
Learning and Self-Reinforcing Behavior

Margaret A. Meyer∗

and

Jeffrey Zwiebel†

March 2007

Abstract

This paper examines history-dependence in decision-making by individuals or
organizations facing a sequence of related decisions. A decision-maker must, in
each period, choose whether to accept or reject a new opportunity, of uncertain
attractiveness, on the basis of a noisy observation. We analyze how acceptance
decisions are affected by past decisions, in a setting in which previous acceptances
yield increasingly precise information on which to base future decisions but each
rejection causes the stock of accumulated information to revert to a baseline
level. We identify two potentially opposing informational effects of acceptances,
one of which, the “stock effect”, makes future acceptances more likely and the
other of which, the “precision effect”, can make them either more or less likely.
We explore how the relative signs and magnitudes of these two effects vary with
changes in the decision-making environment, specifically, the ex ante expected
cost of acceptances, the discount factor, the baseline level of precision, and the
amount of additional precision obtained with each successive acceptance. We thus
provide conditions under which acceptance decisions are self-reinforcing (i.e., past
acceptances make future acceptances more likely) or instead self-limiting. Our
framework and techniques can be used to analyze a wide range of related dynamic
decision-making scenarios.

∗Nuffield College and Department of Economics, Oxford University
†Graduate School of Business, Stanford University. We are grateful to Heski Bar-Isaac, Mark

Garmaise, Alexander Gorbenko, Chris Harris, Markus Mobius, Peter Norman Sorensen, and seminar
audiences at Stanford, U. C. San Diego, Tokyo, Northwestern, Munich Symposium on Economics and
Psychology, and European Summer Symposium on Economic Theory. Any errors are our own.



1 Introduction

Organizations and individuals often face sequences of similar decisions, for example

about the promotion of junior employees, the adoption of proposed projects, the pur-

chase of goods or services, or the carrying out of a particular type of activity. The

standards used by different organizations or individuals often appear to differ in their

stringency. For example, promotion policies of otherwise similar organizations often

appear to vary significantly. And apparently similar individuals often appear to make

systematically different purchasing or consumption decisions. What accounts for such

apparent variation in decision criteria? One obvious possibility is that the organiza-

tions or individuals in question are operating in different environments or have different

objectives. An alternative set of explanations starts from the premise that the decision-

makers are using the same decision policy, but that this policy depends, for a variety

of potential reasons, on the history of past decisions. For example, past promotions

might predispose an organization to be more lenient in current promotion decisions.

And past purchases might predispose an individual to set a lower reservation price for

current purchasing decisions. When such “self-reinforcing” decision policies are in use,

even very similar organizations and individuals could appear to differ systematically

over a period of time in the decision criteria they employ.

Why might sequential decision-making by organizations or individuals display such

history-dependence? And specifically, why might the form of history-dependence be

that decisions appear to be “self-reinforcing”? Psychologists, organizational theorists,

and more recently economists have developed a number of types of explanations for

why individuals and groups might display “excessive adherence to past states of mind

or behaviors” (Hirshleifer and Welch (2002, p. 403)), tendencies also referred to as

inertia or status quo bias. Some of these explanations center on group dynamics.1

Others focus on cognitive distortions—for example, both Festinger’s (1957) theory of

cognitive dissonance reduction and Rabin and Schrag’s (1999) model of confirmatory

bias emphasize that initial beliefs and/or choices may distort the subsequent gathering

and processing of information and by this route cause subsequent choices to resemble

previous choices to an inefficient degree.

1See, for example, Kuran’s (1987) model of preference falsification and its consequences.
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In contrast to models of inertia based on group interactions or on cognitive distor-

tions, we explore models in which self-reinforcing behavior arises even with a single

decision-maker who is Bayesian and forward-looking. Our decision-maker, however,

can only imperfectly evaluate decision opportunities, and his past decisions directly af-

fect the quality of future ones. The decision-maker faces a sequence of binary decisions,

whether to accept or reject available opportunities. We analyze whether acceptances

early in the sequence can make later acceptances more likely, even when the intrinsic

characteristics of the opportunities in the sequence (for example, employees, projects,

or merchandise) are, in a probabilistic sense, unrelated. We show that under a wide

range of conditions, this type of “self-reinforcing behavior” in decision-making can arise

from the accumulation of a stock of information that is valuable for future decisions.

In the models we study, a new opportunity emerges each period, and its profitability

(or more generally, attractiveness) is uncertain. The profitabilities of opportunities

emerging in different periods are independently distributed. Nevertheless, the decisions

in the sequence are linked by the fact that the choice made today affects the quality

of tomorrow’s decision. To fix ideas, consider, for example, an organization’s decision,

each period, whether to fire a newly-hired employee or whether to retain her for one

more period, on the basis of a noisy signal about her uncertain productivity. (We

assume that after being retained for one more period, the employee must leave, so the

organization makes only one decision about each employee.) The organization tries

to retain employees of high ability and fire those of low ability. If the employee is

retained, the observation of her subsequent performance improves the decision about

next period’s new hire, because the two individuals work in similar environments, and

the knowledge already acquired about the retained employee helps to interpret the

noisy signal about the new hire. Furthermore, if the new hire is then also retained, her

subsequent performance allows an even more precise inference about the productivity

of the following period’s new hire, for the same reason, and so on. Thus retention of

an employee, by making available comparative performance information, improves the

next decision, and the greater the number of successive retentions, the more valuable is

the comparative performance observation, so the greater is the quality of the following

decision. On the other hand, if a newly-hired employee is ever fired, then the quality
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of the decision about the next period’s new hire is reduced to a baseline level, since it

must be made without the benefit of any comparative performance information. We

ask: Under the optimal decision policy, how does the probability of acceptance today

(i.e. retention of the current new hire) depend on past decisions?

Past decisions affect the organization’s stock of information, which is useful as an

input into the current decision. Specifically, the larger the number of acceptances since

the last rejection, the greater is the precision with which the current new opportunity

can be evaluated, and therefore the higher is the expected present discounted value of

the decision-maker’s payoff stream. This accumulation of information through repeated

acceptances, however, has two distinct, potentially conflicting effects on the optimal

probability of another acceptance. We term these effects the “stock effect” and the

“precision effect”. The former unambiguously increases the probability of continued

acceptance, while the latter may raise or lower it.

At first glance, it might appear straightforward that the longer the firm has gone

without firing, the smaller the probability that it will presently terminate its employee.

Since the larger the stock of precision the more valuable it is, a larger stock makes the

decision-maker more reluctant to reject and thereby dissipate the stock. More precisely,

the critical value of the posterior evaluation of the new opportunity below which it is

optimal to reject falls with the stock of information. We refer to this as the “stock

effect” of accumulated information.

However, at the same time, the accumulated stock of information also affects the

way in which the organization forms its posterior evaluation from the noisy observa-

tion it receives. To understand how this effect, which we term the “precision effect”,

operates, note that the larger the stock of information, the more precise is the noisy

observation about the employee, so the greater is the weight the organization places on

this observation in updating its beliefs about the employee. Consequently, the distri-

bution of the posterior evaluation of the employee is more variable. How this greater

variability per se affects the optimal probability of retaining the employee depends

upon whether the critical threshold for the posterior evaluation is greater or less than

the prior mean of the employee’s ability. If the critical threshold is greater than the

prior mean, then the more variable the posterior evaluation, the more likely it is to
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exceed the threshold and hence the more likely the employee is to be retained. In

this case, the precision effect reinforces the stock effect, and we say that acceptance

decisions are strongly self-reinforcing. On the other hand, if the critical threshold is

below the prior mean, then the more variable the posterior evaluation, the more likely

it is to fall below the threshold and thus, ceteris paribus, the less likely the employee is

to be retained. In this case, the precision effect opposes the stock effect, and we need

to determine which effect dominates. If the stock effect is stronger, then the optimal

probability of accepting the new opportunity is increasing in the number of acceptances

since the last rejection, and we say that acceptances are self-reinforcing, while if the

precision effect dominates, we say that acceptances are self-limiting.

In Section 3, we study these potentially conflicting effects of information accumu-

lation in a simple version of the model sketched above. An organization must decide

each period whether to promote a junior employee to a senior position, or whether to

fill the senior position with an untested outside hire. All that is observed each period

is the joint output of the current junior and senior, and the organization tries to max-

imize the discounted present value of this joint output. Filling the senior slot with

a promoted junior, who has already been evaluated once, allows a better evaluation

of next period’s junior than filling it with an untested outsider. We study how the

history dependence of decisions under the optimal policy depends upon two parame-

ters, the discount factor and the ex ante “ acceptance hurdle”, formally defined as the

expected cost, to flow payoff, of choosing to retain the current junior (i.e. choosing

the option that enhances the stock of information). We show that for all discount

factors, retention behavior is strongly self-reinforcing for sufficiently positive values of

the acceptance hurdle, self-reinforcing for all non-negative values of this hurdle, and

self-limiting for at least some levels of accumulated information for sufficiently negative

values of this hurdle. We provide a heuristic interpretation of the dependence of the

relative sizes of the stock and precision effects on the acceptance hurdle.

Section 4 studies a more general model of history-dependence in decision-making

and presents several different scenarios described by this general model. The first of

these scenarios can be viewed as a “bandit” model with market wages, the second as a

model of learning about environmental uncertainty, and the third formalizes the over-
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lapping generations story above. In each of the scenarios, the decision-maker chooses

each period between acceptance and rejection of an uncertain payoff opportunity, with

successive acceptances gradually increasing the stock of precision and each rejection

fully dissipating it. The more general model contains two additional parameters, one

representing the increment in precision resulting from each successive acceptance and

the other the baseline level to which the precision reverts after a rejection. Once

again, we identify conditions under which acceptances are strongly self-reinforcing,

self-reinforcing, or self-limiting.

It is helpful in clarifying the structure and objectives of our models to compare and

contrast them with work on i) multi-armed bandit problems (optimal experimentation);

ii) social learning; iii) the dynamics of promotion decisions; and iv) inertia or status

quo bias. The next section discusses these related branches of literature.

2 Related Literature

2.1 Bandit Models

In a typical bandit model, a decision-maker chooses in each period which of several

“arms” to pull; the payoff from each arm is random, and its realized value is informa-

tive about the underlying distribution from which it is drawn.2 The strategy which

maximizes the expected discounted present value of payoffs involves, at least initially,

experimentation: the decision-maker may choose an arm with a lower expected pay-

off, because of the future value of the information in the payoff realization. Our model

shares with bandit models this trading-off of the short-term expected payoff against the

long-term value of accumulating information. However, whereas in bandit models each

arm is available to the decision-maker in each period, in our analysis the decision-maker

effectively cannot reap payoffs from each new (independently distributed) “payoff op-

2Berry and Fristedt (1985) and Bergemann and Valimaki (2006) provide surveys of bandit models.
Economic applications are developed by Rothschild (1974), Easley and Kiefer (1988), Aghion, Bolton,
Harris and Jullien (1991), Banks and Sundaram (1992, 1998), Bolton and Harris (1993), Rustichini
and Wolinsky (1985), Schlag (1998), and Keller, Rady, and Cripps (2005), among others.
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portunity” for more than one period.3 In bandit models, past decisions affect current

choices because they directly convey information about the profitability of the current

options; in our model, such a direct link is absent, and past decisions affect only the

precision with which the current opportunity can be evaluated. The focus in bandit

models is typically on whether or not behavior under the optimal strategy converges

to the full-information outcome, whether the optimal strategy can be characterized

in terms of Gittins indices (Gittins and Jones (1974)), and whether and how much

experimentation takes place. Because the focus is usually normative (“What should

a decision-maker do?”), relatively less attention is typically paid to predictions about

the nature of the history-dependence in the sequence of decisions under the optimal

strategy. In our analysis, such predictions are a prime focus. Such predictions would be

essential for any empirical tests designed to distinguish, say, models of rational learning

from models of boundedly rational behavior.

One class of bandit models where predictions regarding the form of history-dependence

in decision-making have received close attention is the job-matching paradigm initiated

by Jovanovic (1979).4 In Jovanovic’s model, workers and firms learn over time about

the quality of the worker-firm match, with the choice at each point being whether to

continue the existing match or whether to terminate it, in which case new matches are

drawn from a known prior distribution of match quality. Jovanovic analyzes how the

probability that a match is terminated varies with its duration, a task that is consider-

ably simplified by the use of normal distributions (as in our model). One could identify

in Jovanovic’s model analogs of our stock and precision effects—the stock effect would

represent how a match’s duration (a measure of how much is known about its quality)

affects next period’s optimal reservation value for estimated match quality, and the

precision effect how duration affects the variance of next period’s estimate, conditional

on the current estimate. Nevertheless, in Jovanovic’s model, as in any bandit model,

there is an important additional effect, the “selection effect”, which is not present in

3Even in the “bandit” version of our model, presented in Section 4.1, the firm’s payoff opportunity
each period is the difference between the incumbent factor’s firm-specific value and its market wage,
and the unconditional distribution of this difference is iid across time. For other variants of bandit
models in which the payoff from each arm each period depends not only on the arm’s intrinsic value
but also on market competition, see Bergemann and Valimaki (1996) and Felli and Harris (1996).

4For a very recent application of this framework, see Marinescu (2006).

6



our model. The selection effect arises because a match’s duration is informative not

just about how much is known about its quality but also about how good the match

is likely to be. In our model, by constrast, each opportunity is evaluated only once, so

the history of past decisions is not directly informative about the quality of the cur-

rent new opportunity. Whereas in our model, history-dependence in decision-making

reflects only the interplay of the stock and precision effects, in bandit models such

history-dependence will always reflect the additional presence of the selection effect.

2.2 Social Learning Models

Models of social learning examine the phenomenon of herding, which appears to be a

form of self-reinforcing behavior at the level of group rather than individual decision-

making. In models such as Banerjee (1992), Bikhchandani, Hirshleifer, and Welch

(1992), and Smith and Sorensen (2000), short-lived individuals choose, one after the

other, among several uncertain options, basing their choices both on their private

signals and on the decisions of those who acted before them. Attention has been focused

on the conditions under which individuals eventually “herd”; that is, mimic the decisions

of their predecessors, regardless of their private information.5 While it might seem that

herding is fundamentally due to individuals’ myopia, Smith and Sorensen (2006) have

recently shown that such outcomes would arise (though with lower probability) even if

individuals were to act as part of a forward-looking team, solving a discounted dynamic

optimal experimentation problem.6 Smith and Sorensen thus recast social learning

models as (generalized) bandit models, recasting outcomes with incorrect herds as

failures of complete learning in experimentation models. The fundamental difference

between the self-reinforcing behavior in social learning models and in our model is

therefore not that social learning models involve multiple decision-makers while ours

has only one. Rather, it is exactly the difference emphasized in Section 2.1: In social

learning models, as in bandit models, past decisions affect current ones because they

5Similarly, the models of reputational herding of Sharfstein and Stein (1990) and Zwiebel (1995)
examine when the interaction between the actions of others and considerations of reputation-building
lead individuals to ignore their own information and copy the actions of others.

6See also Ali and Kartik (2006), who show that herding arises in a sequential voting model even
when voters are sophisticated and forward-looking.
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reveal information about the payoffs from the current options; whereas in our model,

payoff opportunities are independent across time, and past decisions influence only the

precision with which the current opportunity can be evaluated.

2.3 Models of the Dynamics of Promotion Standards

Analyses of career design as in Meyer (1991, 1992), Prendergast (1992), and Bernhardt

(1995) present various reasons why it may be efficient for organizations to structure

promotion ladders so that success is self-reinforcing—that is, succeeding in the early

stage of her career gives an employee an increased chance of succeeding in the next

stage. An important difference between these papers and ours is that these papers focus

on self-reinforcing outcomes within an individual career; our model, when interpreted in

terms of promotions, examines self-reinforcing outcomes across the careers of different

individuals.

Sobel (2000, 2001) studies two models of the evolution over time of standards for

promotion or for entry into a club. Like our simple model in Section 3, Sobel’s mod-

els involve overlapping generations of individuals, with (some of) today’s candidates

becoming tomorrow’s members of the elite, and with the characteristics of the current

elite influencing the standards employed in deciding on today’s candidates. In Sobel’s

models, in contrast to ours, the candidates behave strategically, and the judges (who

decide on promotions or entry) are not forward-looking.

2.4 Models of Inertia or Status Quo Bias

Cornell and Welch (1996) develop an information-based theory to explain why employ-

ers may be systematically more likely to hire candidates who belong to the same group

(racial, social, etc.) that they do, even when it is common knowledge that distributions

of quality are the same across groups and employers have no intrinsic preference for

candidates who belong to their own group. The key elements of their model are that

job applicants’ qualities can be evaluated only with noise, that this noise is less when

an applicant belongs to the same group as the employer, and that the standard for

hiring is “tough”, that is, above the prior expected quality. With “tough” standards,
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the more precisely an applicant can be evaluated, the more likely it is that the posterior

evaluation of his quality will exceed the critical threshold and therefore the more likely

that he will be hired. What we have termed the “precision effect” of greater information

is thus the driving force behind the “status quo bias” that emerges in the Cornell and

Welch model.

Hirshleifer and Welch (1994, 2002) develop an information-based model to study

organizational inertia vs. organizational impulsiveness. Specifically, they analyze how

the loss of “institutional memory” resulting from the replacement of an experienced

manager by a new one affects the likelihood that the old manager’s policies will be

continued or reversed. Our model is similar in spirit, since our stock of precision is

a measure of institutional memory, and since our focus on self-reinforcing behavior is

a focus on how decision-making varies with the level of this stock. However, in one

important respect, our analysis goes beyond Hirshleifer and Welch’s. Whereas they

treat the loss of institutional memory as exogenous, focusing purely on its consequences,

in our model the organization’s stock of information evolves endogenously. Our analysis

has at its core an idea they mention only in passing (1994, p.29): “Supervisors may

trade off the benefit of obtaining a more competent manager against the cost of losing

institutional memory.”

3 A Simple Model

An infinitely-lived firm employs two individuals in each (discrete) period, one in the

“junior” position and one in the “senior” position. Each period’s output is given by

the sum of the junior’s and the senior’s abilities. Only this team output is observed;

individual ability is unobservable. After producing in the senior position for one period,

an employee must leave the firm, and the firm must decide whether to fill the senior

position by promoting the current junior or by hiring a new “senior” employee from

outside. If the firm chooses the latter option, the current junior is dismissed. In either

case, the junior position is then filled with a new “junior” employee from outside. The

firm’s problem is to choose each period whether to promote or fire the current junior,

in order to maximize the expected discounted present value of team output, given
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discount factor δ.

The abilities of newly hired juniors are independently and normally distributed,

with mean normalized to 0 and precision (the inverse of the variance) normalized to 1.

An individual’s ability, and hence contribution to team ouptut, remains constant over

time. Newly hired seniors are drawn from a potentially different pool of individuals,

with abilities also independently and normally distributed, also with precision 1, but

with mean m ∈ (−∞,∞). The parameter m represents the difference in expected

contribution to team output between a “senior” hired from outside and a “senior” who,

regardless of team performance while a junior, is promoted from within. This parameter

can also be given a more general interpretation: it reflects the net ex ante expected

cost to flow payoff (direct cost and/or opportunity cost) of choosing to fill the senior

slot by promoting the current junior rather than hiring from outside. If, for example,

there were transactions costs of firing and hiring, these would per se make m negative.

On the other hand, higher average ability in the pool of people available for the senior

slot than in the pool available for the junior slot would per se make m positive.7 We

will henceforth refer to m as the (ex ante) “acceptance hurdle”.

The observation of team output in period t allows the firm to update its beliefs

about the ability of the current junior, given what it already knows about the current

senior’s ability. The decision whether to promote or fire the current junior is made on

the basis of these updated beliefs.

Suppose that in any period, the abilities of the junior and senior are both believed

to be normally distributed. Then it follows from the standard “normal learning model”

(see DeGroot (1970, Ch. 9)) that after the observation of team output, the posterior

distribution of the junior’s ability will also be normal. Since next period’s senior will

be either the promoted junior or a new hire, our initial supposition of normality is

justified. Furthermore, the normal learning model also implies that if the mean and

precision of the distribution of the current senior’s ability at the start of period t are λt

7Note that this simple model ignores wages, so “abilities” should be interpreted as net contribution
to firm profit. For a scenario which does incorporate market wages, see Section 4. The more general
model of Section 4 also incorporates the case where the prior precision on newly hired seniors’ abilities
is different from 1, the prior precision on newly hired juniors’ abilities. Finally, note that this is a
partial equilibrium analysis, ignoring the influence of a firm’s own past decisions on the composition
of the pool of potential new hires.
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and kt, respectively, then after the observation of team output xt, the posterior mean

of the junior’s ability will be

µ̃(kt, xt − λt) =
kt(xt − λt)

kt + 1
, (1)

and the posterior precision will be

kt+1 = kt + 1. (2)

Intuitively, the posterior mean ability of the junior after team output is observed

is a weighted average of the prior mean (given here by 0) and xt − λt, the observation

of team output with the senior’s expected contribution netted out. The weight given

to the observation relative to the prior mean depends on the “signal to noise ratio” in

the observation. Since the prior precision of the junior’s ability (the signal) is 1, while

the precision of the current senior’s ability (the noise in the observation) is kt, the

weight on the observation is kt times the weight on the prior. That is, the observation

receives weight kt

kt+1
, and the prior receives weight 1

kt+1
, thereby yielding equation (1).

Furthermore, under the normal learning model, the precision of the posterior estimate

of the junior’s ability is simply the sum of the precision of the prior, 1, and the precision

of the noise in the observation, kt, thus yielding equation (2).

Denote xt − λt by x̄t, and note that conditioning on the information available at

the beginning of period t, this random variable x̄t is the sum of a normal random

variable with mean 0 and precision 1 (the junior’s contribution to team output) and

an independent normal random variable with mean 0 and precision kt (the senior’s

contribution, net of expected ability λt). Consequently, x̄t is normally distributed with

mean 0 and precision kt

kt+1
. It then follows from equation (1) that, conditioning on

the information available at the beginning of period t, the random variable µ̃(kt, x̄t) is

distributed according to

µ̃(kt, x̄t) ∼ N

(
0,

kt

kt + 1

)
, (3)

where N(µ, v) denotes a normal distribution with mean µ and variance v.8

8We will use µ̃(kt, x̄t) and µ(kt, x̄t) to denote this random variable and its realization, respectively.
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We can now derive the Bellman equation for the firm’s dynamic decision problem.

The firm chooses each period, after observing xt, whether to retain or fire the junior. If

the junior is retained and moves to the senior slot, the firm’s expected payoff next period

is 0+µ(kt, x̄t), and the precision on the ability of the new senior is kt+1 = kt +1. If the

junior is fired and the senior slot is filled with an outside hire, next period’s expected

payoff is 0+m, and the precision on the new senior reverts to 1.

Note that from (3), the conditional distribution of µ̃(kt, x̄t) is independent of the

expected ability of the current senior λt. It follows that, under the optimal decision

rule, the probabilities of retaining and firing the junior, prior to observing output xt,

must be independent of λt. Consequently, in this model, the relevant state (on which

the probability of termination depends) can be summarized solely by the precision, kt,

of the ability distribution of the current senior. From (2), the precision kt is always a

positive integer and represents the number of periods since the most recent firing of a

junior. We can view kt as a stock of information possessed by the organization which

is valuable for future decision-making.

The firm maximizes the expected discounted present value of team output. Since

the junior’s expected contribution to output (under any policy) is 0 in each period, we

can simply define the firm’s value function V : Z+ 7→ R as the expected discounted

present value of the senior’s contribution under the optimal policy, given the state k.

By convention, we compute V (k) before the current period’s team output is observed

but exclude from it the contribution of the current senior (whose ability distribution

has precision k). With this convention, the Bellman equation is given by

V (k) = δEx̄ [max {µ̃(k, x̄) + V (k + 1),m + V (1)}] , (4)

where µ̃(k, x̄) is normally distributed with mean 0 and variance (σk)
2 ≡ k/(k + 1). If,

having observed the realization x̄, the firm chooses to retain the current junior, then

next period the expected contribution from the senior will be µ(k, x̄), and the precision

on her ability will be k + 1; if instead the current junior is fired, then next period’s

expected contribution from the (newly drawn) senior will be m, and the precision on

her ability will be 1.
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Since, in a single-person decision problem, better information is always more valu-

able, V (k) is increasing in k. Furthermore, V (k) is bounded, since

V (k) ≤ δ

1− δ
Ex̄ [max {µ̃(∞, x̄),m}] .

This bound on V (k) equals the value the firm would reap from choosing between

retaining and firing the current junior if, today and every period in the future, the

precision of the ability distribution of the current senior were infinite, regardless of

which choices the firm made.

A stationary decision policy for the firm is a rule which for each state k assigns a

cutoff level µ̄k such that a junior is fired in state k if and only if her estimated ability

µ(k, x̄) is less than µ̄k. It is straightforward to see that if an optimal decision policy

exists, it must be a stationary one which satisfies equation (4). It is apparent from (4)

that for the optimal policy, µ̄k = m + V (1)− V (k + 1). Since V (k) is increasing in k,

µ̄k < m for all k ≥ 1. Thus, in all states the firm retains some juniors whose posterior

expected ability is below that of a senior randomly chosen from outside; doing so allows

it to benefit in future periods from the increase in the stock of precision.

A stationary policy µ̄k uniquely defines a function p : Z+ 7→ [0, 1], giving the

probability, prior to observing team output, that the current junior will be retained in

state k. Specifically,

p(k) = Pr[µ̃(k, x̄) ≥ µ̄k] = 1− Φ

[
µ̄k

σk

]
= 1− Φ

[
m + V (1)− V (k + 1)

σk

]
, (5)

where the second equality uses the fact that µ̃(k, x̄) ∼ N (0, (σk)
2). With the definition

A(V (k)) ≡ m + V (1)− V (k + 1)

σk

, ∀k ∈ Z+, (6)

the probability of retention can be expressed as

p(k) = 1− Φ(A(V (k))), (7)

and p(k) rises as A(V (k)) falls.
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Our interest is in how p(k) varies with k—that is, how the probability of retaining

the current junior varies with the stock of information, which measures the number of

periods since the last decision to fire a junior. It is easy to identify precisely what we

referred to in the introduction as the “stock effect” and the “precision effect”. On the

one hand, since V (k) is increasing in k, the optimal µ̄k is decreasing in k—for a larger

k, the firm compares the junior’s estimated ability with a lower standard. This is the

stock effect: since the continuation value following a decision to retain, V (k + 1), is

increasing in k, while the continuation value following a firing, V (1), is independent of

k, the firm is, ceteris paribus, more reluctant to fire, and thereby dissipate its stock,

the larger is k. Formally, the stock effect is captured by the decrease in the numerator

of A(V (k)) with k. The stock effect per se unambiguously acts to make p(k) increase

with k. (See Figure 1a.)

On the other hand, holding the cutoff µ̄ fixed, the accumulation of informaion,

measured by k, also affects the way in which beliefs about the current junior’s ability

are updated. Specifically, the ex ante variance of the posterior evaluation of the junior,

(σk)
2, is increasing in k. This is the precision effect, and it is formally captured by

the appearance of σk in the denominator of A(V (k)). Whether the precision effect

reinforces or opposes the stock effect can be seen from (5) to depend on whether the

optimal cutoff µ̄k is above 0 (“stringent”) or below 0 (“lenient”), where 0 is the prior

mean of the junior’s ability. If µ̄k ≡ m + V (1) − V (k + 1) > 0, then the increase in

(σk)
2 with k per se raises the likelihood that the posterior evaluation of the junior will

surpass the stringent cutoff: if µ̄k > 0, an increase in σk per se causes an increase in

p(k). In contrast, if µ̄k < 0, then the precision effect opposes the stock effect, and an

increase in σk per se makes the posterior evaluation more likely to fall below the lenient

cutoff: with µ̄k < 0, a rise in σk per se causes a reduction in p(k). (See Figure 1b.)
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If the precision effect is either outweighed by the stock effect or reinforces it, we

will say that retentions are self-reinforcing, while if the precision effect opposes and

outweighs the stock effect, we will say that retentions are self-limiting:

Definition 1. Retention decisions are self-reinforcing in state k if under the optimal

decision rule p(k + 1) > p(k) and self-limiting in state k if p(k + 1) < p(k).

If the precision effect reinforces the stock effect, we will say that retentions are

strongly self-reinforcing:

Definition 2. Retention decisions are strongly self-reinforcing in state k if under the

optimal decision rule µ̄k > 0, or equivalently p(k) < 1
2
.

We now state this section’s main result, which identifies conditions on the param-

eters m and δ under which retentions are i) self-reinforcing in all states; ii) strongly
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self-reinforcing in all states; or iii) self-limiting in at least some states.

Proposition 1. i) For all m ≥ 0 and for all δ ∈ (0, 1), under the optimal decision

rule p(k) is strictly increasing in k for all k ∈ Z+, that is, retentions are self-

reinforcing in all states.

ii) For all δ ∈ (0, 1), there exists m̄(δ) > 0 such that for m > m̄(δ), under the

optimal decision rule p(k) < 1
2
for all k ∈ Z+, that is, retentions are strongly self-

reinforcing in all states. Furthermore, m̄(δ) is strictly increasing in δ, limδ→0 m̄(δ) =

0, and limδ→1 m̄(δ) ≈ .188.

iii) For all δ ∈ (0, 1), there exists m(δ) < 0 such that for m < m(δ), there exists at

least one k ∈ Z+ such that under the optimal decision rule p(k + 1) < p(k), that

is there is at least one state in which retentions are self-limiting. Furthermore,

m(δ) is strictly decreasing in δ, limδ→0 m(δ) = 0, and limδ→1 m(δ) ≈ −.208.

Proposition 1 indicates that for positive m, retentions are always self-reinforcing

under the optimal decision rule. Further, for any δ there exists an m̄ > 0 and an m < 0

such that retentions are strongly self-reinforcing whenever m exceeds m̄ (i.e., whenever

m is sufficiently positive) and are self-limiting in at least some states whenever m is

less than m (i.e., whenever m is sufficiently negative). These findings are represented

in Figure 2.
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The detailed proof of Proposition 1 is in the Appendix, but we describe the strat-

egy of the proof here, before providing some intuition for the results. Defining the

transformation G : B 7→ B, in accord with the Bellman equation (4), by

G(V (k)) = δEx̄ [max {µ̃(k, x̄) + V (k + 1),m + V (1)}] , (8)

where B ≡ {V | V : Z+ 7→ R, bounded}, we show that G is a contraction mapping

and therefore has a unique fixed point, which corresponds to the optimal decision rule.

Since the property of the optimal decision rule in which we are interested, namely the

variation of p(k) with k, depends on the value function only through the expression

A(V (k)) defined in (6), we define a transformation H : B 7→ B which operates directly

on functions A(V ) : Z+ 7→ R, as follows:

H(A(V )) ≡ A(G(V )). (9)
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The usefulness of this transformation follows from the observation that if V ∗ is the

unique fixed point of G, then

H(A(V ∗)) = A(G(V ∗)) = A(V ∗),

so A(V ∗) is a fixed point of H. We will use the properties of H to show that A(V ∗(k))

must be monotonically decreasing in k. This will then imply, through equation (7),

that p(k) is monotonically increasing in k.

To derive the form of H, we write

H(A(V (k))) = A(G(V (k)))

=
m + G(V (1))−G(V (k + 1))

σk

, (10)

and then, using (6) and (7) in equation (8), we express G(V (i)), as9

G(V (i)) = δp(i)E[µ̃(i, x̄) | µ̃(i, x̄) > m + V (1)− V (i + 1)]

+ δ[p(i)V (i + 1) + (1− p(i))(m + V (1))] (11)

Since µ̃(i,x̄)
σi

has a standard normal distribution and since for a standard normal random

variable x̃,

E(x̃ | x̃ > c) =
φ(c)

1− Φ(c)
,

it follows that

E [µ̃(i, x̄) | µ̃(i, x̄) > m + V (1)− V (i + 1)] = σi

φ
[

m+V (1)−V (i+1)
σi

]

1− Φ
[

m+V (1)−V (i+1)
σi

]

= σi
φ(Ai)

1− Φ(Ai)
.

Using this and (7), we can rewrite (11) as

G(V (i)) = δ [σiφ(Ai) + p(i)V (i + 1) + (1− p(i))(m + V (1))] . (12)

9We will henceforth use V (k) and Vk interchangeably, and will let A(k) or Ak represent A(V (k)).
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Evaluating (12) for i = 1 and i = k + 1, substituting into (10), and again using (7)

finally yields

(HA)k = − δ

σk

[σk+1R(Ak+1)− σ1R(A1)] +
m

σk

, ∀k ∈ Z+, (13)

where R : R 7→ R is defined by

R(x) ≡ φ(x)− (1− Φ(x))x. (14)

Next we define, for all m ∈ (−∞,∞) and for all δ ∈ (0, 1), a closed subset S(m, δ)

of B as follows:

S(m, δ) ≡ {V ∈ B | A(V) satisfies Conditions i,ii, and iii} , (15)

where Conditions i,ii, and iii are given by:

Condition i (Monotonicity) ∀k ∈ Z+, Ak ≥ Ak+1;

Condition ii (Upper Bound) ∀k ∈ Z+, Ak ≤ U(m, δ);

Condition iii (Lower Bound) ∀k ∈ Z+, Ak ≥ L(m, δ);

where U : (−∞,∞)× (0, 1) 7→ R and L : (−∞,∞)× (0, 1) 7→ R are defined implicitly

by

U(m, δ) = −cδR(U(m, δ)) +
m

σ1

, (16)

L(m, δ) = −δ [R(L(m, δ))− σ1R(U(m, δ))] + m, (17)

and where c is a constant defined by c ≡ σ2−σ1

σ1
.

To prove part i) of Proposition 1, we show that if m ≥ 0, then for all δ ∈ (0, 1), G

maps S(m, δ) into itself. We do this by using the expression (13) for H to show that

if A(V ) satisfies Conditions i, ii, and iii, then H(A(V )) does so as well. Consequently,

for the fixed point V ∗ of G, A(V ∗) must satisfy these conditions, or equivalently, the

fixed point V ∗ of G is in S(m, δ). Hence, A(V ∗(k)) is decreasing in k, so the optimal

retention probability p(k) is increasing in k.
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Similarly, to show part ii), we show that if L(m, δ) > 0 in addition to m ≥ 0, then

for the fixed point V ∗ of G, not only are Conditions i, ii, and iii satisfied but also

A(V ∗(k)) > 0 and hence p(k) < 1
2
. For m ≥ 0, the condition m > m̄(δ) is equivalent

to L(m, δ) > 0.

Finally, to prove part iii), we show that if V ∗ is a fixed point of G and A(V ∗(k)) is

monotonically decreasing in k, then L(m, δ) ≤ U(m, δ). That is, L(m, δ) ≤ U(m, δ) is

a necessary condition for p(k) to be increasing in k for all k. The condition m < m(δ)

is equivalent to U(m, δ) < L(m, δ).

To understand these results qualitatively, recall that the probability of retention in

state k, p(k), can be expressed as

p(k) = 1− Φ

[
µ̄k

σk

]
, (18)

where µ̄k = m + V (1) − V (k + 1). The precision effect of an increase in k on p(k)

operates through the increase in σk and the stock effect through the reduction in µ̄k.

Thus the precision effect is proportional to

dp(k)

dσk

=
d

dσk

(
1− Φ(

µ̄k

σk

)

)
=

µ̄k

(σk)2
φ(

µ̄k

σk

). (19)

Equation (19) confirms that whether the precision effect acts to make p(k) rise or fall

with k depends on whether µ̄k is greater than or less than 0. It also shows how the

magnitude of the precision effect varies with µ̄k: when µ̄k = 0, the precision effect is

zero, and as |µ̄k| goes from 0 to ∞, the magnitude of the precision effect first rises and

then falls. (See Figure 3a.) Using similar reasoning, the stock effect of an increase in

k on p(k) is proportional to10

−dp(k)

dµ̄k

= − d

dµ̄k

(
1− Φ(

µ̄k

σk

)

)
=

1

σk

φ(
µ̄k

σk

). (20)

Equation (20) confirms that the stock effect always acts to make p(k) rise with k.

Moreover, it shows that the magnitude of the stock effect is proportional to φ( µ̄k

σk
), so

10The negative sign in front of the derivative reflects the fact that as k rises, µ̄k falls.
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as |µ̄k| goes from 0 to ∞, this magnitude falls. (See Figure 3b.)

The reason for focusing on how the magnitudes of the stock and precision effects

vary with the optimal cutoff µ̄k is that increases in the exogenous (ex ante) acceptance

hurdle m translate into increases in µ̄k. To see how the relative sizes of the stock and

precision effects vary with m, take a positively weighted sum of the expressions in (19)

and (20), with the weights C1 > 0 and C2 > 0 arbitrary constants (arbitrary to reflect

the fact that (19) and (20) are merely proportional to the strengths of the precision

and stock effects, respectively). The weighted sum is then:

C1
dp(k)

dσk

+ C2

(
−dp(k)

dµ̄k

)
=

1

σk

φ(
µ̄k

σk

)

[
C1

µ̄k

σk

+ C2

]
. (21)

Now observe that, regardless of the precise values of C1 and C2, this sum is negative

for µ̄k less than some strictly negative critical value and positive for µ̄k greater than
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this critical value. (See Figure 3c.) This observation explains why for m sufficiently

negative, retention decisions are (at least in some states) self-limiting (i.e. the precision

effect outweighs the stock effect), whereas as m rises, retention decisions become self-

reinforcing (i.e. the precision effect is outweighed by the stock effect), with further

increases in m leading to strongly self-reinforcing behavior (i.e. the precision effect

reinforcing the stock effect).

Proposition 1 also shows that as the discount factor δ falls, the region in which

retention decisions are self-reinforcing but not strongly self-reinforcing shrinks. In the

limit as δ goes to 0, retentions are strongly self-reinforcing in all states for values of m

greater than 0 and self-limiting in all states for values of m less than 0. These results

are easily explained. As δ shrinks to 0, the stock effect disappears: the optimal cutoff

for the posterior evaluation, µ̄k, becomes independent of k, approaching the value m.

Consequently, only the precision effect remains, and whether the precision effect makes

p(k) rise or fall with k depends on the sign of the optimal cutoff, hence on the sign of

m.

4 The General Model

We now present three more complex scenarios, in each of which, as in Section 3, a

decision-maker chooses each period between acceptance and rejection, with successive

acceptances gradually increasing the stock of precision and each rejection fully dissipat-

ing it. Whereas the simple model of Section 3 generates a Bellman equation containing

only two exogenous parameters, m and δ, the Bellman equation deriving from our more

complex scenarios contains two additional parameters. The first represents the incre-

ment in precision resulting from each successive retention and the second the baseline

level to which the precision reverts after a termination. These parameters are measured

relative to the prior precision of each period’s uncertain payoff opportunity, which we

continue to fix at 1. After describing our three scenarios, we then analyze how these

new parameters affect the form of history-dependence in optimal decision-making, once

again identifying conditions under which acceptances are strongly self-reinforcing, self-

reinforcing, or self-limiting.
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4.1 A Bandit Model with Market Wages

First, consider the following “bandit” problem of a firm deciding when to replace a

piece of equipment or an employee, where this factor must be paid a noisy estimate of

its “market value”. Suppose that the factor’s unknown intrinsic value is η. In period t,

the firm observes the realization of revenue

xt = η + εt

that will accrue at the beginning of period t + 1 if it continues to employ the factor

in period t. The realization of εt represents an interaction of the factor with the

environment that is specific both to the firm and to period t, such as how suited an

employee or machine is for that period’s task. Having observed xt, the firm chooses

whether to retain or terminate this factor. If the factor is retained, the firm must pay

at the beginning of period t + 1 a wage

wt = η + ut

whose realization is not observed until the end of period t, after the retention decision

is made. This “market wage” represents the estimated value of the factor to some

competing firm with a different environmental interaction ut. If instead the factor is

terminated, a new factor is hired from a population with the same prior distribution

as that from which η was originally drawn, but one period elapses before the new

factor generates any revenue; during that period, the flow payoff is the constant m ∈
(−∞,∞). Thus −m represents the known fixed cost of replacing a factor.

Draws of ε, η, and u are independent of one another and across time and are

distributed respectively according to N(0, 1), N(0, 1/b), and N(0, 1/(s− 1)).

Note that unlike the overlapping generations model in Section 3, here retention

implies keeping the same factor η. It is for this reason that we refer to such a model as

a “bandit model”. However, unlike in most bandit problems, here the firm must pay the

incumbent factor a market wage each period. As a result, the firm’s flow payoff from

retention is the difference between the firm-specific shock to revenue and the noise in
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the market wage, i.e. εt − ut, and the unconditional distribution of this payoff is iid

across time.11 Nevertheless, because the retention decision is based on knowledge of

the potential revenue xt = η + εt, the more the firm knows about η the better able

it is to estimate εt. And since the firm’s stock of information about the incumbent

factor is increased each time it chooses to retain, the longer the unbroken sequence of

retentions, the better the quality of the next decision.

Let λt and kt be the posterior mean and precision, respectively, of the distribution

of η, the intrinsic value of the incumbent factor, computed at the start of period t (i.e.

after observation of xt−1 and, if the incumbent factor was retained in period t − 1, of

wt−1). Denote xt − λt by x̄t, as in Section 3. After the observation of revenue xt, the

posterior mean of εt will be

E(εt|kt, x̄t) =
ktx̄t

kt + 1
.

This posterior mean, regarded as a random variable, is, conditional on information

available at the start of period t, distributed according to

E(εt|kt, x̄t) ∼ N

(
0,

kt

kt + 1

)
.

That is, it has the same distribution (and for the same reason) as µ̃(k, x̄) in equation

(3) of Section 3. Since this distribution is independent of λt, just as in Section 3 the

relevant state can be summarized solely by a value of precision, here the precision kt

of the beliefs about the incumbent factor η.

If the firm chooses to retain the incumbent factor in period t, the expected flow

profit that will accrue in period t + 1 is

E (xt − wt |k, x̄t ) = E (εt − ut |k, x̄t ) = E (εt |k, x̄t ) .

Also, since both xt and wt are observed before the end of period t, the precision of the

beliefs about η at the start of period t + 1 will be kt+1 = kt + 1 + (s − 1) = kt + s.

If instead the factor is terminated in period t, then a new factor is installed in period

t + 1 (with the first revenue accruing in period t + 2), and the flow payoff in period

11See Section 2.1 for more discussion of the contrast between our models and the bandit literature.
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t+1 is the constant m. The precision of beliefs about the new factor assumes its prior

value, so in this case the state variable will become kt+1 = b.

Let V (k) once again represent the expected discounted present value of future payoff

in a state with precision k under the optimal decision policy. To write the Bellman

equation, we use the fact that E(ε|k, x̄) has the same distribution as µ̃(k, x̄), so that

∀k ∈ Q,

V (k) = δEx̄ [max {µ̃(k, x̄) + V (k + s),m + V (b)}] , (22)

where

Q ≡ {
k ∈ R+ | k = (b + js for some j ∈ {0 ∪ Z+}} .

Equation (22) is the generalized Bellman equation we consider in this section. The

parameter s represents the increment in precision resulting from each successive re-

tention and the parameter b the baseline level to which the precision reverts after a

termination. Equation (4) of the basic model of Section 3 corresponds to the case

where s = 1 and b = 1.

4.2 Accumulating Information about an Uncertain Environ-

ment

Consider now a decision-maker that, in each period t, evaluates a new potential oppor-

tunity (say a consumption opportunity or an investment opportunity), whose unknown

intrinsic value is νt. If the period-t opportunity is undertaken, the decision-maker re-

ceives in period t + 1 a once-off payoff yt = νt + ut, whose realization is observed only

at the end of period t. The decision whether or not to undertake the opportunity is

based on a noisy signal xt = νt + ε, where ε represents uncertainty about the current

“environment”. The environment ε remains the same unless an opportunity is rejected,

in which case the flow payoff next period is the constant m ∈ (−∞,∞) and there is

a new draw of environmental uncertainty. With each successive acceptance of a new

opportunity, the decision-maker’s stock of information about the current environment

increases, thus improving the quality of his next decision; rejection of an opportunity,

by contrast, reduces the quality of the next decision to a baseline level correspond-
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ing to the prior information about the new environment. If the opportunities under

consideration are, for example, investment projects internally generated within a firm,

then the environmental uncertainty contaminating the observed signals could repre-

sent the unknown biases of the manager who proposes the projects. The assumption

that a new ε is drawn following a rejection could reflect the manager’s quitting if ever

her recommended project is turned down and then being replaced by someone with

different unknown biases.

Draws of ν, ε, and u are independent of one another and across time and are

distributed respectively according to N(0, 1), N(0, 1/b), and N(0, 1/(s− 1)).

Comparing this scenario with the bandit model in the previous subsection, here,

when there is a string of continued acceptances, the environment ε remains fixed,

while the intrinsic value νt of the opportunity varies across periods. In contrast, in

the bandit model, continued acceptances keep fixed the incumbent factor η, while the

environmental interaction εt varies across periods. In both cases, continued acceptances

enable the decision-maker to build up a stock of knowledge about the fixed component,

which is valuable insofar as, and only insofar as, it allows for a more precise estimate

of the variable component. Specifically, in both cases, only the variable component

(drawn anew each period), and not the fixed component, directly enters the decision-

maker’s payoff function: in the present model, the fixed environment ε affects the

signal but not the payoff from the opportunity νt, while in the bandit model, the firm’s

need to pay the market wage implies that its net payoff depends on the environmental

interaction εt but not on the fixed value of the incumbent factor η.

While the present scenario therefore differs from the bandit scenario in the inter-

pretations of the fixed and variable components, formally, the analysis of this scenario

is very similar to that in Section 4.1. Let λt and kt be the mean and precision, re-

spectively, of the distribution of ε, the current environment, computed at the start of

period t (i.e. after observation of xt−1 and, if the period-t− 1 opportunity was under-

taken, of yt−1). As before, define x̄t ≡ xt−λt. Then the posterior mean of the period-t

opportunity’s value, νt, given x̄t, has a distribution, computed at the start of period t,

which is the same as that of µ̃(k, x̄) in Section 3, given by equation (3). Once again,

the state variable in the value function is just kt.
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If, after observing xt, the decision-maker accepts the period-t opportunity, then in

the next period the expected flow payoff will be µ̃(kt, x̄t); the precision of beliefs about

the current environment will increase to kt+1 = kt + s, since by the end of the period

the decision-maker observes both xt and yt.12 If instead the period-t opportunity is

rejected, the next period’s flow payoff will be m, and the precision of beliefs about the

(new) environment will revert to the baseline level kt+1 = b. Just as in Section 4.1,

therefore, the Bellman equation is given by (22).

4.3 An Overlapping Generations Model with Comparative Per-

formance Evaluation

Our third scenario formalizes the overlapping generations story in the introduction, in

which each successive retention of a new employee further improves the subsequent de-

cision by providing more valuable comparative performance information. This scenario

generalizes Section 3’s model by relaxing the assumption that only the joint output

of the junior and senior employees is observed.13 To further increase generality, we

will describe the scenario here in terms of general factors of production rather than

employees specifically.

In each period t, the firm observes a noisy signal xt = νt + εt of the intrinsic

productivity νt of a new factor. If it chooses not to retain the factor, then its flow

payoff in period t + 1 is a constant m. If it chooses instead to retain the factor, then

it receives in period t + 1 a payoff yt+1 = νt + εt+1, after which the factor is of no

further use. Draws of ν and ε are independent of one another and across time and are

distributed respectively according to N(0, 1) and N(0, 1/b).

The crucial feature of this scenario is that the noise εt+1 affecting the payoff from

the retained factor νt is the same as that affecting the signal xt+1 = νt+1 + εt+1 about

12The posterior precision on νt, given yt, is s, so the posterior precision on ε, given xt and yt, is
kt + s.

13An alternative generalization of Section 3’s model, that would yield Bellman equation (22)with s =
1, would simply involve the abilities of newly-hired seniors being distributed according to N(m, 1/b).
The case b > 1 would reflect the firm’s ability to see some signal of a new senior’s performance at
a prior job, thus giving it a more precise evaluation of ability when hiring a new senior than a new
junior.
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the next factor νt+1. This feature represents the fact that the productivity of the new

factor is evaluated in the same environment in which the retained factor produces.14 If

the firm decides to retain the factor νt, the observation of its subsequent performance

yt+1 provides information about εt+1 which improves the quality of the decision about

the next factor νt+1. Furthermore, because in this case more is learned about νt+1 than

about νt, retention of νt+1 allows an even more precise inference about the productivity

of the following period’s factor νt+2, and so on. Thus, retention of a factor, by making

available comparative performance information, improves the next decision, and the

greater the number of successive retentions, the more valuable is the comparative per-

formance information, so the greater is the quality of the following decision. On the

other hand, if a factor is ever rejected, then the quality of the next period’s decision

is reduced to a baseline level, since it must be made without the benefit of any com-

parative performance information, solely on the basis of that period’s x signal and the

prior information about the ε noise term.

Here, let λt and kt be the mean and precision, respectively, of the distribution of

εt, computed before observation of xt but after observation of yt (if the factor νt−1 was

retained). Define x̄t ≡ xt−λt. The posterior mean of the period-t factor’s productivity

νt, given x̄t, has a distribution, computed prior to obseration of x̄t, which is the same

as that of µ̃(k, x̄) in Section 3, given by (3). As before, the relevant state variable in

the value function is just kt.

If, after observing xt, the firm retains the factor νt, then the period-t + 1 expected

flow payoff will be µ̃(kt, x̄t). Since retention allows the firm to observe both xt and yt+1,

the period-t + 1 value of the state variable will rise to kt+1 = kt +1+ b.15 If instead the

factor νt is rejected, then the period-t + 1 flow payoff will be m, and the state variable

will revert to the prior precision on εt+1, so kt+1 = b. The Bellman equation is therefore

V (k) = δEx̄ [max {µ̃(k, x̄) + V (k + 1 + b),m + V (b)}] . (23)

14For example, a firm may be using an information processing system that must be replaced the
following period. It may be able in the present period to test run a new system, using the information
that currently needs to be processed. However, if adopted, the new system will be used to process
future information, which differs in nature from current information.

15The posterior precision on νt, given xt, is kt + 1, so the posterior precision on εt+1, given xt and
yt+1, is kt + 1 + b.
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This is clearly the special case of (22) where s = 1 + b.16

4.4 Analysis of the General Model

We again want to characterize the form of history-dependence in optimal decision-

making, specifically how the probability of an acceptance (retention) depends on the

number of consecutive acceptances since the last rejection. Formally, we are again an-

alyzing the dependence of the acceptance probability p(k) on the stock of accumulated

information, k. Given the generalized Bellman equation (22), the probability of an

acceptance (retention) in state k is

p(k) = Pr[µ̃(k, x̄) ≥ m + V (b)− V (k + s)] = 1− Φ

[
m + V (b)− V (k + s)

σk

]
. (24)

With the definition

A(V (k)) ≡ m + V (b)− V (k + s)

σk

, ∀k ∈ Q, (25)

it is once again true that

p(k) = 1− Φ(A(V (k))), (26)

so p(k) increases in k if and only if A(V (k)) decreases in k.

It is easy to see that the stock and precision effects of accumulated information

continue to operate, and in the same directions as before. The optimal cutoff for the

posterior evaluation, µ̄k = m + V (b) − V (k + s), is decreasing in k: this is the stock

effect, and by itself it acts to make p(k) rise with k. But the variance of the posterior

evaluation, (σk)
2, itself rises with k, so if the optimal cutoff is below (above) the prior

mean of zero, this variation per se acts to make p(k) fall (rise) with k: this is the

precision effect.

Our focus now is on how the increment in precision induced by an acceptance, s,

and the baseline level of precision following a rejection, b, affect the likelihood that

acceptance decisions are self-reinforcing (p(k) increasing in k) or self-limiting (p(k)

16A more complex version of this overlapping generations scenario generates (22), but we have
chosen the version above for expositional simplicity.
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decreasing in k). Recall that the parameters s and b are measured relative to 1,

where 1 is the value to which we have normalized the prior precision of the uncertain

payoff “opportunity” which the decision-maker is deciding each period whether or not

to accept.17

The transformation G derived from the Bellman equation (22),

G(V (k)) = δEx̄ [max {µ̃(k, x̄) + V (k + s),m + V (b)}] , (27)

is a contraction mapping and so has a unique fixed point. Define H as in Section 3 by

H(A(V )) ≡ A(G(V )), (28)

so that if V ∗ is a fixed point of G, then A(V ∗) is a fixed point of H. Evaluating

A(G(V )) in the same way as we did in Section 3 allows us to write the generalized

version of the transformation H as

(HA)k = − δ

σk

[σk+sR(Ak+s)− σbR(Ab)] +
m

σk

, ∀k ∈ Q. (29)

The intuitive argument we developed following Proposition 1 can be extended to

this more general model and suggests that, for given values of the parameters s and b,

acceptance decisions are more likely to be self-reinforcing the larger is the “acceptance

hurdle” m. This intuitive reasoning is formally confirmed below. To determine how

variations in s and b affect the size of the region in (δ,m) space where acceptances are

self-reinforcing, it is enlightening to examine the extreme cases of s → ∞ and s → 0.

In these cases, we can fully characterize the dynamics of optimal decision-making, for

all values of m ∈ (−∞,∞), δ ∈ (0, 1), and b ≥ 1
3
, and for all states k ∈ Q.18

17This uncertain payoff opportunity is the current junior’s ability in Section 3, the current firm-
specific shock εt in Section 4.1, and the value of the new project or factor νt in Sections 4.2 and
4.3.

18We restrict attention to b ≥ 1
3 in order to ensure that the generalization of the bound U(m, δ)

defined in (16) is well-defined.
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Consider first the limiting case of s →∞. In this case,

A(V (k)) =
m + V (b)− V (∞)

σk

, (30)

and the fixed point of the transformation H solves

Ak = − δ

σk

[R(A∞)− σbR(Ab)] +
m

σk

. (31)

The stock effect is absent here, since regardless of the current state, one more acceptance

causes the stock of precision to rise to∞, and hence the optimal cutoff for the posterior

evaluation is m + V (b) − V (∞), independent of the current state k. The sign of the

precision effect alone therefore determines whether acceptances are self-reinforcing (in

which case they are also strongly self-reinforcing) or self-limiting. From (30) it is clear

that the boundary case, where Ak and hence p(k) are independent of k, is where Ak = 0

for all k ∈ Q, that is, m + V (b) − V (∞) = 0. Substituting Ak = 0 into both sides of

(31) then transforms it into

0 = −δ(1− σb)φ(0) + m,

since R(0) = φ(0). These observations establish:

Proposition 2. For any b ∈ [1
3
,∞), consider the limit as s →∞.

i) For all δ ∈ (0, 1), if m > δ(1− σb)φ(0), then under the optimal decision rule p(k) is

strictly increasing in k and p(k) < 1
2
for all k ∈ Q, that is, retentions are strongly

self-reinforcing in all states.

ii) For all δ ∈ (0, 1), if m < δ(1 − σb)φ(0), then under the optimal decision rule p(k)

is strictly decreasing in k for all k ∈ Q, that is, retentions are self-limiting in all

states.

iii) The critical value of m at which p(k) is independent of k, δ(1−σb)φ(0), is increas-

ing in δ and decreasing in b.

These findings are represented in Figure 4.
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Now consider the other limiting case of s → 0. Here,

A(V (k)) =
m + V (b)− V (k)

σk

,

and the fixed point of H solves

Ak = − δ

σk

[σkR(Ak)− σbR(Ab)] +
m

σk

. (32)

This can be rewritten as

Ak + δR(Ak) =
δσbR(Ab) + m

σk

. (33)

In this setting, both the stock effect and the precision effect continue to operate. These

effects exactly offset each other when Ak is independent of k. Since the left-hand side of
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(33) is strictly increasing in Ak, Ak is independent of k if and only if δσbR(Ab)+m = 0.

Now setting k = b in (33) shows that Ab = m
σb
, and therefore

Ak is independent of k ⇐⇒ m

σb

+ δR(
m

σb

) = 0. (34)

If m
σb

+ δR( m
σb

) > 0 (respectively, < 0), then (33) shows that Ak is strictly decreasing

(respectively, strictly increasing) in k. Since m
σb

+ δR( m
σb

) is increasing in m, it follows

that for this limiting case of s → 0, equation (34) implicitly defines the locus of points

in (δ,m) space above which retentions are self-reinforcing in all states and below which

they are self-limiting in all states. Furthermore, retentions are strongly self-reinforcing

in all states if and only if µ̄k ≡ m+V (b)−V (k) > 0 for all k. Since µ̄k is decreasing in

k, this is equivalent to µ̄∞ > 0. Now µ̄∞ = 0 if and only if A∞ = 0, and setting k = ∞
in (33) shows that A∞ solves

A∞ + δR(A∞) = δσbR(
m

σb

) + m.

Hence

A∞ = 0 ⇐⇒ m

σb

+ δR(
m

σb

) =
δφ(0)

σb

.

Thus for s → 0, retentions are strongly self-reinforcing in all states if and only if
m
σb

+ δR( m
σb

) > δφ(0)
σb

. Proposition 3 summarizes and formalizes the above arguments:

Proposition 3. For any b ∈ [1
3
,∞), consider the limit as s → 0. For all δ ∈ (0, 1),

there exist functions m0(δ, b) < 0 and m̄0(δ, b) > 0 such that

i) if m > m̄0(δ, b)), then under the optimal decision rule p(k) is strictly increasing in

k and p(k) < 1
2
for all k ∈ Q, that is, acceptances are strongly self-reinforcing in

all states;

ii) if m ∈ (m0(δ, b), m̄0(δ, b)), then under the optimal decision rule p(k) is strictly

increasing in k for all k ∈ Q, but for k sufficiently large, p(k) > 1
2
, that is,

acceptances are self-reinforcing in all states but for sufficiently large states are

not strongly self-reinforcing;
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iii) if m < m0(δ, b), then p(k) is strictly decreasing in k for all k ∈ Q, that is, accep-

tances are self-limiting in all states.

The function m̄0(δ, b) solves m
σb

+ δR( m
σb

) = δφ(0)
σb

, and for all δ ∈ (0, 1) and for

all b ∈ [1
3
,∞), m̄0(δ, b) is strictly decreasing in b and strictly increasing in δ, with

limδ→0 m̄0(δ, b) = 0 and limδ→1 m̄0(δ, 1
3
) ≈ .320.

The function m0(δ, b) solves m
σb

+ δR( m
σb

) = 0, and for all δ ∈ (0, 1) and for all

b ∈ [1
3
,∞), m0(δ, b) is strictly decreasing in b and in δ, with limδ→0 m0(δ, b) = 0 and

limδ→1 m0(δ, b) = −∞.

These findings are represented in Figure 5. The final two sentences of Proposition

3 are proved in the Appendix.

Comparing Propositions 2 and 3 shows that for any discount factor δ ∈ (0, 1) and

for any b ≥ 1
3
, the critical value of the acceptance hurdle m above which acceptance
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decisions are self-reinforcing is smaller when s → 0 than when s → ∞. And it is not

hard to show that, fixing b = 1 and for any δ, the range of m values where acceptances

are self-reinforcing in the model of Section 3 (where s = 1, b = 1) is strictly larger than

for s → ∞ and strictly smaller than for s → 0. Thus, in environments where s, the

increment in precision from each successive acceptance, is large, acceptances are less

likely to be self-reinforcing: the critical m above which the stock effect will outweigh

the precision effect will be larger. This result can be understood by recalling that

Ak =
m + V (b)− V (k + s)

σk

,

where the numerator of Ak is µ̄k, the optimal cutoff for the posterior evaluation of

the new opportunity. While a change in s will of course indirectly affect the value of

the value function V (k) in all states k, the first-order effect of a change in s on the

variation of Ak with k is to reduce the rate at which µ̄k falls with k, that is, to reduce

the magnitude of the stock effect. (Recall that for s →∞, V (k + s) is independent of

k, and hence the stock effect is completely absent.) This weakening of the stock effect

explains why the range of values of m where acceptances are self-reinforcing shrinks as

the parameter s grows large.

Propositions 2 and 3 show that, both when s → 0 and when s → ∞, for any

δ ∈ (0, 1), the critical value of m above which acceptances are self-reinforcing is smaller

the larger is b, the value to which the stock of precision falls after a rejection. To

understand why acceptances are more likely to be self-reinforcing in environments

where b is large, observe that changes in b, unlike changes in s, do not have a direct

effect on the rate at which µ̄k = m + V (b) − V (k + s) falls with k. The first-order

effect of an increase in b is the rise it causes in µ̄k, via the increase in V (b). Recalling

the discussion following Proposition 1, this rise in the cutoff has the same qualitative

effect on the variation of p(k) with k as an increase in m. Hence, an increase in b will

increase the range of m values in which acceptances are self-reinforcing.

Propositions 2 and 3 also reveal how changes in s and b affect the likelihood that

acceptances are strongly self-reinforcing, that is, that the precision effect reinforces

the stock effect. Since the critical locus for s → ∞, m = δ(1 − σb)φ(0), and that
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for s → 0, m = m̄0(δ, b), both shift downwards as b increases, increases in b enlarge

the region in (δ,m) space where acceptances are strongly self-reinforcing. Similarly,

it can be checked that m̄0(δ, b) > δ(1 − σb)φ(0), so increases in s have a qualitatively

similar effect to increases in b. To understand these results, recall that acceptances are

strongly self-reinforcing in all states when µ̄k > 0 for all k. Since µ̄k is decreasing in k,

this is equivalent to µ̄∞ = m+V (b)−V (∞) > 0. It is clear that the first-order effect of

an increase in b is to lower the critical m above which µ̄∞ > 0. The effect of s is more

subtle, since s affects µ̄∞ only indirectly, as a parameter shifting V (b) and V (∞). An

increase in s will raise V (b) more than it raises V (∞), and hence, like b, will lower the

critical m above which µ̄∞ > 0. This can be seen by using (22) to compare V (b) and

V (∞): when the current state is k = ∞, neither the continuation value following an

acceptance, V (∞), nor the continuation value following a rejection, V (b), is directly

raised by an increase in s, whereas when the current state is b, the continuation value

following an acceptance, V (b + s), does directly increase with a rise in s.

5 Conclusion

In this paper, we have characterized history-dependence in decision-making in several

models involving sequences of decisions. In all of the models, the decision-maker must,

in each period, choose whether to accept or reject a different opportunity, whose payoff

is uncertain and is observed only with noise. The decisions may concern the promo-

tion of junior employees, the adoption of proposed projects, the purchase of goods or

services, or the carrying out of a particular type of activity. Even though the payoffs

of the different opportunities are independently distributed, the quality of tomorrow’s

decision depends upon whether or not today’s opportunity is accepted. Specifically,

each time the organization accepts its current opportunity, it adds to the stock of

precision with which future opportunities can be evaluated; each time the current op-

portunity is rejected, this stock of information reverts to a baseline level. We analyzed

how the optimal probability of acceptance depends on the current information stock,

or equivalently, on the number of acceptances since the last rejection.

We identified two distinct and sometimes conflicting effects of information accu-
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mulation on decision-making. The stock effect reflects the fact that information is a

valuable stock which grows with the time since the last rejection, thereby making the

organization more reluctant to reject and dissipate this valuable stock. On the other

hand, the precision effect reflects the fact that this stock of information is valuable

only insofar as it gives rise to a more informed rejection decision. Specifically, the

bigger is the information stock, the more precise is the noisy observation about the

current opportunity, and therefore the more variable ex ante is the posterior evalu-

ation of its profitability. We showed that over a wide range of parameter values for

the decision-making environment, the stock effect is either reinforced by the precision

effect or dominates the precision effect, and as a result, decisions to accept the cur-

rent opportunity are self-reinforcing: the probability of acceptance is increasing in the

number of acceptances since the last rejection. Acceptances are more likely to be self-

reinforcing the higher is the “acceptance hurdle” (the ex ante expected cost, to flow

payoff, of accepting the current opportunity), the smaller is the increase in precision

with each successive retention, and the larger is the baseline level of precision to which

the information stock reverts after a rejection.

This paper’s identification of the stock and precision effects of information accu-

mulation, and the techniques used to analyze their relative sizes, can be applied to

study other sequential decision-making environments in which current decisions affect

the quality of future decisions. We leave such further applications of our framework to

future research.
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Appendix

Proof of Proposition 1, part i): We proceed via a series of lemmas.

Lemma 1. The transformationG defined by (8) is a contraction mapping and therefore
has a unique fixed point.

Proof: We demonstrate that under the standard metric (the sup-norm metric) on

Rω, G : B 7→ B satisfies the two conditions of Blackwell’s theorem, and therefore is a

contraction mapping.

1. Monotonicity: ∀V 1, V 2 ∈ B, V 1 ≤ V 2, ∀k ∈ Z+,

(GV 1)k = δE
[
max

{
µ̃(k) + V 1

k+1, m + V 1
1

}]

≤ δE max
[{

µ̃(k) + V 2
k+1, m + V 2

1

}]
= (GV 2)k.

2. Discounting: ∀V ∈ B, a ≥ 0, k ∈ Z+,

(G(V + a))k = δE [max {µ̃(k) + Vk+1 + a,m + V1 + a}] = (GV )k + δa

Since both monotonicity and discounting are satisfied by G, it follows that G is a

contraction mapping and therefore has a unique fixed point. Q.E.D.

Lemma 2.

a) For all m ∈ (−∞,∞) and δ ∈ (0, 1), U(m, δ) and L(m, δ) are uniquely defined by
(16) and (17).

b) If m ≥ 0, then for all δ ∈ (0, 1), U(m, δ) > L(m, δ).

c) For all (m, δ), U(m, δ) is strictly decreasing in δ and, if U(m, δ) ≥ L(m, δ), then
L(m, δ) is strictly decreasing in δ.

d) For all m ≥ 0 and for all δ ∈ (0, 1), U(m, δ) and L(m, δ) are strictly increasing in
m.

Proof:

a) Define the functions u : R 7→ R and l : R 7→ R by

u(x) ≡ −cδR(x) +
m

σ1

− x, l(x) ≡ −δ [R(x)− σ1R(U)] + m− x.
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Since c < 1 and since φ′(x) = −xφ(x) implies R′(x) = −(1− Φ(x)), it follows that

u′(x) = cδ(1− Φ(x))− 1 < 0, l′(x) = δ(1− Φ(x))− 1 < 0.

Now noting that limx→−∞
R(x)

x
= −1, it follows that for any a, −1 < a < 0,

lim
x→−∞

(aR(x)− x) = lim
x→−∞

x

(
a
R(x)

x
− 1

)
= ∞;

and therefore, since both δ and cδ are between 0 and 1, it follows that,

lim
x→−∞

u(x) = ∞, lim
x→−∞

l(x) = ∞.

Also, since limx→∞ R(x) = 0,19

lim
x→∞

u(x) = −∞, lim
x→∞

l(x) = −∞.

Thus, since both u and l are continuous and monotonically decreasing, each has a

unique root for any m ∈ (−∞,∞) and for any δ ∈ (0, 1). And by construction, the

roots of u and l uniquely define U(m, δ) and L(m, δ).

b) To show that for any m ≥ 0 and for any δ ∈ (0, 1), U(m, δ) > L(m, δ), we evaluate

l(x) at U(m, δ) and show that l(U(m, δ)) < 0:

l(U(m, δ)) = −δ [R(U(m, δ))− σ1R(U(m, δ))] + m− U(m, δ)

= −δ [(1− σ1)R(U(m, δ))] + m + δcR(U(m, δ))− m

σ1

= −δ(1− σ1 − c)R(U(m, δ))−m

(
1− σ1

σ1

)

< 0,

for all m ≥ 0 and for all δ ∈ (0, 1), since 1− σ1 − c > 0, R(U) ≥ 0, and σ1 ∈ (0, 1).

c) Implicitly differentiating the definition of U(m, δ) with respect to δ yields

Uδ = − R(U)c

1 + δcR′(U)
< 0,

19This follows since l’Hôpital’s rule implies that limx→∞(1− Φ(x))x = 0.
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where the inequality follows since δ ∈ (0, 1), c ∈ (0, 1), and −1 < R′ < 0. Implicitly

differentiating the definition of L(m, δ) with respect to δ yields

Lδ(1 + δR′(L)) = −[R(L)− σ1R(U)] + δσ1R
′(U)Uδ

= −[R(L)− σ1R(U)]− δcσ1R
′(U)R(U)

1 + δcR′(U)
sgn
= −(R(L)− σ1R(U))(1 + δcR′(U))− δcσ1R

′(U)R(U)

= −(R(L)− σ1R(U))− δcR′(U)R(L)

=
L−m

δ
− δcR′(U)R(L)

sgn
= L−m− δ2cR′(U)R(L)

≤ L−m + δ2cR(L)

≤ L−m + δcR(L)

= L−m + δR(L) + δR(L)(c− 1)

= δσ1R(U) + δR(L)(c− 1)

≤ δR(L)(σ1 + c− 1)

< 0,

where the first inequality follows from R′(U) ≥ −1, the second from δ ∈ (0, 1), the

third from the hypothesis that L ≤ U , and the fourth from the fact that 1−σ1−c > 0.

Since (1 + δR′(L)) > 0, it follows that L(m, δ) is strictly decreasing in δ when L ≤ U .

d) Implicitly differentiating the definition of U(m, δ) with respect to m yields

Um =
1

σ1(1 + δcR′(U))
> 0.

Implicitly differentiating the definition of L(m, δ) with respect to m yields

Lm(1 + δR′(L)) = 1 + δσ1R
′(U)Um

sgn
= 1 + δ(1 + c)R′(U),

so Lm has the sign of 1 + δ(1 + c)R′(U). Since Um > 0, 1 + δ(1 + c)R′(U) is strictly

increasing in m. For δ ≤ 1
1+c

, 1 + δ(1 + c)R′(U) > 0 for all m > −∞. For δ > 1
1+c

,

1 + δ(1 + c)R′(U) = 0 has a unique solution m = m̃(δ). Implicitly differentiating
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1 + δ(1 + c)R′(U(m̃(δ), δ)) = 0 with respect to δ yields

m̃′(δ) = −(R′(U) + δR′′(U)Uδ)

δR′′(U)Um

> 0.

Now evaluate m̃(δ) at δ = 1, as follows:

1 + (1 + c)R′(U(m̃(1), 1)) = 0.

Since R′(x) = −(1−Φ(x)), Φ(U(m̃(1), 1)) = c
1+c

, so U(m̃(1), 1) = (Φ)−1
(

c
1+c

)
= −1.11.

Therefore m̃(1) = σ1(U(m̃(1), 1) + cR(U(m̃(1), 1))) ≈ −.655 < 0. Since m̃(1) < 0 and

m̃′(δ) > 0, it follows that for all δ ∈ (0, 1) and for all m ≥ 0, L(m, δ) is strictly

increasing in m. Q.E.D.

Lemma 3. The set S(m, δ) is closed in B ≡ {V | V : Z+ 7→ R, bounded} under the
sup-norm.

Proof: Assume there is a sequence of functions V n in S(m, δ) such that V n → V ¦

as n → ∞ in the sup-norm, where V ¦ ∈ B. As A(·) is continuous, we know that

A(V n) → A(V ¦). Then clearly we have pointwise convergence A(V n(k)) → A(V ¦(k)).

Since V n ∈ S(m, δ) for all n, A(V n(k)) ≥ A(V n(k + 1)) for all n. Taking the limit as

n → ∞ on both sides gives A(V ¦(k)) ≥ A(V ¦(k + 1)), so A(V ¦) satisfies Condition

i. In the same way, we can show that A(V ¦) satisfies Conditions ii and iii. Therefore

A(V ¦) ∈ S(m, δ), so S(m, δ) is closed under the sup-norm. Q.E.D.

Lemma 4. For all m ≥ 0 and for all δ ∈ (0, 1),

R(U(m, δ)) + m
σ1

R(L(m, δ))
> θ ≡ 4

3
√

3
.

Proof: Parts b) and c) of Lemma 2 imply that, for m ≥ 0,

R(U(m, δ)) + m
σ1

R(L(m, δ))
>

R(U(m, 0)) + m
σ1

R(L(m, 1))
=

R( m
σ1

) + m
σ1

R(L(m, 1))
.

Now the numerator of this last expression is strictly positive and is an increasing

function of m. From part d) of Lemma 2, the denominator is a decreasing function of

41



m. Therefore
R( m

σ1
) + m

σ1

R(L(m, 1))
≥ R(0)

R(L((0, 1))
=

φ(0)

R(L(0, 1))
,

where L(0, 1) solves L(0, 1) + R(L(0, 1)) = σ1R(U(0, 1)) and U(0, 1) solves U(0, 1) +

δcR(U(0, 1)) = 0. Solving the second equation for U(0, 1) gives U(0, 1) = −.067, and

then using this value in the first equation to solve for L(0, 1) gives L(0, 1) = −.201,

from which it follows that

φ(0)

R(L(0, 1))
= .786 > θ. Q.E.D.

Lemma 5. Define f : R2
+ 7→ R by

f(k, x) ≡
[

1

σk

(σk+1 − σ1x)

]
.

Then for all x > θ and for all k ≥ 1, fk(k, x) > 0.

Proof: Since
dσk

dk
=

1

2

(
1

σk(k + 1)2

)
,

it follows that

fk(k, x) =

(−1

σ2
k

)(
1

2σk(k + 1)2

)
(σk+1 − σ1x) +

1

2σkσk+1(k + 2)2
.

With some straightforward (but tedious) manipulations, it then follows that fk(k, x) >

0 iff

x >
2
√

2

k + 2
σk+1. (35)

Letting g(k) represent the right-hand-side of this expression, further manipulations

yield

g′(k) = −
√

2

(k + 2)3σk+1

(2k + 1),

which is clearly less than 0 for all k ≥ 1. It therefore follows that inequality (35) will

be satisfied for all k ≥ 1 provided that it is satisfied at k = 1. At k = 1 inequality (35)

simply becomes

x >
4

3
√

3
≡ θ,
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and this completes the proof. Q.E.D.

Lemma 6. For all m ≥ 0 and for all δ ∈ (0, 1), if V ∈ S(m, δ), then A(G(V )) =
H(A(V )) satisfies Condition i.

Proof: Using the expression for H we derived in (13), we have that ∀k ∈ Z+ ,

(HA)k ≥ (HA)k+1 if and only if

δ

σk

(
σk+1 − σ1

R(A1)

R(Ak+1)

)
− m

σkR(Ak+1)
≤ δ

σk+1

(
σk+2

R(Ak+2)

R(Ak+1)
− σ1

R(A1)

R(Ak+1)

)
− m

σk+1R(Ak+1)
.

(36)

Since by hypothesis Ak+1 ≥ Ak+2, it follows that
R(Ak+2)

R(Ak+1)
≥ 1. Consequently, a sufficient

condition for (HA)k ≥ (HA)k+1, for δ ∈ (0, 1), is that

1

σk

[
σk+1 −

(
σ1

R(A1)

R(Ak+1)
+

m

δR(Ak+1)

)]
≤ 1

σk+1

[
σk+2 −

(
σ1

R(A1)

R(Ak+1)
+

m

δR(Ak+1)

)]
.

(37)

Since by hypothesis L(m, δ) ≤ Ak ≤ U(m, δ), m ≥ 0, and δ ∈ (0, 1), it follows that for

all k ∈ Z+,
R(A1)

R(Ak+1)
+

m

δσ1R(Ak+1)
≥ R(U(m, δ)) + m

σ1

R(L(m, δ))

Lemma 4 then implies that ∀k ∈ Z+,

R(A1)

R(Ak+1)
+

m

δσ1R(Ak+1)
> θ.

This observation, together with Lemma 5, demonstrates that equation (37) is satisfied

∀ k ∈ Z+, thereby completing the proof. Q.E.D.

Lemma 7. For all m ∈ (−∞,∞) and for all δ ∈ (0, 1), if V ∈ S(m, δ), then
A(G(V )) = H(A(V )) satisfies Condition ii.

Proof: From Lemma 6, it follows that ∀ k ∈ Z+, HA1 ≥ HAk. Thus it is sufficient to

show that HA1 ≤ U(m, δ). Now

HA1 = − δ

σ1

[σ2R(A2)− σ1R(A1)] +
m

σ1

;

and since R′(·) ≤ 0, it follows that

HA1 ≤ −δ
(σ2 − σ1)

σ1

R(A1) +
m

σ1

≤ −δcR(U(m, δ)) +
m

σ1

= U(m, δ),
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where the second inequality uses the hypothesis that A1 ≤ U(m, δ). Q.E.D.

Lemma 8. For all m ∈ (−∞,∞) and for all δ ∈ (0, 1), if V ∈ S(m, δ), then
A(G(V )) = H(A(V )) satisfies Condition iii.

Proof: For V ∈ S(m, δ), since A(V ) is bounded and monotonic, it follows that

limk→∞ Ak exists. Call this limit A∞. Also, from Lemma 6, it follows that ∀ k ∈
Z+, HAk ≥ HA∞. Thus it is sufficient to show that HA∞ ≥ L(m, δ). Now, since H is

a continuous operator and R is a continuous function, it follows that

HA∞ = limk→∞HAk = lim
k→∞

−
[

δ

σk

[σk+1R(Ak+1)− σ1R(A1)]

]
+

m

σk

= −δ [R(A∞)− σ1R(A1)] + m ≥ −δ [R(L(m, δ))− σ1R(U(m, δ))] + m = L(m, δ),

where the inequality uses the hypotheses that A∞ ≥ L(m, δ) and A1 ≤ U(m, δ). Q.E.D.

Lemmas 6, 7, and 8 together show that for all m ≥ 0 and for all δ ∈ (0, 1),

G(S(m, δ)) ⊂ S(m, δ). From this, together with Lemma 3, it follows that the unique

fixed point V ∗ of G must be in S(m, δ) and hence A(V ∗(k + 1)) ≤ A(V ∗(k)) for all

k ∈ Z+, which is equivalent to p(k + 1) ≥ p(k) for all k ∈ Z+. Strict monotonicity of

p(k) follows by noting from Lemmas 4 and 5 that since

R(U(m, δ)) + m
σ1

R(L(m, δ))
> θ

holds strictly, inequality (37) in the proof of Lemma 6 is strict as well. This implies

that A(V (k + 1)) = A(V (k)) for all k ∈ Z+ is incompatible with V being a fixed point

of G. This completes the proof of part i) of Proposition 1.

Proof of Proposition 1, part ii): If, for m ≥ 0 and for any δ ∈ (0, 1), L(m, δ) > 0,

then the same arguments used to prove part i) establish that for the fixed point V ∗,

not only are Conditions i, ii, and iii satisfied but also A(V ∗(k)) > 0 for all k ∈ Z+,

which is equivalent to p(k) < 1
2
. The final steps are accomplished by:

Lemma 9. In the region m ≥ 0, the condition L(m, δ) = 0 implicitly determines a
function m = m̄(δ) satisfying m̄(δ) > 0 and m̄′(δ) > 0 for δ ∈ (0, 1), limδ→0 m̄(δ) = 0,
and limδ→1 m̄(δ) ≈ .188. For m > m̄(δ), L(m, δ) > 0.
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Proof: For m = 0, the condition defining U(m, δ) becomes U(0, δ)+ δcR(U(0, δ)) = 0.

Therefore U(0, δ) < 0 and so, by part b) of Lemma 2, L(0, δ) < 0. By part d) of Lemma

2, L(m, δ) is strictly increasing in m for m ≥ 0. The condition defining L(m, δ) is

L(m, δ) + δR(L(m, δ)) = δσ1R(U(m, δ)) + m,

and as m → ∞, the right-hand side of this condition goes to ∞. Since the left-hand

side is increasing in L and goes to ∞ as L → ∞, limm→∞ L(m, δ) = ∞. Therefore,

for all δ ∈ (0, 1), in the interval m ∈ (0,∞) there exists a unique m ≡ m̄(δ) such that

L(m, δ) = 0, and for m > m̄(δ), L(m, δ) > 0.

The condition L(m̄(δ), δ) = 0 is equivalent to

δφ(0) = δσ1R(U(m̄(δ), δ)) + m̄(δ), (38)

and implicitly differentiating with respect to δ yields

m̄′(δ)(1 + δσ1R
′(U)Um) = φ(0)− σ1R(U)− δσ1R

′(U)Uδ.

The proof of part d) of Lemma 2 showed that 1+δσ1R
′(U)Um > 0 for m ≥ 0. Therefore

m̄′(δ)
sgn
= φ(0)− σ1R(U)− δσ1R

′(U)Uδ

=
m

δ
+

δcσ1R(U)R′(U)

1 + δcR′(U)

=
m

δ
+

(m− σ1U)R′(U)

1 + δcR′(U)
sgn
=

m

δ
(1 + δ(1 + c)R′(U))− σ1UR′(U).

Now for m ≥ 0 the first term is positive (as shown in the proof of part d) of Lemma

2) and, by part b) of Lemma 2, U(m̄(δ), δ) > L(m̄(δ), δ) = 0, so −σ1UR′(U) > 0.

Therefore m̄′(δ) > 0. From (38), limδ→0 m̄(δ) = 0. As δ → 1, (38) becomes φ(0) =

σ1R(U(m̄(1), 1)) + m̄(1), and U(m̄(1), 1) solves U(m̄(1), 1) + cR(U(m̄(1), 1)) = m̄(1)
σ1

.

Solving these two conditions simultaneously for U(m̄(1), 1) and m̄(1) yields m̄(1) ≈
.188. Q.E.D.

This completes the proof of part ii) of Proposition 1.
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Proof of Proposition 1, part iii):

Lemma 10. If for the fixed point V ∗ of G, A(V ∗(k)) ≥ A(V ∗(k + 1)) for all k ∈ Z+,
then the bounds L(m, δ) and U(m, δ) defined in (17) and (16) must satisfy L(m, δ) ≤
U(m, δ). Equivalently, if L(m, δ) > U(m, δ), then for the fixed point V ∗ of G there
must exist some k ∈ Z+ such that A(V ∗(k)) < A(V ∗(k+1)) and hence p(k) > p(k+1).

Proof: From the definition of the operator H in (9), if V ∗ is a fixed point of G, then

H(A(V ∗)) = A(G(V ∗)) = A(V ∗),

so A(V ∗) is a fixed point of H, and hence from equation (13),

A(V ∗)k = − δ

σk

[σk+1R(A(V ∗)k+1)− σ1R(A(V ∗)1)] +
m

σk

. (39)

Write Ak for A(V ∗)k, set k = 1, and use the hypothesis that Ak ≥ Ak+1 for all k ∈ Z+

to derive

A1 = − δ

σ1

[σ2R(A2)− σ1R(A1)] +
m

σ1

≤ −δcR(A1) +
m

σ1

.

Since δc < 1, A1 + δcR(A1) is strictly increasing in A1. Therefore it follows from the

definition of U(m, δ) that

A1 ≤ U(m, δ). (40)

Taking the limit as k →∞ in (39) and using (40) gives

A∞ = −δ[R(A∞ − σ1R(A1)] + m ≥ −δ[R(A∞)− σ1R(U(m, δ))] + m.

Since A∞+δR(A∞) is strictly increasing in A∞, it follows from the definition of L(m, δ)

that

L(m, δ) ≤ A∞. (41)

The hypothesis that Ak+1 ≤ Ak for all k ∈ Z+, along with (40) and (41), implies that

L(m, δ) ≤ A∞ ≤ A1 ≤ U(m, δ). Q.E.D.

Lemma 11. The condition L(m, δ) = U(m, δ) implicitly determines a function m =
m(δ) satisfying m(δ) < 0 and m′(δ) < 0 for δ ∈ (0, 1), limδ→0 m(δ) = 0, and
limδ→1 m(δ) ≈ −.208. For m < m(δ), L(m, δ) > U(m, δ).
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Proof: From the proof of part b) of Lemma 2, we know that L < U , L > U , or L = U

according to whether

δR(U(m, δ))(1− σ1 − c) + m
(1− σ1)

σ1

(42)

is strictly positive, strictly negative, or zero. At m = 0, expression (42) is strictly

positive. For fixed δ, the derivative of (42) with respect to m is

δ(1− σ1 − c)R′(U)Um +
1− σ1

σ1

=
(1− σ1)(1 + δR′(U))− σ1δcR

′(U)

σ1(1 + δcR′(U))
> 0,

and as m → −∞, this derivative approaches

(1− σ1)(1− δ) + σ1δc

σ1(1− δc)
> 0,

so as m → −∞, expression (42) approaches −∞. Therefore for all δ ∈ (0, 1), there

exists a unique m ≡ m(δ) < 0 such that L(m, δ) = U(m, δ), and for m < m(δ),

L(m, δ) > U(m, δ). Setting expression (42) equal to 0 and implicitly differentiating

with respect to δ gives

m′(δ)[δ(1− σ1 − c)R′(U)Um +
1− σ1

σ1

]

= −(1− σ1 − c)[R(U) + δR′(U)Uδ],

from which it follows that m′(δ) < 0. Setting δ = 0 in (42) shows that limδ→0 m(δ) = 0.

Finally, taking δ → 1 in (42) and setting the expression equal to 0 gives

R(U(m(1), 1))(1− σ1 − c) + m(1)
(1− σ1)

σ1

= 0,

where U(m(1), 1) solves U(m(1), 1)+cR(U(m(1), 1)) = m
σ1
. Solving these two equations

simultaneously for U(m(1), 1) and m(1) yields m(1) ≈ −.208. Q.E.D.

Proof of Proposition 3: Parts i), ii), and iii) are proved in the text, so here we prove

only the claims about the properties of m̄0(δ, b) and m0(δ, b).
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The function m̄0(δ, b) solves

m + δσbR(
m

σb

) = δφ(0). (43)

For all δ ∈ (0, 1) and for all b ∈ [1
3
,∞), the left-hand side of (43) is strictly increasing

in m and, evaluated at m = 0, gives δσbφ(0), which is strictly less than the right-hand

side of (43), so m̄0(δ, b) > 0. Differentiating (43) implicitly with respect to σb yields

∂m

∂σb

(
1 + δR′(

m

σb

)

)
= −δR(

m

σb

) +
δm

σb

R′(
m

σb

) < 0,

where the inequality uses the fact that m̄0(δ, b) > 0. Since 1 + δR′( m
σb

) > 0, ∂m
∂σb

< 0,

and since σb is strictly increasing in b, m̄0(δ, b) is strictly decreasing in b. Differentiating

(43) implicitly with respect to δ yields

∂m

∂δ

(
1 + δR′(

m

σb

)

)
= φ(0)− σbR(

m

σb

) > 0,

where once again the inequality uses the fact that m̄0(δ, b) > 0. Hence m̄0(δ, b) is

strictly increasing in δ. From (43) it is obvious that limδ→0 m̄0(δ, b) = 0. Substituting

δ = 1 and b = 1
3
into (43) yields 2m + R(2m) = 2φ(0), which when solved for m gives

m ≈ .320.

The function m0(δ, b) solves m
σb

+ δR( m
σb

) = 0, so it follows immediately from the

definition of R(·) that for δ ∈ (0, 1) and b ∈ [1
3
,∞), m0(δ, b) < 0. It is straightforward

to show, by implicit differentiation, that m0(δ, b) is strictly decreasing in b and in δ,

and the limiting cases as δ goes to 0 and 1 are similarly straightforward, given the

definition of R(·). Q.E.D.
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