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Abstract

We introduce a reduced rank technique for testing for common deterministic shifts. The re-
duced rank approach is analysed also in the context of super exogenity and an alternative test for
super-exogeneity is proposed. One important advantage of this approach is that departing from the
unrestricted model we depart from a more general model that does not impose a priori which are the
target and the policy variables. This could be useful in case in which there did not existed an exact
knowledge about a classification between target and instrument nor about their relationship. Monte
Carlo simulations are implemented to investigate the power of this technique.
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1 Introduction

Deterministic shifts in the conditional mean of economic variables is a recurrent feature in empirical
economics. These shifts happen to affects not just one single economic variable but affect contemporan-
eously other related economic variables. Furthermore these shifts that repeat themselves in time, might
be related linearly and this linear relationship might prevail throughout time. We have here proposed a
technique that can be used to analyze such phenomena, and can help to gather important information
about how breaks are related thought economic variables and across time. Frequently, deterministic
shifts are induced by policy changes. Policy makers move the level of some variables in order to affect
some target variables and reach specific goals. When deterministic shifts are induced by policy makers,
the relationship between common deterministic shifts and super-exogeneity become apparent. Super
exogeneity (see EngleR.F., .D.F. and Richard (1983)) establishes conditions under which the parameters
of the partial model are invariant to changes in the parameters of the marginal model. On an economic
context, the marginal model can be thought as an instrument that policy-makers can move(say interest
rate) in order to achieve some goal. The partial model could be thought as the process for the goal vari-
able (say inflation). Super-exogeneity sets the conditions under which the partial model has invariant
parameters and can be used for policy analysis, despite changes in the marginal model. The concept of
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common deterministic shifts are super-exogenity are hence closely related if we limit the set of policy-
makers interventions to changes in the conditional mean of the marginal process(say the level of interest
rates or the rate of growth of money).

In the next section we define the concept of common deterministic shifts. In section 3 we define the
model and introduce a reduced rank technique to estimate and test for common deterministic shifts. In
section 4 the size and power of the technigue are investigated with a Monte Carlo simulation experiment.
Testing for super exogeneity based on the existence of common deterministic shifts is discussed in
section 5. Section 6 concludes.

2 The concept of common deterministic shifts:

Engle and Kozicki (1993) have recently proposed the idea of common features in time series. This idea
is inspired by the concept of cointegration introduced in Granger (1986) and Engle and Granger (1987).
Engle and Kozicki (1993) show that a feature is common to a set of time series if a linear combination
of them do not have the feature though each of the series individually have it. Some particular examples
of this concept are the idea of common cycle introduced by Engle and Kozicki (1993) and co-breaking
introduced by Hendry (1997). The concept of co-breaking is closely related to the idea of cointegration:
while cointegration removes unit roots from linear combinations of variables, co-breaking can eliminate
the effects of regime shifts by taking linear combinations of variables.

Definition 1. Consider{x;} to be a n dimensional vector process, where is modeled &R(k),

A(L)zy = e + ¢ We say that the equations in théAR are subject to common deterministic
shifts(CDS) if shifts taking place across théndividual equations are linearly related.

In the definition of common deterministic shifts we just require that shifts are related across variables
and throughout time, which can be expressed as a convenient reduced rank condition in the coefficients
of the interventions variables. This concept is milder that the co-breaking concept of Hendry (1997)
which requires that linear combinations of variables cancel the shifts in the process itselfshifts. In the
following we consider the:-dimensional linear Gaussian VABR)(

P

Ty =p+ Z Aiy—i + e+ & 1)
i=1

wheree; ~ NID (0, X) and the roots of the vector autoregressive polynomial are within the unit circle,

P 4
I- > A;2'| =0=|z| > 1. Thus there are no unit roots in the system and possible non-stationarity

1=

1
are due to the deterministic breaks. This implies that the process possess the infinite vector moving
average representation
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whereA(L)¥(L) = I. Note that in the case of a VAR(1) we have thigt= A°.

Consider now ther x T"matrix M = (uq pe2 --- pr) whereT > n. The condition for common
deterministic shifts can be written &M/ = 0. Thus we have that = rank [M] < n is necessary
and sufficient ford’y, = 0 for all t € 7 where® # 0isn x (n — r). The methodology proposed
in this paper relies on using appropriate shift dummies for known dates. Consider aiset of< T
dummy variablesl;, each of which is zero except for unity at times 7;, such thafy, = 7 pdy,,
or uy = Mdy, whereM isn x s andd; is s x 1. ThenM = (Md; : Mdy : -+ : Mdp) = MD. It



is assumed that the points at which these shifts occur are known which avoids the problem of nuisance
parameters.
In order to illustrate the reduced rank approach consider a VAR(1) with shifts in the intercept:

p s
Ty = Z Ai.thi + Z y’jdtj + &¢. (2)
i=1 J=1

Suppose furthermore that the shifts are permanent, then we can use the corresponding shift dummy to
model them ad;; = I (¢ > t;) wherel(e) is the indicator function antl < ¢; < 7..

CDS is at least of order if there exist- linearly independent vectors satisfyinéu, = ¢;Md; =0
such that ther x r» matrix® = (¢; : --- : ¢,) has rankr. Then®' M = 0 so ranK M) < r, so the
nullity of M determines the order of CDS. Thus CDS implies thatis of reduced rankM can be
decomposed to the product of two matrices of full rgréand¢.

p
T = [+ Z Ajwy—i +n€' Dy + e, 3)
=1
Furthermore, note that the matriceand¢ are not unique without suitable normalization, since if
H is anyr x r non-singular matrix, themt = n¢ implies thaty*¢* = (nH)(H~1¢) = M as well. If
common deterministic shifts is a particularity of the data, the coefficient matrix of the dummy regressors
would have a reduced rank and the vectors that link the shifts across processes would be the outcome of
an eigenvalue problem.

3 Estimating CDS vectors by reduced rank regressions

3.1 The reduced-rank regression problem

Maximum likelihood estimation of the CO08 — r)—VAR,,(p) is close to the analysis of the likelihood
in cointegrating systems, and both are based in the reduced rank regression technique introduced in An-
derson (1958) and Tso (1981). We follow the notation in the Johansen (1995) reduced-rank regression
approach to cointegration except for the decomposition of the loading and the linear relationship across
breaks which we refer tg and¢&, respectively. The analogy with the cointegration model is straight-
forward if one bare in mind that the regime-dummigsehave like a non-stationary process if there
are structural breaks. In this case the matyikthen determines how the non-stationarity feed into the
variables of the systems: the ranlof matrix M gives the number ofommon deterministic breaks,
and the CDS rank — r gives the dimension of the space whose one-step predictions are free from
deterministic breaks.

In contrast to the cointegration problem, however, the number of brdak®t necessarily identical
to the number of endogenous variables in the system, such that the ohatisxn x s with rank »
< min(n, s).

In matrix notation we have:

X=BZ+MD+FE 4)

whereX := (zy:xg: -+ taxp)isnxT, Z = (z1:290: - : 2p)is(1+p)nx T with z; := (1 :x}_; :
coexpp) Br=(f: Ar, .., Ap)isnx (14p)n, Dissx T, andM = n¢’isn x s. The log-likelihood
function for a sample sizé& is easily seen to be

InL = —% In 27 — gln D= %tr (X —BZ —n¢’DYS™HX — BZ —n¢'D)] (5)



3.2 Estimation of B and X conditional on n¢

Note that for any fixedy and¢ the maximum ofn L is obtained for
Blng') = (X —ng'D)2'(22')7". (6)
If we substitute3 by (6) in (5), we get
InL = —% In 27 — g In|3| - %tr (XH —n¢’DH)Y Y (XH —né DH)] (7)

Hence, we just have to maximize this expression with respegt {6 andX.
For givenn and¢, the maximum is obtained if

S(5¢') = T~ (X H — n¢' DH)(X H — n¢' DH).

is substituted fod.. Consequently we must maximize:

—gln | T~Y(XH —n¢’ DH)(XH —n¢ DH)'| (8)

or, equivalently, minimize the determinant with respect nd¢ (see liitkepohl (1991)).

3.3 Estimation of  conditional on &

Note that in (7)X and D are corrected foZ. Define the corresponding residualsigs and Ry, :

H : =0py-2'(22)12),
(TxT)

Rx : =XH,

(nxT)

Rp : =DH,

(sxT)

and the corresponding moment matrices as:
Sz‘j = T_IRZ‘R;- for i,7=X,D.
Then (8) can be rewritten as
T _
—5 [T Ry = ng'Bp) (R — n¢'Rp)'| )

For fixed¢, (8) is maximized with respect to matrixby regression:

1

7(¢) = Rx (¢Rp) [(¢'Rp)(ERp)]™
RxRpE [¢(RpRp)E] ™
Sxp&(&'Sppé)~! (10)



3.4 Estimation of ¢

Apart from a constant, the concentrated log-likelihood for our reduced rank problem can be shown to
be:

IS ACIGRICIGID)

= I h[EH©)
- ‘gln %(RX — Rx R [ (RpRp)E] ™ € Rp)(Ry — Rx Rt [€(RpRp)E] ™ €Rp)’
= ‘%ln %Rxa ~ Rp¢ [¢/(RpRp)E] ™' €' Rp)(T - Rp¢ [ (RpRp)E] " €' Rp) R

T 1 / / / / / -1 / /
= _Eln TRX [I — (¢Rp) [(E Rp) (¢Rp) } (€ RD)} Ry
- —%ln |Sxx — Sxpé(€'Spp€) '€ Spx|. (11)
Using the identity

ch oo ' — [¢'S0ng] |Sxx — SxpE(E'Spné) € S|

= [Sxx||¢'Spp€ — €'Spx Sxx Sxé|

equation 11 can be expressed as:

- T |S 'Sppé — &'SpxSvi S
L (7065 1©€) = —mle DDEC,SED;X xxSxof]

1Sxx||¢ (Spp — SpxSxxSxp) |
1§"Sppé| '

T
= —Eh'l

Hence, the maximum df L is given by
. ¢ (Spp — SpxS¥xSxp) ¢

min
3 I¢'Sppé|
and following a basic theorem of matrix analysis (see, for example,. Johansen, 1995, Lemma A.8), this

factor is minimized among alt x r matrices¢ by solving the eigenvalue problem

\pSpp — (Spp — SDXS§§(SXD)| =0
or, for A\ = 1 — p, the eigenvalue problem
‘)\SDD—SDXS;(&SXD| =0
for eigenvalues\; and eigenvectors;, such that
NiSppvi = Spx Sy SxpUi.
If we normalize¢ such that¢’Sppé = I, then the vectors of are given by the eigenvectors

corresponding to the smallest eigenvalues &fpp — SDXS;&SXD. The maximum log-likelihood
under the rankM) = r restriction is given by:

nT
- (12)

T T . ~
maxIn L = —%1112% -5 [1n|SXX| —l—ZEID (1 — )\Z->

since by choice of we have that’Spp¢ = I, as well as;"SDXS;&SXDg = diag(Xl, ... ,XT)



3.5 Testing for the CDS rank

Since CDSf — r) implies CDSq — r — 1), it seems natural to seek the maximum degree of CDS. In
general two cases have to be distinguished: (i) the number of bggalkess than the dimension of the
systemn, m = min(s,n) = s < n. In the second case, the number of breaks not less than the
dimension of the system, i.e. m = min(s,n) =n < s.

Suppose in the following that < s. Then the following hypotheses might be of interest:

l. CDS() : rank(M) =r,r =0 :. No breaks.
Il. CDS(n — 7): rank(M) = r,0 < r < n. There are breaks common to both process.
[ll. CDS(0): rank(M) = r,r = n. There are breaks independent to each process.

Following Anderson (1951), the likelihood ratio test statistic for testing the @P8&gainst the
CDS(n) is given such that the likelihood ratio statistic is given by:

m

2MQUHE) [Hm) =T 3 W (1+52)

i=r+1

which has ay?-distribution with degrees freedom equal to{ )(s — 7).

3.6 Representation theorem

One of the advantages of reduced rank regression for analyzing common deterministic shifts is that,

oncen and¢ have been found, we can get rid of the shifts by appropriate rotation and conditioning.

Common deterministic shifts imply thatt is of reduced rank. ThugA1 can be decomposed in the

product of two matrices of full ranky and{. Once we have estimategand¢, we can transform the

model into new variables in the space of the common break and in its orthogonal complement.
Consider the CDS-VAR(1) where we drop the intercept for simplicity,

Tt — A(L‘t_l + Mdt + &¢. (13)

Let us introduce the matrices and7, wheren, is ap x (p — r) matrix orthogonal to), such thaty
N1 = 0p(p—r)> @NA7T = n(n'n)~'. We can multiply through by, and7, in order to obtain:

Nz = 0 Az +1)e
Try = Ay +&d +7e

If we define the new variableg = ', X; andz; = 77’ X;, then the conditional modéi|z; can be
expressed as:

Wz =0 Avy_y + ooy — ol Axy_1 + & (14)
where
& = 1nie—whe
w = Ially,

with ITj5 = nizﬁ andlIlyy = ﬁ’Eﬁ
Invoking the decomposition:
__/ —
n +nun =1,



and inserting it in 14,we get:
e = A [ + 700 ey + @z — o Ay 700 ]z + &

And the resulting conditional model is free of shifts. That is:

Gi = [0, — o) Anz1 + w5 + [0, — o] AT g + & (15)

4 A Monte Carlo analysis of the reduced rank regression technique to es-
timate common deterministic shifts:

In this section we analyze the size and power of the rank test for common deterministic shifts. The data
generation process(DGP) will be given by the two dimensional process with two breaks in the intercept
term at timet; andts:

Ty = A.thl + v+ @Dt + &¢

1

0

wherez; = [ ) with D, = ( Ztl ) g ~ NID(0,Q) andQ = (
2t to

(1) ) without loss of

generality
As experimental design variables we have: the matijthe matrix®, the sample siz&" and the
points at which the breaks occtyrandt,. For simplicity A will have the following structure:

. ( 0.75 0.5 )
0 o

That isz; is strongly exogenous. The benchmark case will have 0.8. We would also be inter-
ested in analyzing the size of the test when the process ftoecomes close to the unit root. That is,
a=095,a = 0975 anda = 0.99. The matrix® embeds information about the size of the shift,
the relationship of the shift across variables and the relationship of the shifts across time. We let the
relationship between the breaks change. That is,

v ) (1 8)

2

whereZ—;(Z—; = 0.25,0.5 and1), define the relationship of the breaks across equat@rﬁ% =0.25,0.5
and1) define the relationship of breaks across time aAfld= 1, 1.5, 2) define the magnitude in terms
of the standard deviations.

The sample sizel', is 50,100 and 150t; = 7T with 71 = (0.30,0.31, ...,0.6) andty = 7T with
9 = 0.70. How the distance between breaks affect the size. The number of replicatityns: is0000.

If we rely on a full factorial design the number of experiments would be 18225.

We think that the different hypothesis could be interpreted as follows:

e rank(®) = 0. No break
e rank(®) = 1. There are breaks common to both process
e rank(®) = 2(full rank). There are breaks independent to each process.

As the benchmark case we will take the following values:



A 0.75 0.5
0 0.8
_ & _m
k:_2and£—;_n—;_0.25
o o =10.8

e 71 =0.3andr = 0.7
e T = 50,100 and150

Figure 1 plots the histogram of the test statistic for= 50, 100 and 150, which should resemble
a Chi square with 1 degree of freedom. Table 1 present the size and power of the test for the three
different sample sizes at the 5 % level of significance. We next analyze how the position of the breaks
may affect the size of the test. Thus for the benchmark case we letry from 0.3 to 0.6 with the
second break fixed a7 with 5 = 0.7. The results for the size of the test for the three different sample
sizes" = 50,100 and 150) are shown in figure 2. The results for the power of the test for the three
different sample size$( = 50,100 and 150) are shown in figure 3. A similar analysis is done with
a=0.95,a=0.975 anda = 0.99 and are presented in figure 2. Finally we depart again from the
benchmark case and allow g—; andZ—; to change. The results are presented in table 2.

1F T=50
[ mean=1.2137
; std.dev=1.6592
5Sr

i L L T L R L | L L | 1 | L | L | L | |
0 1 2 3 4 5 6 7 8 9 100 11 12 13 14 15 16
15
| T=100
mean=0.95789
1 std.dev=1.3613
5
| - | | L | | |
4 6 8 10 12 14 16
15
r T=150
1+ mean=0.83571
| std.dev=1.1790

Figure 1 Histogram of the test for the reduced rankof

5 Testing for super exogeneity

5.1 The unrestricted system

Before arguing how common deterministic shifts in the conditional mean are related to the concept
of super-exogenity, let us introduce the definitions of weak and super-exogeneity. Let us consider a



Table 1 Size and power of the test statistic for the benchmark DGP.

T
Size
50 0.077
100 0.047
150 0.031
T

Power
50 0.80
100 0.94
150 0.98

'ng alpha=0.975

oo...-Alpha=0.99
.08t
F alpha=0.95
o s e
7 |
15 20 25 30 35

Figure 2 Size of the test statistic for different valuesxaindr; varying fromo0.3 to 0.6.



95
L apha=0.99 -
97 apha=0.975 »
8By pha2095 7777777777 R
8" apha=0.8 : ‘ ———————— : e ——

10

o8+ apha=0.975 o
| 0% | ‘ ‘
4 50 - . - i

Figure 3 Power of the test statistic for different valuesi@ndr; varying from0.3 to 0.6.

Table 2 Size and power of the test statistic for the benchmark case and alhv@qgndf]—; to vary.

T=50 Power Range Size Range
k=1 (0.45,0.59) (0.049,0.060)
k=1.5 (0.64,0.86) (0.065,0.083)
k=2 (0.88,0.96) (0.087,0.091)
T=100 Power Range Size Range
k=1 (0.65,0.77) (0.031,0.045)
k=1.5 (0.84,0.93) (0.040,0.062)
k=2 (0.94,0.99) (0.047,0.073)
T=150 Power Range Size Range
k=1 (0.69,0.81) (0.022,0.044)
k=1.5 (0.98,0.97) (0.046,0.055)

k=2 (0.97 0.99)

(0.046,0.060)
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statistical model for the bivariate process= (y:, z;)" with parameterg < ©. We are interested in a
function of#, called the parameters of interest, ire= 7(6).

Definition 2. Weak exogeneity: The processis called weakly exogenous for the parameter of interest
T if there exist a parametrization of the model such that:

T T
f(xlv - I O ﬁ) = H ht(zt’xlv sy Tt—1, CE) H gt(yt’zt,xlv cy Lt—1, ﬁ)
t=1 t=1
(o, B) € AzB
T = 7(0) is identified.
Definition 3. Super exogeneity: The processis called super exogenous for the parameter of interest
7() and the clasg of interventions if there exist a parametrization of the model such that:

T T

flx1,.xr,aq,...,ar,3) = tHI hi(ze|x1,y ooy xp—1, 1) tHI 9t (yt|ze, 1, .y -1, B)

(a1,...,ar,B) € FzB

T = 7(p) is identified.

The previous section used reduced rank regressions as a modelling devise to find common determ-
inistic shift features. In this section we present an alternative analysis of common deterministic shifts.
Though the concept of common deterministic shifts was presented in terms of the unrestricted model, its
most insightful applications had been shown within the conditional model. Hendry and Mizon (1998)
have advanced two different situations in which common deterministic shifts could play an essential role
in modelling. They refer to this situations as t@ntemporaneous correlatiarzase and thbehavioral
relation case.

Reconsider the VARY) in equation (1). If we apply the partition, = (y; : z;)’ and consider just
one lag,p = 1, we have:

ye |\ _( An Aw N N R I (Y (16)
2 Ao Aao 21 Vst Ext

If we consider all information as of time— 1 and denote it byf; 1, the unrestricted model can be

written as:
YN oD [ Pt ) [ e e (17)
2t Mzt Ezy Yoz

wherep, ; := E (y; | LIi—1).p20 = E (2 | Ii—1) and the intercept termis subject to regime shifts.

In the contemporaneous correlation caggcan be seen as a policy variable whereais a instru-
ment that policy makers can use in order to reach their goal in termsTdiebehavioral relationcase
refers to the situation in which agents form rational expectations (ahpand there is an interest in
analyzing how changes in the expectations may affect the plan of the aggnta poth cases common
deterministic shifts is introduced to justify invariance of the conditional model due to changes in the
marginal model. The existence of a specific linear relationship relating brEgks1!) together with
weak exogeneity (see Engle, Hendry and Richard, 1983) would introduce the necessary conditions in
order to investigate policy analysis.

5.2 The conditional system

Valid conditioning requires weak exogeneity of the marginal process with respect to the parameters of
interest in the conditional model. Using the normalityegfthe model in equation (16) can be expressed
in terms of the conditional and marginal model as:
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Yt ’ ztaIt—l ~ NID (:uy\z,th) (18)
2t | L1~ NID (Hz,ta Ezz)a (19)

where the density aj; conditional onz;, I;_; is determined by:

Hylzgp + = E (yt ‘ 2t It—l) = Hy,t + EyzZ;; (Zt - ,uz,t)
Q : =Var(y |z, Lio1) = 2y — 520000,

Rewriting equation in terms on the corresponding mean, we get:
I _Eyzzz_zl Yt I _Eyzzz_zl All A12 Yt—1
0 I Zt 0 I A21 A22 Zt—1
+ I _EyZEZ_ZI Vyt + uyvt (20)
0 I Uyt Uz,t

where the variance matrix of the transformed residuals is block diagonal:

wemo((3)(05.)

This type of models are prone to suffer from the Lucas critique. That is, changes in the marginal
model leads to non-constancy of the conditional model. Shifts of the marginal model can induce shifts
in the conditional model, but a convenient linear combination can induce constancy in the conditional

process:
( I -3,.5) ) < Zy: > = < Zy ) . (21)

If we model < Yyt ) with the corresponding intervention variables, equation 16 can be rewritten
Uzt
as:

p
Ty = ﬂ + Z Aixt,i + CI)Dt + ¢, (22)
i=1
Note that the condition in equation 21 requires that shifts in the process fomplies a shift in the
process for;. Hence super exogeneity would imply a reduced rank condition on the coefficients of the
intervention variables used to model the unrestricted sy@grms(ch we can rewrite the previous model
as

P
ve=p+ Y A+ 08Dy + e,
i=1

Furthermore in other for super exogeneity to hold the conditional model should be invariant to the
set of interventions in the marginal process which would imply

773_ - ( I _2922;21 )
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So the reduced rank of the coefficient of the intervention dummies with specific restrictions on the
null space ofnp and weak exogeneity imply super-exogeneity which postulates the invariance of the
conditional model under a set of interventions in the marginal mbdel.

5.3 Testing procedure for super-exogeneity:

The previous subsection showed how super-exogeneity af;theocess with respect to a set of inter-
ventions(shifts in the conditional mean of the marginal process) required a reduced rank condition of the
coefficients of the intervention variables. In order to implement a likelihood ratio test for super exogen-
eity with respect to these class of interventions we need to estimate the model under the null(reduced

EyZEZ_ZI

rank of ® = n¢’ and specific restrictions on n = ) and under the alternative(the unres-

tricted model with the reduced rank &f = 7¢’ imposed). We propose three alternative procedures to
implement the super exogeneity test. They differ in the way in which the model is estimated under the
null:

5.3.1 First procedure:

. . - DIt
Estimation of the model under the restrictiops- < sz =z ) .

Let us depart from the model:
Rx =®Rp+ F

with the reduced rank restriction imposed such that n¢’,

Ry =n¢Rp +E (23)

The maximum likelihood of this model under the super-exogeneity restriction can be calculated as
follows:
(1) We depart from initial estimates of(ny) and X(3y). In model given by equation 23 we can

: - IS My . .
impose the restriction thgt yz’OI 220 | < n, leaving the rest of the space qf unrestricted.

Under the null, if we multiply though by, we get:
ToRx = &§'Rp +TpE

(2) We can apply OLS in the previous equation an obtain estimat&/$0.
(3) Given¢’(&)) andX(X() we can then obtain new estimates§fy; ) andX(X;).
We can loop in this algorithm till convergence where in each iteration the restriction

DI St .
( sz #2 ) C n is always updated.

Many models in economics are expressed in terms of rational expectations. They can be expressed as the behavioral
relation:
E(ye [ Lio1) = py + U E (2 | Li1)

orinshortformiuy + = py+¥+u. .. However, whenb, is constant, the plan and the expectation have a common deterministic
shift. In order to achieve constant relationship between plans and expectations it was negded-thiaf was the relationship
that link shifts in the mean of th@arginal process and the conditional process.
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5.3.2 Second procedure:

. . . . DI Mt
An alternative estimation procedure of the model under the restrlom@m( sz ## ] can be based

on the first order conditions of the likelihood function. Let us depart from the concentrated likelihood
function,

nT T 1 _
InL = —7 In2m — 5 In ‘E’ — 5‘51"2 1 [(SXX — SXDfn/ — 77§/SDX + ng/SDDé’n’)]
We can write the linear restriction fgrandn, as:

vec(§) =Hp+h

vee(n') = Gx +g
The derivatives for the likelihood with respectg@ndn are given by:

olnL

50 = H’vec(SDXEfla) — HIUGC(SDD@?/EAU) (24)
'Z

L
8(27; = G'vec(&'Spx X1 — Hvec(€'Sppén'v™) (25)

On substituting the restrictions 6fin 24 we get:

e(x,2) = [H'(fS'n® Spp)H| - [H' (S @ Ivec(Spx) — Hn/S™'n® Spph]  (26)

Similarly for xy we can substitute the restrictions fpin 25 and we get:

X, %) = [((E7' @ €Sppé)G] " [Glvee(€'SxpE™") — G (S @ €'Sppk) g] - (27)

It can easily be seen that the first order conditionXdor giveny andy is given by:

(e, x) = Sxx — Sxpén’ —n&'Spx +n&'Sppén’ (28)

Hence for initialp andX we can imposed the restrictions grand obtain estimates gffrom 26

For given¢ and>: new estimates ap can be obtained from 27. For givérandr, equation 28 delivers
. . . . : - DIt
new estimates of. We can then iterate in this algorithm with the restrictipe- vz I“ > always

updated.

The likelihood ratio test can be shown to have a Chi squared distributionpwithr degrees of
freedom, wherg is the dimension of the system arnis the rank of®. The degrees of freedom result
just from comparing the tangent space;éf with and without restrictions.
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5.3.3 Third procedure:

An alternatively testing procedure can be implemented just with linear regressionsrder to show
this alternative procedure let us depart from model 16

Yt A Ar Yi—1 din Ey,t
= + @ + ’ 29
< 2t ) < Az Ago > < 241 > < di2 ) < Ext 29)

Yy )
where® is a matrix of coefficients of the intervention variablés= < i fj H ’;2 )
Hi1 o My
The conditional model is given by:

Yr = Anyi—1 + Arpzi—1 + pidu + piodio + E(ey ez ),

or,
yr = A1 + Areze1 + pydu + piydio +w(ze — Aoy — Agoze—1 — piydi — pipdee) + gt
with €, = €, ; — we, ¢ Which can be rewritten as:

yr = wz + (A — wA1)ye—1 + (A1 — wA)zi—1 + () — wpdy )dn + (i — wpgs)de + &yt

and the marginal model is given by:

2 = Ao1yi—1 + Agozi—1 + piden + pindip + €24 (30)

Under the super exogeneity condition we have the restrictipfjis— wpj;) = 0 and (uj, — wpi) =

0. Which are the reduced rank conditions of equation 21. These restrictions can also be written as
Y )

Z—% = % = w, where the specific restrictions on the null space becomes clearer. Under the null of

t t

super-exogeneity we have that the conditional process reduces to

Y = wzp + (A1 — wAo)yi—1 + (A12 —wAg)zi—1 + €y (31)

The parameters in the conditional model @re= {w, A1 —wAs, Ajo—wAsn, Q} = {0, 0263, 0%}

cr’c’ecr e
and the parameters in the marginal modeltare= { As1, Aga, 17y, i, 222} = {0L,,02,,03,,0% .65 1.
The properties of the Gaussian distribution imply that the parameters in the marginal process are vari-
ation independent of the parameters in the conditional process. The two equations(equation 31 and
30) can be estimated separately and the full maximum likelihood estimate is made up of two factors
corresponding to the marginal and conditional distribution. The maximum likelihood estimator of the
unrestricted model is just the likelihood of model under the reduced rank restriction, which can be
obtained by a reduced rank regression. The maximum likelihood of the unrestricted model is jus the

estimated model with the reduced rank condition imposed.

6 Conclusions

This paper puts together two topics of research, common deterministic shifts and super-exogeneity
issues. We have shown how common deterministic shifts can be analyzed with simple and widely

known techniques, reduced rank regressions. Deterministic shifts in the conditional mean of economic
variables is a recurrent feature in empirical economics. These shifts happen to affects not just one single

2This altenative procedure was suggested to us by Soren Johansen.



16

economic variable but affect contemporaneously other related variables. Furthermore these shifts that
repeat themselves in time, might be related linearly and this linear relationship might prevail throughout
time. We have here proposed a technique that can be used to analyze such phenomena, and can help to
gather important information about how breaks are related thought economic variables and across time.
Frequently, deterministic shifts are induced by policy changes. Policy makers move the level of some
variables in order to affect some target variables and reach specific goals. When deterministic shifts are
induced by policy makers, the relationship between common deterministic shifts and super-exogeneity
become apparent.

One important advantage of this approach is that departing from the unrestricted model we depart
from a more general model that does not impose a priori any relationship among shifts in the mean of
the individual process. This could be useful in case in which there did not existed an exact knowledge
about a classification between target and instrument nor about their relationship. Think of a monetary
model where some short interest rates are included (say the discount rate and the interbank rate) to-
gether with some variables of interest that the policy maker wants to influence. The identification of the
linear relationship linking shifts in the mean of the different processes would give valuable information
both about the exact relationship between them and about the transmission (the weights of the linear
relationship that govern shifts) .

The methodology developed in this paper is restricted by two major assumptions. First that, condi-
tional on the breaks, the system is stationary which excludes integrated-cointegrated systems. Secondly
that the breaks points are known a priori. But it should be not too difficult to overcome these recent
limitations.

In case of cointegration the following system is of interest:

Azy = aff w1 +n& Dy + &

which maps the I(1) system into its vector equilibrium representation. The system can then be estimated
by a switching algorithm which does reduced-rank estimations ef,(# conditional onn, ¢ and (ii)
n, & conditional onw, 3. Thus one would combine the techniques developed in this paper with the well
established cointegration analysis of Johansen (1995)(see Toro (1999)).

The main drawback of the reduced rank regression techniques proposed in this paper comes from
the fact that the shift points are assumed to be known in advance. If the break points are unknown, then
the Markov-switching approach provides a powerful tool to model the system.

x = Axp_1 + PDy + &4,

whereD; contains the indicator functions. Krolzig (1997) considers the statistical analysis of this system
when the (potentially reduced) rank &f = n¢’ is imposed to the system. In an LIML approach, each
equation could be estimated separately. Assume that the number of reghhe=i2. Then M — 1
smoothed regime probabilities associated with each equation can be collected to thelmatrk be

used in the reduced rank regression approach discussed above. Again one might consider the potential
cointegration of the variables which suggests the combination of including the switching algorithm on
each M-step of the EM algorithm for MS-VAR models.
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