .
' (82)
Fa T
> E H Fi(¥3)| , for all non-negative-valued, non-increasing {f*,..., f*}
i=1 .

(8b)
When n > 2, however, (7a) and (7b) are no longer equivalent, nor are (8a) and (8b)

E|[]Fxs)

Li=1

-

equivalent, even for identical marginals (as is easily checked). Moreover, as is proved
in Section 4.5, when n > 2, (SDB) is strictly stronger than (7a) and (7b) taken
together, and also strictly stronger than (8a) and (8b) together. Still, (7a) and (7b)
capture an intuitively appealing notion of greater interdependence: for every outcome
vector, the probability of all individuals doing at least as well and the probability of
all doing at least as badly are higher under one distribution than under the other. We
now demonstrate that in n > 2 dimensions, (7a) and (7b) together are equivalent to
(8a) and (8b) together, and we construct a class of welfare functions for which these

are the corresponding stochastic dominance conditions.

Assume the random vectors X and Y have identical discrete support. Define C+
as the set of welfare functions of the form

1 fU; 22z Wi
W=(Uy,...,Uys) ={

0 otherwise
for some z = (21,...,2y,) in the support, and define C'~ as the set of welfare functions

of the form .
: 1 if Ui S Z; V2
Wz(Ul,...,Un)={

L0 otherwise
for some z. Given any z, observe that for the corresponding W?* in C'*,

EW*(X1,...,Xa) = EW*(V1,...,Y)=P(X; >z Vi)—PYi>z ¥i),

17 The proof of this result is an easy extension of the proof of Proposition 2. The
restriction in (8a) and (8b) to non-negative-valued functions f* is inessential for the

result for n = 2 but essential for Proposition 9 below.
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while for the corresponding W* in C~,
EW*(X1,...,Xp)— EW?*(Y1,...,Yn)=P(X; <z Vi)—PY; <z Vi)

Now define C~ as the set of welfare functions of the form
n—k if U; > z; for exactly n — k + 1 distinct ¢ values

W*(Uy,...,Un) = and U; < z; otherwise, k =1,...,n
0 ifU; <z Vi
for some z, and define C* as the set of welfare functions of the form
n—k if U; < z; for exactly n — k + 1 distinct ¢ values
W*(Uy,...,Up) = and U; > z; otherwise, k =1,.. ,nb
0 if U; > 2; Vi

for some z.

Lemma 1: Let the random vectors X = (X1,...,Xn) and Y = (Y3,...,Ys) have
identical discrete support and identical marginal distributions. Givenany z = (21,...,%n)

in the support, for the corresponding W* in C~,

EW*(Xy1,...,Xn)— EW*(RQ,...,Y3)=P(X; <z Vi)—PY; <z Vi),
and for the corresponding W* in Ct,

EW*(Xy,...,Xn) = EW*(Y1,...,.Y,)=P(X; 2z Vi)—P(Y; >z Vi)

Classes Ct, C—, C—, and Ct each incorporate a preference for greater inter-
dependence in the sense that the expected value of a welfare function belonging to
any one of them is (weakly) increased by any GETN. Elements of Ct and C~ are
non-decreasing, while elements of C~ and €% are non-increasing. The classes also
differ in terms of how the increase in expected value from a GETN varies with the

utility levels of the individuals not affected by the transformation.!®

18 More formally, consider the discrete analogue of the k*-order derivative of W
with respect to k distinct arguments. If for ¥ = 2 and for every pair of arguments,
this expresszon is non-negative everywhere, W prefers every GETN. This is the case
for all Win C*, C—, C~, or C*. The sign of this expression for k¥ > 2 determines
how the effect of a GETN varies with the utilities of the individuals not affected. For
W in C* or C, this expression is non-negative everywhere, for all £ > 2. On the
other hand, for W in C~ or C~, this expression is non-positive everywhere if k > 2

and odd, and is non-negative everywhere if k£ > 2 and even.
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Define Class C as the set of linear combinations, with non-negative weights, of
elements of Ct, C~, C~, and Ct. The expected value of any welfare function in

Class C is (weakly) increased by any GETN.

Pi'oposition 9: Let the random vectors X = (X1,...,Xpn)andY = (Yi,...,Y,) have
identical discrete support and identical marginal distributions. Then the following
statements are equivalent:

() (SDC) P(X;> =z Vi) 2 P(Y; > z Vi) and P(X; < % Vi) > P(Y; <
zi Vi) V(21,...,2p) in the support of X and Y.

Gi) E[I~, fi(X;)] > E[[I, fi(Y})), for all sets of non-negative-valued functions
{A,....f "} such that either all f? are non-decreasing or all f* are non-increasing.
(ifi) For all W in Class C, EW(Xy,..., X,) > EW(Yy,...,Ys).

(iv) For all non-decreasing W in Class C, EW(X,,...,X,) 2 EW(Yy,...,Y,).

The proof of Proposition 9 shows that any multiplicatively separable function

W(Uy,...,Us) = [Ii, f'(U;) belongs to Class C, if {f!,..., f*} are non-negative-

® The multiplicatively

valued and either all non-decreasing or all non-increasing.!
separable function % | =, where v € (0,1] and where U; represents consump-
tion in period ¢, was used as an intertemporal utility function by Litzenberger and

Ronn (1981) to study hedging behavior in a multi-period investment setting.

The Rawlsian social welfare function
R(U1, ieey Un) = min(Ul, ‘oo Un)

also belongs to Class C. If each U; assumes values in {a;,...,ap}, where apr > ... >

ay 2 ap = 0, R can be expressed as

M
R= Z(am - am—l)I{U.-Zam Vi}s

m=1

19 Since [T, fi(U;) = exp{¥;In fi(U;)} = exp{— Y, ln('ff(_luﬁ)}’ and exp(z) and
exp(—z) are both convex functions, any multiplicatively separable function satisfying

the above assumptions on {f!} also belongs to Class B.
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a linear combination with non-negative weights of elements of C*. Any non-negative-
valued, monotonically increasing transformation of R has a similar representation,

differing only in the weights, and so also belongs to Class C.

Proposition 10: The tournament axiom is satisfied for the set of symmetric welfare

functions in Class C.

The proof of Proposition 10, unlike that of Proposition 8, is quite difficult. With
Class B, restricting attention to symmetric functions weakened the corresponding
dominance condition from (SDB) to second-order stochastic dominance of Y, f(¥5)
over Y, f(X;) for all non-decreasing f, and the latter condition was easily checked
for every tournament /RIS pair. With Class C, by contrast, imposition of symmetry
on the welfare function does not produce an analogous simplification. Given a sym-
metric welfare function, we can confine attention to distributions which have been
“symmetrized” by the averaging of probability mass over all outcome vectors which
are permutations of one another. However, for symmetric distributions, the domi-
nance condition equivalent to preference by all symmetric elements of Class C can
be shown to be (SDC) itself, not a weaker condition. Verifying (SDC) for the sym-
metrized distributions corresponding to every tournament /RIS pair requires a lengthy

argument.

4.5 Relationships among the Stochastic Dominance Conditions and among
the Classes of Welfare Functions

In the preceding subsections, we have proposed three stochastic dominance rank-
ings, (SDA), (SDB), and (SDC), each representing a concept of greater interdepen-
dence in multivariate distributions. Each ranking generalizes one of the partial order-
ings which we characterized in Section 3 for the bivariate case. When applied only to

the bivariate case, the three conditions are related according to the following diagram:
For n = 2: ' (SDA) => (SDB) <= (SDC)

(For n = 2, (SDA) is (i) of Proposition 1, (SDB) is (iv) of Proposition 2, and (SDC)
‘is (i) (or (ii)) of Proposition 2.)
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Proposition 11: When n can assume any value greater than or equal to 2, (SDB)
= (SDC), but no other implication holds between (SDA), (SDB), and (SDC).

Remark 1: We noted in Section 4.2 that for the subset of Class A in which W =
Yoy E;'l=1 Vii(U;,U;) with V¥ strongly complementary for ¢ # j, the corresponding
stochastic dominance conditions are those in Proposition 2, applied to each of the

pairwise joint distributions. It is easy to show that these conditions are implied by

each of (SDA), (SDB), and (SDC), but do not imply any of them.

Remark 2: Despite the fact that (SDB) == (SDC), satisfaction of the tournament
axiom by the symmetric welfare functions in Class C does not follow trivially from
satisfaction of the axiom by the symmetric functions in Class B. The reason is that, as
Proposition 7 shows, the stochastic dominance condition equivalent to preference by
all symmetric elements of Class B is second-order stochastic dominance of > f(YD)
over ). f(X;) for all non-decreasing functions f, and this condition is weaker than

(SDB). Proposition 11 does not show that (SDC) is implied by this weaker condition.

Proposition 11 shows that, comparing (SDA) on the one hand with (SDB) and
(SDC) on the other, these conditions are strong and weak in different respects. (SDA)
is weak in that it restricts attention to the pairwise joint distributions but strong in
the conditions it imposes on these distributions, that they be related by a sequence
of transformations of a very narrow form (ETI’s). (SDB) and (SDC) are weak in
that they are satisfied by distributions related by a sequence of transformations of a
relatively broad form (GETN’s, not just GETI’s), but they are strong in not allowing

attention to be restricted to the pairwise joint distributions.

Proposition 11 also makes clear that there is not a unique extension to n di-
mensions of the bivariate stochastic dominance conditions in Proposition 2. Both
(SDB) and (SDC) extend these conditions in extremely natural ways, but the former

condition is strictly stronger than the latter.

Proposition 12: None of the three classes of welfare functions A, B, or C is a subset

of either of the others.
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4.6 Relationships of the Stochastic Dominance Conditions with Affiliation

and Association

The concepts of affiliation dnd association of random variables have been exten-
sively studied in the statistics literature and fruitfully applied in economic analyses of
uncertainty and information (see, for example, Milgrom (1981), Milgrom and Weber
(1982), and Jewitt (1987)). These are both concepts of positive interdependence, in
contrast to our conditions (SDA), (SDB), and (SDC), which are partial orderings rep-
resenting greater interdependence in one distribution than another. We can examine
the relationships among these different notions by letting (¥7,...,Y,) be indepen-
dent, letting (X;,...,X,) have identical marginals to (¥3,...,Ys), and letting the

joint distribution of (Xy,...,X,) vary.

We take the following definitions from Milgrom and Weber (1982). Given z =

(z1,...,2,) and 2’ = (z},...,2), let z V z' denote (max(z1,2}),...,max(zs,2z,))

and z A ' denote (min(z;,z)),...,min(z,, z,)).

Definition: A subset A of R" is increasing if its indicator function 14 is non-

decreasing.

Definition: A subset S of R" is a sublattice if £V ¢’ and z A 2’ are in S whenever z

and z' are.

Definition: The random variables (Xi,...,Xn) are associated if for all increasing
sets A and B, P(X € (AN B)) > P(X € AP(X € B), or equivalently, P(X €
(A° N B)) > P(X € A°)P(X € B€), where A® denotes the complement of A in

the support of the random variables.

Definition: The random variables (X1,. .., X,,) are affiliated if for all increasing sets
" A and B and every sublattice §, P(X € (ANB) | X € S)>P(Xe€A|XeS)P(Xe

B | X € §), i.e. if the variables are associated conditional on any sublattice.

Result (Milgrom and Weber (1982, Theorem 24)): Let p(z1,...,%s) be the proba- |

bility mass function of the discrete random variables (X1,...,Xs). (X1,...,X5s) are

28



affiliated if and only if

| p(zVa')p(z Az') > p(z)p(z')  V(z,z') in the support. (9)

Proposition 13: Assume that X = (X;,...,X,) andY = (Y1,...,Yy) have iden-
tical discrete support and identical marginal distributions, and that (Y1,...,Yy) are

independent.
(i) If (Xi1,...,X,) are associated (or affiliated), then X and Y satisfy (SDC).
(i) Forn =2, if (X,,X,) are associated (or affiliated), then X andY satisfy (SDB).
(iii) Affiliation (or association) of (X1,...,X,) does not imply that X and Y satisfy
(SDA).
(iv) Association (or affiliation) of (Xi,...,X,) is not implied by X and Y satisfy
(SDA), nor by X andY satisfy (SDB), nor by X and Y satisfy (SDC).

Proposition 13 shows that, for multivariate distributions, affiliation and associ-
ation capture different, but neither stronger nor weaker, notions of interdependence
than (SDA) does (taking the benchmark distribution as an independent one). On the
other hand, affiliation and association are strictly stronger criteria than (SDC) and,
forn = 2, than (SDB) (with an independent distribution as benchmark). Whether
association or affiliation of X implies that X and Y satisfy (SDB).for n>2isan |

open question.

5. Directions for Future Research

i) The tournament axiom is used in this paper as a standard with which to test
whether a given class of objective functions incorporates a sufficiently strong aversion
to negative interdependence. We have shown that the axiom is satisfied by the three
classes of ex post welfare functions we propose. One could also seek to characterize

the largest set of objective functions for which the axiom is satisfied.

ii) Our stochastic dominance theorems all take the following form: the distribu-
tion of X dominates that of Y according to a specified stochastic dominance condition

if and only if EW(X) > EW(Y) for all objective functions W in a specified class.
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These theorems can be interpreted as axiomatizations of the stochastic dominance
conditions in terms of properties of objective functions. One could also ask, for each
théorem, whether the specified class of objective functions is the maximal class for
which the theorem holds. If it is, then a theorem of the following form is true: W
is in a specified class if and only if EW(X) > EW(Y) for all X and Y such that X
dominates Y according to a specified stochastic dominance condition. Theorems of
the latter type can be viewed as axiomatizations of the classes of objective functions

in terms of the stochastic dominance conditions.

For the bivariate case, it is easy to show that the classes of weakly complemen-
tary and strongly compiementa,ry welfare functions are maximal for the dominance
conditions in Propositions 1 and 2, respectively. It is similarly easy to show in n
dimensions that the class of perfect correlation loving welfare functions is maximal
for the dominance condition in Proposition 4. Moreover, Class A can be shown to be

maximal for the condition (SDA).?0

Class B is not maximal for the condition (SDB). To see this, define the larger
class, B , as the set of non-negative linear combinations of elements of B, and observe
that it follows easily from Proposition 7 that X and Y satisfy (SDB) if and only if
EW(X) > EW(Y) for all W in Class B.

~ Class C is not maximal for the condition (SDC). Define Class C to consist of all
welfare functions expressible as an element of C plus an arbitrary constant. Since
all welfare functions in C*, C~, €~, and C* (from whch Class C is cdnstructed)
are non-negative-valued, an element of € corresponding to a negative constant is
not necessarily in C. Yet subtraction of a constant from the welfare function does not
_change the ranking of distributions, so (SDC) is equivalent to preference by all welfare

functions in Class C.

Are Classes B and € maximal for the conditions (SDB) and (SDC), respectively?
For n = 2, (SDB) and (SD‘C) reduce to conditions (iv) and (i) in Proposition 2, for

20 The proof of this result closely parallels the demonstration in Brandenburger
(1985) that W is additively separable and monotonically increasing if and only if -
EW(X) > EW(Y) for all X and Y such that each marginal distribution of X first-

order stochastically dominates the corresponding marginal distribution of Y.
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which the class of strongly complementary welfare functions is maximal. It can be
shown that for n = 2, Classes B and € are both equivalent to the class of strongly
complementary welfare functions, so in the bivariate case B and C are maximal. In
the multivariate case, we know from Proposition 11 that (SDB) is strictly stronger
than (SDC), and it can be shown that B contains €. (By contrast, Proposition 12
‘showed that B does not contain C.) However, whether in the multivariate case B and

€ are maximal for (SDB) and (SDC), respectively, remains an open question.

iii) Our stochastic dominance theorems provide guidance in the development of
indices of interdependence in multivariate distributions. As Cowell (1985) notes, an
axiomatic development of summary indices for distributions requires a key economic
assumption, in addition to mathematical and structural assumptions. With indices
of inequality, for example, the key economic assumption is the Pigou-Dalton principle
of transfers. With indices of interdependence, the key economic assumption will
concern the class of marginal-preserving elementary transformations which increase
interdependence. As we have seen, any such assumption is equivalent to an assumption
about the particular type of non-separability displayed by the objective function in

the stochastic dominance approach.

One might seek to develop an index of interdependence by finding a scalar mea-
sure of the “difference” or “distance” between an arbitrary symmetric distribution, F,
and a distribution, G, which has the same marginals but in which the random variables
are perfectly correlated. Such an approach would be analogous to that of Atkinson

-(1970), who developed his index of inequality by comparing an arbitrary distribution
with one with the same mean but income equally distributed. Given a particular
concave welfare functioﬁ, Atkinson based his index on the “certainty equivalents” of
the two distributions. In the current setting, given a particular perfect correlation.
loving, non-decreasing objective function W, one could determine how far the support
of every component of G must be translated downwards (retaining perfect correlation
and the shape of the marginals) to reduce the expectation of W to its value under F;
this translation, Ap g, could be used as a scalar measure of interdependence in F'. Or
one could construct an index based on the “certainty equivalents” of F' and G, that is,

the values zr and zg such that W(zF,...,zF) equals expected welfare under F' and
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W(zg,...,2g) equals expected welfare under G. Such indices would clearly depend
on the particular perfect correlation loving objective function chosen. The stochastic
dominance theorems in this paper could be useful in guiding the selection, because
they reveal to what features of distributions different subsets of perfect correlation

loving objective functions are sensitive.
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Appendix

‘Proof of Proposition 1: (i) = (ii): We will show that (i) = (ii) and (ii) = (i), and
that (i) = (iii) = (iv) = (ii).

(i) = (ii): We identify a sequence of (3) ETDs, each corresponding to a differ-
ent (k,l) pair (with k¥ < [), that converts the distribution of (¥;,Y2) into that of
(X1,X3). For each (k,l), the ETI increases the probabilities of (ar,ax) and (ar, ar)
by P(Yi = ax,Y2 = a;) — P(X; = ax, X2 = q;) 2 0 and reduces the probabilities of
(ar,ar) and (ai, ax) by the same amount. Given the symmetry of the distributions,
it is clear that this sequence converts the probabilities of all of the unequal outcome
pairs under the Y distribution into those under the X distribution. That the proba-
bilities of all of the equal outcome pairs are so converted follows from the assumption
of identical marginals for (X;,X:) and (¥;,Y:) and the fact that ETI’s leave the

marginals unchanged.
(ii) = (i) follows immediately from the definition of an ETIL.

(ii) = (iii) follows from the fact that ETI’s weakly increase the expected value
of all weakly complementary W, by definition.

(iii) = (iv) is obvious.

(iv) = (ii): Define a “negative ETI” as an ETI for which d < 0. Given symmetry
and identity of the marginals, any distribution of (Y7,Y2) can be converted into that
of (X1, X,) by a sequence of (}) transformations, each an ETI or a negative ETI, and
each corresponding to a different (k,!) pair (with k < [): this is a simple extension
of the argument proving (i) = (ii). Now suppose (ii) does not hold. Then in the
sequence just described, there must be at least one negative ETI. Suppose that a
negative ETI corresponds to the particular pair (k,!) (with ¥ < I). Now consider
the non-decreasing and weakly complementary function W*' defined in Figure 1. (If
ar = ay or a; = ap, W* is simply the function depicted, truncated in the obvious
fashion.) W*! has been chosen so that the weak inequality (2) in the definition of
weak complementarity is an equality for all (UL, UH) pairs except UX = ai, U H -
a;: since the negative ETI corresponding to (k,1) reduces the expectation of W*',

and since all other transformations in the sequence leave the expectation unchanged,
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EWH(X,,X;) < EW*(Y;,Y2). Thus (iv) does not hold. Q.E.D.

Remark Al: Dropping the reqirement that W be non-decreasing makes the proof
much more transparent. To show (iii) = (i), for any pair (k,!) with ¥ < let WH be

the weakly complementary function

—_ {0 if (U1,Uz) € {(ar, ar), (a1, ax)}

1 otherwise

Then  EWY(Xy,X;)— EWH (11, Y3)
=P(Y, = a;, Y2 = a;) + P(Y1 = a;,Y2 = ag)
- P(X; = ar,Xe =a1) — P(X1 = a1, X2 = az)
>0 by (iii).
(i) follows, by the symmetry of the joint distributions. It is trivial to verify that for
W , the weak inequality (2) is an equality for all (U L UH) pairs except (ax, ar).

Proof of Proposition 2: The text cites references in which the equivalence of (i),

“(ii), (iii), (vi), and (vii) is proved. We will prove that (iv) and (v) are equivalent to

the other conditions by showing that (iii) = (iv) and (iv) = (i), and that (vi) = (v)
and (v) = (i). |

(iii) = (iv): For all non-decreasing functions f! and f2, each ETN produces a
mean-preserving spread of the distribution of f1(U;)+ f2(Uz). Therefore (iv) follows
from the results of Rothschild and Stiglitz (1970).

(iv) =>V(i): For any (k,1), let f}(U1) = Iy, >4} and f2(U2) = Iy, 54}, 80
fY(Uy) + f*(U,) can assume the three values {0,1,2}. Using the definition (4) of

second-order stochastic dominance, (iv) implies

P(Iiyv,>a) + Ivaza} = 2) € P(Ixi 201} + L{x0201) = 2)s
which implies
P(Y1 > a,Y2 > a1) < P(Xy 2 ax, X2 > ar).

(vi) = (v): Let W = f}(U;)f*(U;). I f! and f? are non-decreasing functions,
W is strongly complementary. (vi) implies E[f*(X1)f?(X2)] = E[f}(Y1)f?(Y2)], and
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since the distributions of (X1, X>) and (¥7,Y2) have identical marginals, we have
E[f*(X1)f*(X2)] - [Ef' (X)IES(X2)] 2 E[f* (V)2 (%)] - [EF (EF(T)]

(v) = (1) For any (k,1), let f1(U1) = Iy, »4,} and f2(Uz) = I{U,ga,}- Given
the identity of the marginals of X and Y, (v) implies P(X; > ax, X2 > a1) =2 P(Y1 2
ar,Ys > ap). Q.E.D.

Proof of Proposition 3: The set of 2 x 2 bistochastic matrices is a one-parameter

o l—-o
l—« o

for o € [0,1]. Welfare under any tournament with utility prizes ¢; and ¢ is deter-

family:

ministic and equals W(#;,t;). Expected welfare under the RIS corresponding to a

particular a is

a1 = Q)[W(t1, 1) + Wi(tz,t2)] + (o + (1 — o) )W(t1, t2)
> a(l — a)2W(ty, t2)] + (o + (1 — &)*)W(t1, t2)
= W(tlatZ)

using symmetry and weak complementarity of W. QED

Proof of Proposition 4: The proof that (i), (ii), and (iii) are equivalent is a straight-
forward generalization of the argument for equivalence of (i), (ii), and (iii) in Propo-
sition 1 (usihg the proof that (iii) = (i) given in Remark Al). (iii) = (iv) is obvious,
and (iv) = (i) holds because the proof that (iii) = (i) uses a symmetric W. Q.E.D.

Proof of Proposition 5: (i) = (ii): For W in Class A,

EW(Uy,...,Un) = i Zn: EV(Ui, Uy),

i=1 j=1
where the expectation in each term in the sum is taken only with respect to the
pairwise joint distribution of U; and U;. For terms with ¢ = j, EVi(X;, X;) =
EVi(Y;,Y;), since by assumption X and Y have identical marginals. For ¢ # j,
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(i) implies, given weak complementarity of Vi and Proposition 1, EViJ (Xi,X;) 2
EVH(Y, Y;). Suniming over all (¢, j) pairs:

EW(Xa,....Xa) = 3 3" BVI(X, X;) > S S EVIY,Y) = EWE, .., Vo)

i=1 j=1 i=1 j=1

(if) = (iii) is obvious.

(iii) = (i): Suppose that (i) does not hold, so there exist 7,7 with 1 # j and &, !
with k # [ such that P(X; = a3, X; = ar) > P(Y; = ax,Y; = a;). By Proposition
1, it follows that there exists a non-decreasmg and weakly complementary V¥ such
‘that EVi(X;, X;) < EVi(Y;,Y;). Let W(U,...,Us) = Vi(U;,U;). Then W is
non-decreasing and in Class A, and EW(X], ... y Xn) < EW(Y3,...,Y,), so (iii) does
not hold. Q.E.D.

Proof of Proposition 6: A tournament and its associated RIS do not in general
yield joint distributions of utilities that are symmetric with respect to individuals.
Nevertheless, since W is symmetric, expected social welfare is not affected by redis-
tributing probability among outcéme vectors which are permutations of one another,
so as to make the joint distributions symmetric. This is accomplished by assigning
to an outcome the average of the probabilities, under the original distribution, of
all permutations of that oﬁtcome. Given a tournament and its associated RIS, let
the distribution of ¥ be the “symmetrized” joint distribution of utilities under the
tournament and the distribution of X the “symmetrized” joint distribution under the
RIS (where the RIS is constructed from the tournament before either distribution is
symmetrized). For both X and Y, symmetry implies that the probability that agent
¢t wins prize k must equal 1 for all agents and for all prizes. Thus X and Y have
‘identical marginals. We will show that, for all tournaments, the distribution of X
dominates that of ¥ in the sense of condition (SDA) ((i) of Proposition 5). It will
then follow from Proposition 5 that the tournament axiom is satisfied for the set of
symmetric welfare functions in Class A.

Let the prizes awarded by the given tournament be (t1,...,ts). For both X aﬁd
Y, symmetry implies that the pairwise joint distributions are the same for all pairs

(¢,7) of individuals. The pairwise joint distributions derived from the symmetrized
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tournament assign zero probability to agents’ ¢ and j receiving the same prize and

make each of the n(n — 1) unequal prize pairs equally likely. Thus

P(Y; =t,Y; =) = Vi,j €{l,...,n},i#34, Vki1e{l,...,nhk#I

1
A(n—1)
In the symmetrized distribution under the RIS, the probability that agent ¢ receives
tr and agent j receives t;, k # I, equals the sum, over all ordered pairs (r, s) of agents,

-of the probability that r gets ¢ and s gets #; in the original RIS, divided by n(n —1),
the number of ordered pairs (r,s). Thus for all ¢ # j and k # I,

P(Xi=t,Xj=1) = Zzprkpsl
n(n r—-1 —
s#r
Zprk(l - Pri) smceZp,,z-l
s=1
)(1 Zprkprl) smceZprk =1
<1 PY;, =t t1)
—n‘(n—l) = = k) =0

so (SDA) is satisfied. Q.E.D.

Proof of Proposition 7: Since (X;,...,X,)and (Y3,...,Y,) have identical marginals,
E(XL, Fi(X) = E(Ti, fi(Y?)), for all {f1,..., f*}. The equivalence of (i), (ii),
and (iii), both with and without the restriction to identical functions f*, follows from
the results of Hadar and Russell (1969) and Rothschild and Stiglitz (1970) on second-
‘order stochastic dominance in one dimension, adapted for convex, rather than con-

cave, objective functions and applied successively for each allowable set of functions

{r,....f} | Q.E.D.

Proof of Proposition 8: All symmetric welfare functions in Class B can be written
as W(Ez F(U;)), for some non-decreasing function f (the same for all ¢) and some
convex function W. Let the distribution of ¥ represent the joint distribution of
utilities under a given tournament and that of X the joint distribution under the

corresponding RIS. By construction, ¥ and X have identical marginals, implying
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EQ, fYy) = E(E, f(X:)). Under the tournament, Y, f(¥i) is deterministic for
all f; under the corresponding RIS, 3. f(X;) is variable. Therefore (SDB) holds with
the restriction that f is the same for all 7, so by Proposition 7, (ii) holds with this

restriction, and the tournament axiom is satisfied for the set of symmetric welfare

functions in Class B. ‘ Q.E.D.

Proof of Lemma 1: We will prove the lemma for the special case in which the
distributions of X and Y are symmetric over individuals and (21,...,2,) =(3,...,2).
For the general case, the proof proceeds along exactly the same lines, but the absence
of symmetry makes the notation significantly more complicated. We will also prove
only the claim for W# in C—; for W* in C7, the steps are the same, with inequality

signs reversed in the appropriate places.

Given z = (%,..., %) and an arbitrary permutation (3;,...,%,) of (1,...,n), define

A]:)(’C)'E-P(.X,'1 >Z,...,Xi, >27Xik+1 <z...,X; £2)

<z...,Y, L3).

-PY;, >z%,....Y;, >2Y;

(Since the distributions of X and Y are assumed symmetric, Ap(k) is the same for all
permutations (1,...,7,).) In this notation, we want to show that, for z = (Z,..., %)

and the corresponding W* in C~,
EW*(X) — EW*(Y) = Ap(0). (A1)

‘Note that W* assumes the value n — k in ( kfl) regions, since there are ( kﬁl) regions

where U; > Z for exactly n — k + 1 values of ;. Then
n—1 n
EW*(X) - EW*(Y)= Y (n—k) (k B 1) Ap(n —k+1). (A2)
k=1 ‘

Showing that the right-hand side of (A2) equals Ap(0) requires three steps.

Step 1: Use the equality of the marginals of X and Y to derive an expression for
Ap(1) in terms of Ap(2),...,Ap(n):

n—1
OEED (i LECE @

k=1
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Step 2: Use the equality of the marginals to derive an expression for Ap(0) in
terms of Ap(1),...,Ap(n —1):

Ap(0)=-" (Z - ;) Ap(n —k +1) (A4)

k=2

Step 3: Use (A3) to substitute for Ap(1) in (A4). This yields a formula for Ap(0)
in terms of Ap(2),...,Ap(n) which we show to be equivalent to the right-hand side
of (A2):

= /n-1
Ap(0) = — Ap(n—-k+1
P0) =~ (3 2,)apn kD)

+(n—1):Z (Z:i)Ap(n—k+1)

=1

- (n—l)Ap(n)-;-'g -0 (321) - (i 25)| artn =41

= (n—1)Ap(n) + X—:(n — k) (k i 1) Ap(n—k+1)
k=2

n—1

=N tn=-0(." )apn-k+1 Q.E.D.
I(ELIRN SIS

Proof of Proposition 9: We will show (i) = (iii) = (ii) = (i) and (iii) = (iv) =
(@)

(i) = (iii) Let j index the points z = (23,..., 2,) in the support of X and Y, and
let the corresponding elements of Ct, C~, C~, and C* be denoted W_{_‘, Wi, W,

and W_{_ Then any W in Class C can be expressed as

W= ZajWi+ZﬂjWi+Z7jW£+ZéjWi, where «a;,B,7;,6; 20 Vj.
j j j j

EW(X) - EW(Y) = 3 o [BWL(X) - EWL(Y)] + 3 65 [EWZ(X) - EW.(Y)]

+ Y wEWL(X) - EWL(Y)] + Y §[BWL(X) — EWL(Y)]
J J '

For each j, the first and fourth terms in square brackets take the form P(X; >
ziVi)— P(Y; > zVi), and the second and third terms in square brackets take the form

7



P(X; < z;¥i) — P(Y; < zVi), for the (z1,...,2,) corresponding to the index j (using
Lemma 1), and therefore (i) implies (iii).
(iii) = (ii): We will show that for any set of non-negative-valued functions { f L)
such that either all f i are non-decreasing or all f* are non-increasing, W = [[., f'(U;)
belongs to Class C, so E[[[i_, f*(X:)] > E[[I;-, f*(¥:)] follows from (iii).

Write the support of X and Y as {a1,...,am} X -+ X {a1,...,apm}. Suppose
first that each f? is non-negative-valued and non-decreasing. Then each f! can be

represented as

M
FU) =" 6. w50}, where 6, >0 Vi, Vk.
ki=1

The product i, f!(U;) therefore consists of a sum of terms of the form

n n
HO;;I{UiZak,-} = (H 0};‘) v >as, vi} s for some (ki,...,kn).

=1 i=1

Since I{y;>a4,,vi} belongs to Ct for every (k1,...,ks), [Tic, fi(U;) belongs to C.

Similarly, suppose that each f* is non-negative-valued and non-increasing. Then

each f* can be represented as

M
FiU) =Y 6. Ivi<a,)»  Where 6, 20 Vi, Vki

i=1

Thus T[], fi(U;) consists of a sum of terms of the form

HOZ.-I{U.'S%,-} = (H 0};‘) I{U;_<_ak‘Vi}, for some (ky,...,kn).

i=1 i=1

Since I(y;<a,,vi} belongs to C~ for every (ki,...,kn), [Tiz; f'(Ui) belongs to C.
(ii) = (i): For any (21,...,2x), let fi(U;) = I{y, > foralli. Then [[i_, fiu) =

L >uviys 50 E[[Tne F1(X3)) 2 E(IT7, fi(¥;)] implies P(X,ﬁz z¥i) > P(Y; > zVi).

Similarly, if we let f{(U;) = Iy, <z} for all 4, then E[[]r, f/(Xi)] > E[[I;-, fiYy)

implies P(X; < z;Vi) > P(Y; < z;Vi).

(iii) = (iv) is obvious.



(iv) = (i): Every Win C* or C~ is non-decreasing. With W successively equal
to every member of Ct and then to every member of C~, the inequality EW(X) —
EW(Y') 2 0 implies (i) (using Lemma 1). Q.E.D.

Proof of Proposition 10: Suppose a given tournament awards prizes (t1,...,tn),
witht; >...> ¢, so t; is the prize with rank j (from the top). For ease of notation,
describe a given outcome vector (U1,...,Uy), where each U; € {t;,...,t,}, by the
vector of ranks of the prizes, (ry,...,r,), where each r; € {1,...,n}. Thus U; = t¢;
‘implies r; = j.

For symmetric W, expected welfare is not affected by redistributing probability
mass in joint distributions to make them symmetric (as in the proof of Proposition
6). Given a tournament and its associated RIS, let the distribution of ¥ be the
“symmetrized” distribution of ranks under the tournament and the distribution of
X the “symmetrized” distribution of ranks under the RIS. By symmetry, X and Y
have identical marginals. We will show that, for all tournaments, the distribution of
X dominates that of ¥ in the sense of condition (SDC). Then (SDC) will also be
satisfied if X' and Y represent symmetrized distributions of utilities instead of ranks,
and satisfaction of the tournament axiom for the set of symmetric functions in Class

C will follow from Proposition 9.

Furthermoré, if we can eétablish that for all bistochastic matrices P and for
all vectors of ranks (ry,...,r,), the distributions of X and Y satisfy P(X; <r Vi) >
P(Y; < r;Vi), then it will follow that for all (r1y..0,70), P(Xi 2 riVi) > P(Y; > riVi).
To see this, observe first that if we rearrange the columns of a bistochastic matrix so
that for j = 1,...,n the columns corresponding to ranks j and n + 1 — J exchange

‘places, the new matrix is still-bistochastic. Then any inequality that we establish for
the event “each individual ; does at least as well as rank r;” for all bistochastic matrices
will imply the validity of .the analogous inequality for the event “each individual ¢ does
at least as badly as rank n+1—r;”. Since we will establish the former type of inequality

for all vectors of ranks, the latter type will be valid for all such vectors as well.
The symmetrized joint distribution of ranks under a tournament assigns to each

permutation of (1,...,n) a probability X. By symmetry, P(Y; < r;Vi) is the same

9



for all (ry,...,r,) that are permutations of one another.

Lemma 2: Let (ry,...,r,) be ordered so that ry < -+ < rq.
(i) If there exists a j such that r; < j, then P(Y; < r;Vi) = 0.
(ii) Iffor all j, r; > j, then

n n

. 1 .
P(Y, < 7’,‘\7’2) = ;L—'- H ZI{rij} "(n—]) .

Y =1 Lk=1

Proof of Lemma 2: P(Y; < r; Vi) equals ;11-,— times the number of permutations
(J15-++»Jn) of (1,...,n) such that 5; < r; for all i. Let us call such permutations
admissible. To prove (i), observe that when r; <--- < r, and for some j, r; < j,
there are no admissible permutations. To prove (ii), we count admissible permutations
given that ry < .. <r, and r; > j for all j. Observe that the number of allowable
positions for n is Y ;_; Itr,=n}.- The number of allowable positions for n —11is
S k=1 Itr,>n-1) — 1 (we must subtract 1 to take account of the position already
occupied by n). Similarly, the number of allowable positions for j is 3 ;—y I{r,>j} —
(n — j) (subtracting n — j takes account of the positions already occupied by n, n —
1,;'. .»j +1). Note that ry < --+ <r, and r; > j for all j imply that > k=1 I{rsz} -

(n —j) > 1 for all 5. The total number of admissible permutations for this case is

I1 [Z Itn>) —(n—j)} :

j=1 Lk=1
Q.E.D.
Now consider the symmetrized joint distribution of ranks under the RIS. By
symmetry, P(X; < r;Vi) is the same for all (ry,...,r,) that are permutations of one
another.

Lemma 3: Let (r1,...,r,) be ordered so that ry < -+ < r, and suppose that r; 2 j
for all j. For all bistochastic matrices P, the derived distribution of (X1,...,Xy)

satisfies
n

1
P(X; < ri¥i) 2 — [I(rs =k + D).

C k=1

10



Proof of Lemma 3: Given (r1,...,7s), to calculate P(X; < r;Vi), we first take a
particular permutation (i1,...,%5) of individuals (1,...,n) and, from the matrix P,
calculate the probability that each individual i; does at least as well as rank rj under
the érigina.l, asymmetric RIS. We then sum this probability over all n! permutations
(i1,...,in) and divide by n!.

Formally, given any bistochastic matrix P and given a particular permutation
(t3,...,%p) of (1,...,n), the probability, under the original, asymmetric RIS, that

each agent ¢; does at least as well as rank ry is

n Th

I12_ras-

k=1 j=1

Then

n Tk

nPXi<rvi)= Y [I D pii (45)

(1s-0én), k=1 j=1
permutations of
(1,...,n)

Define, for m < n,

. ) m Tk
G(ri,...,rmin) = Z Hzpm,

(g 0nim), k=1 j=1
permutations of
m from {1,...,n}

the outer sum being taken over all orderings (i1,...,imn ) of m distinct elements from

{1,...,n}. For notational convenience, we will write

n m Tk
G(riy ..y Tmin) = Z H Zpi”.
1FE. . FEiy k=1 j=1
Observe that G(ry,...,rs;n) equals the right-hand side of (A5). We will show by

induction that
G(ri,...yTmin) 2 :[-[(r;c —k+1) Vm<n
k=1
and hence that
G(rl,...,rn;n) 2> H("'k -k+ 1)a
k=1

which is the inequality we seek.
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Form =1,

G(rlan) Z ZPMJ

t1=1 j=1
n n n
= Z(l—- z Diij) since Zpiw' =1
f1=1 Jj=r1+1 J=1
n n
> D pas
J=ri+1i1=1
n n
z 1 since Z Pij=1
j=ri+1 t1=1
=n—-—(n—(r1+1)+1)
=T -1 -+ 1.

Now éssume that

m—1 7

G(ry,...,Tm=1;n) = Z HZp,“>H(rk—k+1) (A6)

11#E. FEipma1 k=1 j=1
Then

n m 1:1,
G(r1,y...,tm;n) = Z HZpi”

1% . Fiy, k=1 j=1

g 2 (1] 2

k=1 j=1

1F# . Fiym | k=1 j= J=rm-+1
n m-1 rp
=(n-m+1) Z Hzpikj
1. Fim-1 | k=1 g=1

11#. . Fim-1 | k=1 j=1 =T +1

5[5 [£6-5m)

=lh-m+l=(n-(n+)+1] >[I D pus

FEFEim-1 k=1 j=1

n m—1 rg n m-—1
+ Z . H me‘ Z Z Pisj
1% Fip-1 | k=1 j=1 j=rm+1 S=1
> (rm —m+1)G(r1,...,Pm=1;n)
m—1
>(rm—m+1)H(rk-——k+l) usmg(AG)andrmZm Vm
k=1
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= ﬁ(rk —k+1).
k=1

Q.E.D.

When ry < --+ < rp, and for some j, r; < j, then by Lemma 2(i), P(Y; < r;Vi) =

0, so P(X; < rVi) > P(Y; < r;Vi). For the case when r; > j for all j, the following
lemma, combined with Lemmas 2 and 3, implies P(X; < r;Vi) > P(Y; < r;Vi).

Lemma 4: Let (ry,...,r,) be ordered so that r; < --- < r, and suppose that r; > j
for all j. Then

H(rk —-k+1)= H [Z-’{rkz:‘} —(n—-J)|-

k=1 J=1 Lk=1

Proof of Lemma 4: Given ry <--- <r, and r; > j for all j, define

n

R(ri,...,rp) = H(rk—k—l-l)

k=1

T(ry,...,ra) = H [ZI{Tij}_(n—j) )

=1 Lk=1

We can simplify T by writing

) | ,- ) |
Y I === Imsiy+ Y, Imziy—(n—13)
k=1 k=1 k=j+1

J
=ZI{7‘k2j} since rg>j Vk>23+1
k=1

Thus

n J
T(riy...stn) = H ( I{Tk21}> :
j=1 k=1

We now use a graphical representation to show that for each of the n factors in
T, there is a corresponding, distinct factor in R with the same value. This clearly
implies that T equals R. On a grid, plot the points (k,r), for k¥ = 1,...,n. Since

r; < -+ < rp, the function mapping k into ry is non-decreasing, and since ry > k for

13



‘all k, all of the points lie on or above the 45° line. Draw a path connecting the points

according to the following sequence of rules (see Figure 2):

(i) Use horizontal segments to connect any two points (k,rx) and (k + 1,rr41) for
which rp = rg+1.
(ii) Use diagonal segments parallel to the 45° line to connect any two points (k,ry)
and (k + 1, rg4+1) for which rp + 1 = rg41.
(iii) For points (k,r;) and (k41,7541 ) such that rx+1 < rg4 1, draw vertical segments
downwards from (k + 1,741) until the point (k + 1,7 + 1) is reached. Then use

a diagonal segment parallel to the 45° line to connect (k,ry) with (k+ 1,7, +1).
(iv) ¥ ry > 1, draw vertical segments downwards to connect (1,r;) with (1,1).

Let S denote the set of points (z, 2;), where ¢ and z; are both integefs, on the path
generated by these rules. The path never goes below the 45° line. Think of the path
as having direction, from (n,n) to (1,1). Note that the set of points {k,rt}i=1,...,n
is in general a strict subset of S.

The points in S fall into three mutually exclusive and exhaustive classes:

Class I {(4,2) € S |3(,z1) € S with | < 4,2 = 2}
Class IL: {(4,2;) € S |3(l,z;) € S with | = 4,21 > 2;}
Class III:{(¢,2;) € S |A(l,z;) € S with [ < 4,21 = z;

and A(l, z1) € S with | =4, 21 > z;}

The fact that Classes I and II are disjoint follows from the rules (i)-(iv). The union of
Classes I and III is the set of points {k,rg}r=1,...,n. From this it follows immediately
that the sets of i coordinates of points in I and III are disjoint, with union {1,...,n}.
The sets of z; coordinates of points in II and III are also disjoint, with union {1,...,n}
and with no z; value appearing more than once in either set. Therefore, there are
equal numbers of points in I and II. Figure 2 shows S and its three subsets for a

particular vector (ry,...,r,) when n = 6.

Lemma 4.1: For points (i, 2;) in Class III,

Z—itl=) Iy

k=1
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FIGURE 2: Example of methed of proof of Lemma
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Proof of Lemma 4.1: The right-hand side above equals the number of points in
the set {k,rg}r=1,...,n for which k < z; and rt > z;. Since by assumption, ry > k for
all k, the point (2;,7,,) necessarily satisfies these conditions. Then it can be checked
that the right-hand side equals 1 plus the horizontal distance of (2, z;) from the 45°
line, which equals 1 plus the vertical distance of (3, z;) from the 45° line, which equals
zi—i+1. QED.

Lemma 4.2: The points in Classes I and II can be put into one-to-one correspon-
dence {I1,I2,.‘..,IL}, {IL,IL,...,IIL} so that z; — i + 1 evaluated for I; equals
S Iry >z} evaluated for I, for all [ = 1,..., L.

Proof of Lemma 4.2: Each point in Class I is at the right-hand endpoint (the
beginning) of a horizontal segment of length 1, and each point in Class II is at the
bottom endpoint (the end) of a vertical segment of length 1. Since the path begins
~and ends on the 45° line and since the only diagonal segments used are parallel to
the 45° line, the number of horizontal segments must equal the number of vertical

segments, thus verifying that Classes I and II contain equal numbers of points.

Moreover, for each horizontal segment beginning m units to the left of the 45°
line, there is a vertical segment ending m units above the 45° line. This is the one-

to-one correspondence we seek:

(i) A point (z,2;) in Class I m units to the left of the 45° line is m units above the
45° line, and therefore z; — i+ 1=m + 1.

(ii) A point (4, 2;) in Class II m units above the 45° line is m units to the left of the .

45° line, and it is easily verified that > ;_; I(y,>.,}, the number of points (k,rx)
withk <z, andrg > z;,ism+ 1. Q.E.D.

Combining Lemmas 4.1 and 4.2, we conclude that the values of z;—¢+1 associated
with points in Classes I or III can be put into one-to-one correspondence with the
values of 3 ;L Iy, >4} associated with points in Classes II or IIL Since the union of

I and II is {k,7}k=1,..n and since the set of z; values for the union of II and III is
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{1,...,n}, it follows that

[ee-k+0=1] (zz{w,}) QED.
k=1

j=1

Lemma 4 completes the proof of Proposition 10. Q.E.D.

Proof of Proposition 11:

(SDB) = (SDC): For any (21,...,2n), let f{(U;) = I,y for all i. Then
iy Fi(U) takes values in the set {0,...,n}, and second-order stochastic domi-
nance of the distribution of Y1, f{(Yi) over that of Y ., f*(X;) implies, using the
definition (4), - _ i
P(Y_Ivizs) = n) < P(Y_Iixizz) = 1),

i=1 i=1

from which it follows that P(Y; > z,Vi) < P(X; > #;Vi). Similarly, given (21,...,2s),
now define fi(U;) = Iiy;> 4,y for all 7. (SDB) implies, using the definition (3),

P(ZI{Y >z} = 0) < P(ZI{X;>z,} = 0)5

i=1 =1
which implies P(Y; < 2,Vi) < P(X; < z;Vi). Thus (SDC) is satisfied.
(SDC) # (SDB): Figures 3a and 3b show symmetric, four-dimensional distribu-

tions with identical marginals, for X and Y respectively, in which each component

has a two-point éupport {UL,UH}. (SDC) is satisfied since

P(Y, =UHY, =UH v, =UH.Y, =U")

P(X1=UH,X2=UH,X3=UH,X4=UH)—%2 =

P(X 2 UL, X, = UM, Xy = U™, X, = U) = 5> £ = P 2 UL Y, =UH Y3 = _un v =Y
l?(X1ZUL,XzzUL,X3=UH,X4=UH)=% %22( = P(1; >UL Y; > UL Ys = UBY=U!)
P(X; =UL X, =UL X, = UL,X4=UL)=%20=P(Y1=UL,Y2=UL,Y3,==UL,Y;=UL)

P(Xy SUH X, =UL Xy =UL, X, = UL =% g—-P(Yl <UHY, =UL Y =UL Y, =UY)

and since all of the other inequalities comprising (SDC) follow either from the sym-

metry of the distributions or from the equality of the marginals.
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To show that (SDB) is violated, let f#(UH) = 1 for all ¢ and f{(UL) = 0 for all
i. Using the definition (4), (SDB) requires

2P} £(¥)) = ) + P f(¥i) =3) S 2P(Y_F(X) = 4+ PQ_ f'(Xi) =3).

However, the left-hand side equals 2-0+ 4 - % = %, while the right-hand side equals
2-++4-0=1, so (SDB) is violated.

(SDA) # (SDC) and (SDA) % (SDB): Figures 4a and 4b show symmetric, three-
dimensional distributions with identical marginals, for X and Y respectively, in which

each component has a two-point support {UL,UH}. (SDA) is satisfied since

P(X, =UH X, =UL) = =P, =UH Y, =UY)
and since all of the other inequalities comprising (SDA) follow from the symmetry of
the distributions. (SDC) is violated since

PX, =U8 X, =U8 X3 =UH) =

<==PY, =U" Y, =U Y, =U¥).

[« QW
=

Since (SDB) = (SDC), it follows from (SDA) # (SDC) that (SDA) # (SDB).
(SDB) # (SDA) and (SDC) % (SDA): By Proposition 2, (SDB) and (SDC) are
equivalent for n = 2, and we have already observed in the text that for n = 2 neither

condition implies (SDA). (Figures 5a and 5b provide a two-dimensional example in

which (SDC) is satisfied but (SDA) is violated.) Q.E.D.

Proof of Proposition 12: The expected value of any W in Class B or Class C is
(weakly) increased by any GETN. However, for W in Class A, V¥ is not required
to be strongly complementary, so the expectation of W can be strictly decreased by

some GETN. Therefore, W € A does not imply either W€ B or W € C.

The remaining claims are proved by two examples. For each example, n = 3,
each U; can assume three pdssible values (UL < UM < UH), and W is symmetric in
its three arguments. Given this symmetry, the definitions below omit outcome vectors

which are permutations of those listed.
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Example 1: Let W! be symmetric and

WY UHE,UR Uy =3, W' (UH ,U%,UM)=2,
wWYUR UE UN) =1, W'UH, UM, UM) =1,
WY(Uy,Uz,U3) =0  for (U1, Us,Us) which are not permutations

of the vectors above

Let f(UL) =0, f(UM) =1, and f(UH) = 2. Let W(0) = W(1) = W(2) = W(3) =
0, W(4) =1, W(5) = 2, and W(6) = 3. Then W' can be represented as

Wl(UlaUZaU3) = W(f(Ul) + f(UZ) + f(U3))’
with f non-decreasing and W convex. Thus W! is in Class B. However,
WU, UH, UH) + WU, UM, UM) - WY(U,,UE,UM) - Wl(Ul,UM,UH)

is not invariant with respect to Uy, so W' is not pairwise separable and thus not in
Class A. Moreover, it is straightforward though tedious to verify that any represen-
tation of W as a linear combination of elements of C*, C~, C~, and 't must have
some of the weights negative, so W! is not in Class C. Therefore W € B does not

imply either We A or W e C.

Example 2: Let W? differ from W only in that W2(UM, UM UM) = 1 (instead
of 0). W2 is a linear combination (with both weights equal to 1) of the following two

symmetric functions, the first an element of C* and the second an element of C-:

| | 1 U, >UM Vi=123
Ws(UlaU2aU3) ={ ' - !

0 otherwise

wUH,UR, U") =2
wrUH, UH, UM =wtUH,UR,Ul) =1
W*(Uy,U,Us) =0  for (Uy,Us, Us) which are not permutations

of the vectors above
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Thus W2 is in Class C. However, since
WA UL, UM, UMy < W2 (UM, UM, UM) = w2(UM, UM, U") < WEUM,UR, U,

if we try to put W2 in the form W(3>_, fi(U;)), we find that W is not globally

convex. Thus W2 is not in Class B. Furthermore, as in Example 1,
W2(Uy, UR, UH) + W2 (U, UM, UM) - W2(U,, U2, UM) - W2 (U,, UM, UH)

is not invariant with respect to Uy, so W?2 is not in Class A. Therefore W € C does

not imply either W € A or W € B. Q.E.D.

'Proof of Proposition 13: (i) For all points z = (1, ..., zn) in the support and for
all £ = 1,...,n, define the increasing sets A7 = {(Uy,...,U,) | Ui 2 2;}. Repeated

application of the definition of association yields

P(X;2z Vi)=P(Xe rn] A7) > f[P(X € Af) = f[P(X,- > z).

i=1 i=1 =1

The equality of the marginals of X and Y and the independence of (Yi,...,Y,) give

HP(X,’ > Z,‘) = HP(Y, > z,-) = P(Yz > % VZ)

i=1 =1 : :
Therefore P(X; > zVi) > P(Y; > z;Vi). Now define for all z and for all ¢ the
increasing sets Bf = {(Uy,...,Us) | Ui > 2;}. Then (Bf)® = {(U1,...,Un) | Ui £
z;}. Using association of X, equality of the marginals of X and Y, and independence
of Y in the same manner as above yields P(X; < z;Vi) > P(Y; < #;Vi). Thus (SDC)

is satisfied if X is associated, and a fortiori if X is affiliated.
(ii) For n = 2, (SDB) and (SDC) are equivalent.
(iii) Figure 5a shows a two-dimensional distribution for X which satisfies the affiliation

-inequality (9) (and is therefore associated as well). Figure 5b shows the independent
distribution for Y which has identical marginals to those of X. Since

PX,=UM X, =UH) = =P(Y; =UMY, =U¥),

Ol

>

[« Y

X and Y do not satisfy (SDA).
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(iv) Figures 6a and 6b show symmetric, three-dimensional distributions with identi-
cal marginals, for X and Y, respectively, in which each component has a two-point
support {U .L, UH}. (11,Y3,Y3) are independent. It is straightforward to check that
X é,nd Y satisfy (SDA) and (SDC). X and Y can be shown to satisfy (SDB) by con-
verting the distribution of Y into that of X by a sequence of three GETI’s: since any
GETI produces a mean-preserving spread of the distribution of Y, f*(U;), for any
set of non-decreasing functions {f?,..., f*}, it follows from Rothschild and Stiglitz

(1970) that X and Y satisfy (SDB).!

However, (X, X, X3) are not associated. To see this, define for i = 1,2,3 the

increasing sets
Ai = {(U17U2aU3) I Uj = UL,Uk = UL}Ca where j 7& N 7é %,J ?é k

Then  A; N Az NA; =(AF U AT U AS)C
={({U1,U;,Us) | U, = UL, U, =UY, for some r,s€{1,2,3},r # s}°
= {(U1,U2,U3) | U, = UE, U, = UH, for some r,s€ {1,2,3},r # s}

Now P(X € Aj)=1 fori=1,2,3 and P(X € (4; N A2 N A;)) = 3. Since

\ |
P(X € A1)P(X € A)P(X € A3) = (%) > % = P(X € (A1 N 42 N 43)),

(X1,X2,X3) are not associated, and therefore not affiliated. Q.E.D.

! Bach GETI in the appropriate sequence affects the utilities of a different pair
(3,7) of individuals, leaving the utility of the remaining individual at U¥. TUs-
ing the notation (U;,U;;U—;—;), for each (i,j) the GETI increases the probabili-
ties of (UH,UF;UH) and (UY,UL;U¥) by L and decreases the probabilities of

(UH, UL, UH) and (UL, UH;UH) by ..
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