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1. INTRODUCTION

Unit root testing has been developed through numerous papers since the
work of Dickey and Fuller (1979). The idea is to test the hypothesis that
the differences of an observed time series do not depend on its levels, or
in other words, the levels of the time series has a unit root which can be
removed by differencing. While it is in general possible to have multiple unit
roots only the hypothesis of exactly one unit root is considered here. The
available tests therefore hinge on two assumptions: (i) the levels of the time
series has exactly one unit root which can be removed by differencing, and
(ii) the remaining characteristic roots of the time series are stationary roots.
In this paper it is proved that for the likelihood ratio test and a number of
other likelihood based statistics the assumption (ii) is redundant whereas (i)
is necessary. It is also shown that for some tests which are not likelihood
based it is indeed necessary to assume that the differences have stationary
roots.

The consequences of the result are perhaps best understood from the im-
plications of condition (i). For autoregressive models of order two or higher
that condition is not satisfied in the entire parameter space and the as-
ymptotic distribution of the likelihood ratio test for a unit root depends
on unknown nuisance parameters. In this situation the test statistic is not
pivotal and the test is not similar and this complicates the testing. For non-
likelihood based tests the necessity of condition (ii) implies an additional
similarity problem. The practitioner is therefore faced with a trade off be-
tween likelihood based tests with fewer similarity problems and other tests
which may have other advantageous properties. There are thus two empirical
implications of the result. First, when analysing time series with stationary
roots which have modulus close to one so that condition (ii) is nearly vio-
lated then the likelihood based tests are preferable and other tests should
be used cautiously. Secondly, if explosive roots are found in an application
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most of the statistical analysis is actually valid and should not necessarily be
disregarded because of the presence of explosive roots.

Section 2 presents a Gaussian autoregressive model along with its sta-
tistical analysis and the result showing that condition (ii) is redundant for
likelihood based tests. Robustness with respect to innovations which are
martingale difference is also discussed. The results of Section 2 are given for
a model without deterministic trends. In Section 3 these are generalised to
models with deterministic terms. The mathematical proofs following in two
appendices are based on the work of Lai and Wei (1983) and Chan and Wei
(1988).

2. A MODEL WITHOUT DETERMINISTIC COMPONENTS

Consider the statistical model given by the autoregressive equation,

p
AX;=aXi+ Y BAX j+e,  (t=1,....T), (2.1)

J=1

conditional on X, and AXj,...,AX;_,. The innovations are independently
identically Gaussian distributed with zero mean and variance o? and the
parameters a, 3, ..., 3, o? vary freely. The unit root hypothesis is given by
a=0.

The likelihood is maximised in two steps. First, AX; and X;_; are cor-
rected for the remaining terms of equation (2.1) by least squares regression
which gives the residuals Ry, and R, ;, respectively:

(ROJ, RLt) - (AXt, Xt,1’ AXt717 PN ,AXt,p) . (22)

The likelihood ratio test statistic for the hypothesis is then computed as

LR = —Tlog(1— ;\2) where )\ is the sample correlation of Ry, and R; ;, given
by S0 RogRu/ (X1 B3, >, R3,)V/2. When the alternative is one-sided
it is preferable to apply the signed version of the likelihood ratio test statistic
which is given by w =sign (&)(LR)Y? where & is the maximum likelihood
estimator for v given by >, Ro Ri./ S, R,

The characteristic polynomial of the process X is important for the dis-
tributional analysis of the test statistic. Under the hypothesis this is given by
P (2) =(1—2) (1" B;#7). Correspondingly, the characteristic polyno-
mial for the differenced process, AX, is 1(z)/(1 — z). Usually two conditions
are associated with the latter polynomial:
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(i) The differenced process AX has no unit roots, or equivalently,
P
> B #1 (2.3)
j=1

If this is satisfied define 6 = 1/(1 = 37F_, 3;).

(ii) The process AX can be given a stationary initial distribution, or equiv-
alently, the characteristic polynomial for AX has its roots outside the
complex unit circle.

In the following it is shown that the second condition is redundant for the
distributional analysis of the test statistic.

THEOREM 1. Suppose the model is given by (2.1) and that the hypothesis
a = 0 and the condition (2.3) are satisfied. Then, as T — oo and with W
being a standard Brownian Motion,

1
W dW,
w = sign (&)VLR 2 J . (2.4)

<f01 Wfdu) "

The convergence result fails if the condition (2.3) is not satisfied. The as-
ymptotic density and distribution functions are given by Abadir (1995).

The necessity of the assumption (2.3) was for instance encountered by
Pantula (1989). Consequently, the test is not even asymptotically similar.
This lack of similarity seems closely related to the problem that the asymp-
totic distribution can give poor approximations in finite samples, see Nielsen
(1998) who also proved Theorem 1 for a second order model, p = 1.

Results like Theorem 1 have been discussed extensively in the litera-
ture under the additional assumption that AX only has stationary roots.
White (1958) essentially proved the result for a first order model, p = 0.
For the purely non-explosive case the result can be derived from Chan and
Wei (1988). This is for instance done by Ghysels, Lee and Noh (1994) in
connection with seasonal time series. They considered a model of order four
or higher with one characteristic root at each of the quarterly frequencies,
1,4, —1,—1, and assumed that the remaining roots are stationary.

The result of the Theorem 1 is shared by a number of test statistics. Ex-

amples are the Wald statistic W = >y /(1— 5\2) and the Lagrange multiplier
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statistic LM = TX° discussed by Evans and Savin (1981), as well as the
t-type statistic 7 = {(T — 1);\2 /(1 — ;\2)}1/ 2 suggested by Dickey and Fuller

(1979) which is in one-one relation with w. Using the results of Appendix A
it also follows that the maximum likelihood estimator for « is consistent and
that T'6& converges in distribution to a variable which resembles that given
in (2.4).

Other statistics, such as the first order estimator for a which is given
by > X, 1AX,/ > X? | is consistent for any lag length whenever AX has
stationary roots, see Phillips (1987). That estimator is computed without
regressing on the lagged differences and the non-stationary components of
the time series are therefore not eliminated. Consequently, the estimator is
not consistent in the generality described in Theorem 1. One of the simplest
counter examples is when AX is a first order process with a root equal to
minus one. This problem also applies to the t-type statistics constructed in
the same way and is discussed in further detail by Perron (1996).

Robustness of the result with respect to innovations which are not inde-
pendently, identically normal distributed has also been discussed extensively
in the literature. For instance, Phillips (1987) discussed testing when the
innovations are strongly mixing and Chan and Wei (1988) considered the
case of innovations which are martingale differences. Here it will be proved
that the result of Theorem 1 is robust in the case of martingale difference
innovations.

ASSUMPTION. Let {&;} be a martingale difference and let F; be the o-field
generated by the innovations, so that E(e|Fi_1) = 0 and E(e3|Fi_1) = o°.
Further, assume that the innovations have bounded moments of order 2 + v
for some vy > 0, that is, with probability one, sup,E(|e,|**7|F;_1) < oo.

THEOREM 2. Suppose the process is given by (2.1) where o = 0, the
condition (2.3) is met and the innovations satisfy the martingale difference
assumption. Then the statistic w converges in distribution as described in
Theorem 1.

The maximum likelihood estimators for the remaining parameters are
consistent. This consistency is also robust with respect to innovations which
satisfy martingale difference assumptions. For §; this was discussed by Lai
and Wei (1983) and for o2 this follows from the equation (4.6) below. Further,
Chan and Wei (1988) discussed the asymptotic distribution of 3, in the purely
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non-explosive case. A recent account on the purely explosive case is given in
Monsour and Mikulski (1998). Finally, asymptotic normality of the estimator
for 02 can be proven under moment assumptions on the martingale difference
sequence 2 — 1.

3. EXTENSIONS TO MODELS WITH DETERMINISTIC TRENDS

In most applications it would be convenient to include deterministic com-
ponents in the model. There is a great variety of such augmented unit root
tests in the literature. Two cases are considered, a model with a constant
level and a model with a linear trend.

The model with a constant level is given by the autoregressive equation

Xﬁ p
AXt — (a’ 041) < jtl 1 ) + Z ﬂ]AXt—] -+ Et. (31)
j=1

In this model the unit root hypothesis can be formulated as either @ = 0
or « = oy = 0, see Dickey and Fuller (1979, 1981). For simplicity only
the latter hypothesis is considered. The reason is two-fold. First, the latter
hypothesis only questions the behaviour of the stochastic component of time
series and not that of the deterministic component. Secondly, the asymptotic
distribution of the likelihood ratio test statistics does not depend on the
parameter related to the deterministic component.
The case of linear trend is correspondingly given by the equation

Y, P
AX; = (o, 0q) ( tt ! ) + u+ ZﬂjAXt—j + &, (3.2)

Jj=1

where the hypothesis of interest is given by a = a; = 0.

In both cases the statistical analysis is similar to that of the model with-
out deterministic components. For notational convenience define X; as the
vectors (X;_1,1) and (X;_1,t)’, respectively. The likelihood is then max-
imised by first correcting AX; and X} ; for the remaining components of the
relevant model and then finding the sample correlation 5\, say, of the residu-
als. In both cases the levels of the process is corrected for a constant either
through a linear transformation of X; or by the initial regression on the re-
maining components of the model. This shows that X; could equivalently be
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chosen as (/2] AX,, 1) or (3.2) AX,,t)" and hence the null distribution
of the sample multiple correlation does not depend on the initial level Xj.
The following result therefore applies.

THEOREM 3: Suppose the model is given by either (3.1) or (3.2) and
that the hypothesis o = ay = 0 s satisfied. Then the distribution of the
likelihood ratio test statistic, LR, does mot depend on Xq. If, in addition,

(2.3) is satisfied, then, as T — oo,
1
| Puaw.,
0

.9 D 1 1
LR = —Tlog (1 ~A ) H/ AW, F! {/ FUF;du}
0 0

where F, is a two dimensional process given by (W,,1) and (W, — fol Weydv, u—
1/2), respectively.

The result is robust with respect to innovations which satisfy the martin-
gale difference assumption.

-1

This result is for instance proved by Johansen (1995, Theorem 6.1) un-
der the additional assumption that AX has stationary roots. Corresponding
results hold for other likelihood-based tests suggested in the literature. For
the constant levels model (3.1) an example is the F-type statistic, ®; =

(T/)2— 1)5\2 /(1— 5\2), suggested by Dickey and Fuller (1981). When it comes
to testing the hypothesis ae = 0 rather than @ = a; = 0 the asymptotic dis-
tribution of the likelihood based tests depends on the value of a;. Nonethe-
less, asymptotic results corresponding to that of Theorem 3 can be proven
for tests such as the t-type statistic, 7,7, suggested by Dickey and Fuller
(1979). That proof would require a modification of the Lemma Bl in the
Appendix due to the nuisance parameter oy, see also Chan (1989).
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APPENDIX A: PROOFS OF THEOREMS 1 AND 2

Theorem 1 follows from Theorem 2. The proof of Theorem 2 has two
parts. First, Lemma A1 describes the residuals in detail. Next, the asymp-
totic analysis follows in Lemmae A2-A4.

LeEMMA Al: Suppose equation (2.1), the hypothesis o = 0 and the con-
dition (2.3) are satisfied. Define

D -1 p—1 D t
§= (1—2@.) , e =Xo/6+Y AX ;) B Si=) e
j=1 Jj=0 Jj=0

k=j+1
Then, the residuals (2.2) can be written as
(Ro,t, R1,t) = (5t’ 5St—1| AXi_q,. .., AXt—p) .

Further, for any p-dimensional process Z;_1 found by a mnon-singular linear
transformation of (AXy_1,...,AX;_,)

(Rot: Rut) = (1, 05i-1| Zi—1) - (4.1)

PRrROOF: Under the hypothesis the model equation (2.1) is given by A X, =
7;.:1 B;AX; j + €, and the expression for Ry, follows immediately. This
equation can be rewritten as (1-»"_, 3,)AX; = g~ ?;é A2X; R B
Under the assumption (2.3) the parameter 6 is well-defined and cumulation
of the latter equation gives X; | = 6S;_1 — 527;:1 AX; Zi:jJrl Bi- The
expression for R;; then follows. O

The sample correlation, 5\, is invariant with respect to scaling of Ry, or
Ry by o and o6 respectively. Thus for asymptotic purposes it suffices to
assume 02 = § = 1.

LEMMA A2. Suppose {e:} satisfy the martingale difference assumption
and 0* =6 =1. Then

1
=N g, (4.2)



and
T T T r
(T”Q Z e, T Z S, 6., T3? Z Sy 1, T2 Z Sf_l) A
=1 t=1 =1 =

1 1 1
(Wl, / WodWy, / W, du, / Wfdu) (4.3)
0 0 0

PROOF: The convergence (4.2) follows from Chan and Wei (1988, equa-
tion 2.13), whereas (4.3) follows from the Functional Central Limit Theorem
for martingale difference sequences, see Chan and Wei (1988, Theorem 2.2),
combined with the Continuous Mapping Theorem, see Billingsley (1968). [

The next lemmae show that for asymptotic purposes the residuals R
and R; can be replaced by ¢; and §5;_1, respectively. The main idea is to
choose the regressor Z conveniently. Follow Lai and Wei (1983, equation 4.2)
and Chan and Wei (1988, equation 3.2) and decompose AX,; 1,...,AX, ,
into processes Ay, B;, Cy, D, with characteristic roots at one, at exp(i6;) and
exp(—16,) but exp(if;) # 1, outside the unit circle, and inside the unit circle,
respectively. Further, the processes A;, B;+, C;, D, can be normalised so that
the normalised process Z;_1 = (az, b1y, - .., big, ¢, dy) , say, satisfies

T
N Ziazi_ S F, (4.4)
=1

where F' is a symmetric block-diagonal random matrix which is positive def-

inite with probability one. The Lemmae A3-A5 show that expressions of

the type TY(3.1, Z1Z!_ )" V23] | Z,_,Y; converges to zero in probabil-
ity. Due to (4.4) it suffices to prove that 7% 3.} | Z,_,Y; converges to zero
whenever Z; is given by either of its components a;, b; ¢, ct, dy.

LEMMA A3. Suppose {e;:} satisfies the martingale difference assumption
and that equation (2.1) and the hypothesis « = 0 are satisfied. Then, for

all & <~/(2+7),

T

. —1/2
T2 (Z Zt1Z£1> Z Ziaz = 0.
t=1 t=1
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Note, that the condition (2.3) is not necessary for this result.

PROOF: For Z non-explosive: see Chan and Wei (1988, Theorem 3.5.1).

For Z explosive: Lai and Wei (1983, equation 4.18) essentially prove the
result for & < 0. For the general case note that || Y2/ | di_1&4]| < maxi<r ||ec|| 327, |di_1]].
Using Lai and Wei (1983, Corollary 1) it follows that limy o 310, [|dy]| is
finite with probability one. Thus it suffices to show that ¢; is of order smaller
than 7(1~¢)/2 with probability one. Using an idea of Lai and Wei (1982) this
follows from the conditional Borel-Cantelli Lemma, see Freedman (1973). By
Chebychev’s inequality

o

D P (e >TC 9P| Fy) <Y T CODE (|67 Fa),
t=1 t=1

where the latter series is convergent for (1—¢)(1+4+/2) > 1 and consequently
g; is of the postulated order. O

LEMMA A4. Suppose {e;:} satisfies the martingale difference assumption
and that equation (2.1), the hypothesis o = 0 and the condition (2.3) are
satisfied. Then, for all n > 0,

T

- ~1/2
7 (Ltn)/2 <Z Ztlztll) Z 7 1Si1 i 0.
t=1

t=1

PRrROOF: For Z having unit roots only, but no roots at one: For n > 1 the
result follows from Chan and Wei (1988, Theorem 3.4.1). Their arguments
can be sharpened. A typical element of the proof is the following. Suppose
the process has one negative unit root. The product sum of interest is then

T L I 1 1
_ 1 i
D biaSia = = > (-1 Z (1) ;> ex. (4.5)
=1 =1 =1 k=1
Define X,, = > 7, (—1)’ ¢; 327, % and note that, for n > m
X = Xl <D0 | D e+ | D 0 gD el
j=1 k=m-+1 j=m+1 k=1




The order of magnitude of the sum (4.5) follows from Theorem 2.1 of Chan
and Wei (1988) saying: if {X,,} is a sequence of random variables so (i)
E|X,| = (n*) for some o > 0, (ii) A;(n,m), B;(n,m) are random variables
so EA3(n,m) =O0(n%), EB}(n,m) =0{n¥i(n — m)} and |X, — Xp| <
i1 Aj(n,m)B;(n,m) for ¢;,¢; > 0, n > m, (iii) exp(if) # 1, (iv) 2a >
¢; +1; then sup; ., | S exp(itf) X,| =op (n®1) . With the same proof
and (iv) replaced by (iv’) 2a = @, +1,+1 it actually follows that sup | ) exp (it0) X| =
op (n"‘+(1+77)/2) for all n > 0. Now, choose X,, as above, a = 1, and for in-
stance A;(n,m) =37, (—1) &, Bi(n,m) = Yp_,. e with o, = 1,2, =
0.

For Z stationary: For n > 1 the result follows from Chan and Wei (1988,
Lemma 3.4.3). Their arguments can be sharpened. The Lemma says: if (i) z
is a stationary autoregressive process, (ii) the process g, satisfies ¢t = Mg, 1+
e, Gii) Yl = O(n®) for some a > 0, (iv) B, [ul> =o(n®)
then E|>°7, g:z|| =o(nl®*V/2). With the same proof and (iv) replaced
by (iv') E>20 |he])* = O(n®1) it actually follows that E| Y7 | ¢zl =
o(n@tm/2) for all n > 0. Now, let h; = &, M = 1 and hence g, = S,
let z; be the non-normalised process C; and choose a@ = 2. Then it follows
that E|| S22 C, 1S || =o(T*2) and T 1725 ¢, 18, 5 0. Since
S Ci_1C!_ /T converges in probability the desired result follows.

For Z explosive: As in the proof of Lemma A3 || 2], d; 1S, 1| is of the
same stochastic order as max;<r ||S;||. According to Chan and Wei (1988,
Theorem 2.2) the process T~'/2S converges weakly to a Brownian motion on
D[0, 1], the space of functions on [0,1] which are right continuous, have left
hand limits, and is equipped with the Skorokhod topology. The supremum
is a continuous mapping on D|0, 1] and, hence, by the Continuous Mapping
Theorem, see Billingsley (1968), max ||T~1/2S]| converges in distribution. [J

PrOOF OF THEOREM 2: In Lemma A3 choose 7, £ such that 0 < n <
€ <v/(24 ) < 1. Then by the expression (4.1)

T T
1 1 _
T Z Rat = T Z 61‘,2 + op (T f) s (46)
—1 —1
1 & 1 <
T Z Ry Ry = T Z Si—1€ + OP(T(W_O/Q)a
t=1 t=1
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1 < 1 <
O Rl = ) Stitop(T0Y).
t=1 t=1

Note, that n — £ < 0 and n — 1 < 0. Combine this with Lemma A2. 0

APPENDIX B: PROOF OF THEOREM 3

When analysing the asymptotic null distribution of the considered tests
it suffices to consider the same probability measures as in Appendix A.1. For
the constant level model (3.1) this is readily seen. For the linear trend model
(3.2) the additional parameter p turns out not to be important as long as
the condition (2.3) is satisfied. First, by mimicking the proof of Lemma Al,

P P
Xy 1 =051+ but — 62 AX; Z B, + constant,

=1 k=j+1

and the dependency of linear trend of X;_; can be removed by linear transfor-
mation of X} ;. Secondly, the regressors AX,_; can be replaced by AX;_;+d6u
which satisfies the equation for the model without deterministic terms (2.1)
although the initial conditions are altered. Finally, the asymptotic result
does not depend on the initial values and hence i can be ignored.

The proof of Theorem 3 therefore follows by combining the arguments of
Appendix A.1 with the following lemma.

LeEMMA B1. Suppose {e:} satisfy the martingale difference assumption
and that equation (2.1), the hypothesis o = 0 and the condition (2.3) are
satisfied. Then, for all n >0

T -1/2 p
_ P
T (Z Zt_th’_1> Z Zi1 50, (4.7)
t=1 t=1

T

T ~1/2
T+ <Z Ztth’l) Szt 5o (4.8)
t=1 t=1

If Z only has roots of length one and none equal to one then the result holds
for n > —1/2.

11



PRrROOF. For Z having unit roots only, but no roots at one: First, suppose
the component b; has one root at —1 and ¢y = Xj. By change of summation
order

T T t T T
Z bl,tfl = Til Z (—1)t_k Ek—1 — Til Z Er—1 Z (—1)t_k
t=1 t=1 k=1 k=1 t=k
(T-1)/2]
= T_l Z ET—2k—1, (49)
k=0

which is of order 77/2, see Chan and Wei (1988, Theorem 2.2), and (4.7)
follows for n > —1/2. Similarly, (4.8) follows using the additional normali-
sation by 7 !. If the root multiplicity at —1 is higher than one, the result
follows in a fashion similar to the proof of Chan and Wei (1988, Theorem
3.2.1). For the case where b; has non-real roots at exp(if;) and exp(—i6,)
the argument is basically the same, albeit the notation is more compli-
cated. A result like (4.9) is established using trigonometric identities as
ST sin(k26,) = sin(T6;) sin{(T +1)8,}/ sin(6;) and the sharpened version
of Chan and Wei (1988, Theorem 2.1) mentioned in the proof of Lemma A4.

For Z stationary: The vector process c satisfies ¢; = Cc¢; + & where
& = (&4,0,...,0)". Hence it is a linear process with exponentially decreasing
coefficients. Therefore (4.7) follows from the Central Limit Theorem for
linear processes with martingale difference innovations, see Phillips and Solo
(1992, Theorem 3.16). Correspondingly, (4.8) follows by partial summation
and the Central Limit Theorem together with the Invariance Principle also
given in the above mentioned Theorem by Phillips and Solo.

For 7 explosive: The result follows as in the proof of Lemma A3 with &,
replaced by 1 and t respectively. O
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