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Abstract

We introduce a reduced rank technique for testing for common deterministic shifts. The re-
duced rank approach is analysed also in the context of super exogenity and an alternative test for
super-exogeneity is proposed. One important advantage of this approach is that departing from the
unrestricted model we depart from a more general model that does not impose a priori which are the
target and the policy variables. This could be useful in case in which there did not existed an exact
knowledge about a classification between target and instrument nor about their relationship. Monte
Carlo simulations are implemented to investigate the power of this technique.
Keywords: Co-breaking, Super-Exogenity, Reduced Rank Regression, Regime Shifts, Markov
Switching, Common Deterministic Shifts.
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1 Introduction

Deterministic shifts in the conditional mean of economic variables is a recurrent feature in empirical
economics. These shifts happen to affects not just one single economic variable but affect contemporan-
eously other related economic variables. Furthermore these shifts that repeat themselves in time, might
be related linearly and this linear relationship might prevail throughout time. We have here proposed a
technique that can be used to analyze such phenomena, and can help to gather important information
about how breaks are related thought economic variables and across time. Frequently, deterministic
shifts are induced by policy changes. Policy makers move the level of some variables in order to affect
some target variables and reach specific goals. When deterministic shifts are induced by policy makers,
the relationship between common deterministic shifts and super-exogeneity become apparent. Super
exogeneity (see EngleR.F., .D.F. and Richard (1983)) establishes conditions under which the parameters
of the partial model are invariant to changes in the parameters of the marginal model. On an economic
context, the marginal model can be thought as an instrument that policy-makers can move(say interest
rate) in order to achieve some goal. The partial model could be thought as the process for the goal vari-
able (say inflation). Super-exogeneity sets the conditions under which the partial model has invariant
parameters and can be used for policy analysis, despite changes in the marginal model. The concept of
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common deterministic shifts are super-exogenity are hence closely related if we limit the set of policy-
makers interventions to changes in the conditional mean of the marginal process(say the level of interest
rates or the rate of growth of money).

In the next section we define the concept of common deterministic shifts. In section 3 we define the
model and introduce a reduced rank technique to estimate and test for common deterministic shifts. In
section 4 the size and power of the technique are investigated with a Monte Carlo simulation experiment.
Testing for super exogeneity based on the existence of common deterministic shifts is discussed in
section 5. Section 6 concludes.

2 The concept of common deterministic shifts:

Engle and Kozicki (1993) have recently proposed the idea of common features in time series. This idea
is inspired by the concept of cointegration introduced in Granger (1986) and Engle and Granger (1987).
Engle and Kozicki (1993) show that a feature is common to a set of time series if a linear combination
of them do not have the feature though each of the series individually have it. Some particular examples
of this concept are the idea of common cycle introduced by Engle and Kozicki (1993) and co-breaking
introduced by Hendry (1997). The concept of co-breaking is closely related to the idea of cointegration:
while cointegration removes unit roots from linear combinations of variables, co-breaking can eliminate
the effects of regime shifts by taking linear combinations of variables.

Definition 1. Consider{xt} to be a n dimensional vector process, where is modeled as anV AR(k),
A(L)xt = µt + εt We say that the equations in theV AR are subject to common deterministic
shifts(CDS) if shifts taking place across then individual equations are linearly related.

In the definition of common deterministic shifts we just require that shifts are related across variables
and throughout time, which can be expressed as a convenient reduced rank condition in the coefficients
of the interventions variables. This concept is milder that the co-breaking concept of Hendry (1997)
which requires that linear combinations of variables cancel the shifts in the process itselfshifts. In the
following we consider then-dimensional linear Gaussian VAR(p):

xt = µ̄ +
p∑

i=1

Aixt−i + µt + εt (1)

whereεt ∼ NID (0,Σ) and the roots of the vector autoregressive polynomial are within the unit circle,∣∣∣∣I − p∑
i=1

Aiz
i

∣∣∣∣ = 0 =⇒ |z| > 1. Thus there are no unit roots in the system and possible non-stationarity

are due to the deterministic breaks. This implies that the process possess the infinite vector moving
average representation

xt =

(
I −

p∑
i=1

Ai

)−1

µ̄ +
∞∑
i=0

Ψiµt−i +
∞∑
i=0

Ψiεt−i

whereA(L)Ψ(L) = I. Note that in the case of a VAR(1) we have thatΨi = Ai.

Consider now then × T matrix M = (µ1 µ2 · · · µT ) whereT > n. The condition for common
deterministic shifts can be written asΦ′M1

T = 0. Thus we have thatr = rank [M] < n is necessary
and sufficient forΦ′µt = 0 for all t ∈ T whereΦ 6= 0 is n × (n − r). The methodology proposed
in this paper relies on using appropriate shift dummies for known dates. Consider a set ofn ≤ s < T

dummy variablesdti each of which is zero except for unity at timest ∈ Ti, such thatµt =
∑s

i=1 µidti ,
or µt = Mdt, whereM is n × s anddt is s × 1. ThenM = (Md1 : Md2 : · · · : MdT ) = MD. It
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is assumed that the points at which these shifts occur are known which avoids the problem of nuisance
parameters.

In order to illustrate the reduced rank approach consider a VAR(1) with shifts in the intercept:

xt =
p∑

i=1

Aixt−i +
s∑

j=1

µjdtj + εt. (2)

Suppose furthermore that the shifts are permanent, then we can use the corresponding shift dummy to
model them asdtj = I (t > tj) ,whereI(•) is the indicator function and1 < tj < T .

CDS is at least of orderr if there existr linearly independent vectors satisfyingφ′
iµt = φ′

iMdt = 0
such that then × r matrix Φ = (φ1 : · · · : φr) has rankr. ThenΦ′M = 0 so rank(M) ≤ r, so the
nullity of M determines the order of CDS. Thus CDS implies thatM is of reduced rank;M can be
decomposed to the product of two matrices of full rank,η andξ.

xt = µ̄ +
p∑

i=1

Aixt−i + ηξ′Dt + εt, (3)

Furthermore, note that the matricesη andξ are not unique without suitable normalization, since if
H is anyr × r non-singular matrix, thenM = ηξ implies thatη∗ξ∗′ = (ηH)(H−1ξ) = M as well. If
common deterministic shifts is a particularity of the data, the coefficient matrix of the dummy regressors
would have a reduced rank and the vectors that link the shifts across processes would be the outcome of
an eigenvalue problem.

3 Estimating CDS vectors by reduced rank regressions

3.1 The reduced-rank regression problem

Maximum likelihood estimation of the CDS(n− r)−VARn(p) is close to the analysis of the likelihood
in cointegrating systems, and both are based in the reduced rank regression technique introduced in An-
derson (1958) and Tso (1981). We follow the notation in the Johansen (1995) reduced-rank regression
approach to cointegration except for the decomposition of the loading and the linear relationship across
breaks which we refer toη andξ, respectively. The analogy with the cointegration model is straight-
forward if one bare in mind that the regime-dummiesdt behave like a non-stationary process if there
are structural breaks. In this case the matrixM then determines how the non-stationarity feed into the
variables of the systems: the rankr of matrix M gives the number ofcommon deterministic breaks,
and the CDS rankn − r gives the dimension of the space whose one-step predictions are free from
deterministic breaks.

In contrast to the cointegration problem, however, the number of breakss is not necessarily identical
to the number of endogenous variables in the system, such that the matrixM is n × s with rank r

≤ min(n, s).
In matrix notation we have:

X = BZ + MD + E (4)

whereX := (x1 : x2 : · · · : xT ) is n×T, Z := (z1 : z2 : · · · : zT ) is (1+p)n×T with zt := (1 :x′
t−1 :

. . . x′
t−p)′, B : =(µ̄ : A1, . . . , Ap) is n×(1+p)n, D is s×T, andM = ηξ′ is n×s. The log-likelihood

function for a sample sizeT is easily seen to be

ln L = −nT

2
ln 2π − T

2
ln |Σ| − 1

2
tr
[
(X − BZ − ηξ′D)′Σ−1(X − BZ − ηξ′D)

]
(5)
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3.2 Estimation ofB and Σ conditional on ηξ

Note that for any fixedη andξ the maximum ofln L is obtained for

♥B(ηξ′) = (X − ηξ′D)Z ′(ZZ ′)−1. (6)

If we substituteB by (6) in (5), we get

ln L = −nT

2
ln 2π − T

2
ln |Σ| − 1

2
tr
[
(XH − ηξ′DH)′Σ−1(XH − ηξ′DH)

]
(7)

Hence, we just have to maximize this expression with respect toη, ξ′ andΣ.

For givenη andξ, the maximum is obtained if

Σ̃(ηξ′) = T−1(XH − ηξ′DH)(XH − ηξ′DH)′.

is substituted forΣ. Consequently we must maximize:

−T

2
ln
∣∣T−1(XH − ηξ′DH)(XH − ηξ′DH)′

∣∣ (8)

or, equivalently, minimize the determinant with respect toη andξ (see Lütkepohl (1991)).

3.3 Estimation ofη conditional on ξ

Note that in (7)X andD are corrected forZ. Define the corresponding residuals asR0t andR1t :

H
(T×T )

: = (IT − Z ′(ZZ ′)−1Z),

RX
(n×T )

: = XH,

RD
(s×T )

: = DH,

and the corresponding moment matrices as:

Sij = T−1RiR
′
j for i, j = X,D.

Then (8) can be rewritten as

−T

2
ln
∣∣T−1(Rx − ηξ′RD)(Rx − ηξ′RD)′

∣∣ (9)

For fixedξ, (8) is maximized with respect to matrixη by regression:

η̃ (ξ) = RX

(
ξ′RD

)′ [(ξ′RD)(ξ′RD)′
]−1

= RXR′
Dξ
[
ξ′(RDR′

D)ξ
]−1

= SXDξ(ξ′SDDξ)−1 (10)
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3.4 Estimation ofξ

Apart from a constant, the concentrated log-likelihood for our reduced rank problem can be shown to
be:

ln L
(
η̃ (ξ) , ξ, Σ̃

(
η̃ (ξ) ξ′

))
= −T

2
ln
∣∣∣Σ̃ (η̃ (ξ) ξ′

)∣∣∣
= −T

2
ln
∣∣∣∣ 1T (RX − RXR′

Dξ
[
ξ′(RDR′

D)ξ
]−1

ξ′RD)(Rx − RXR′
Dξ
[
ξ′(RDR′

D)ξ
]−1

ξ′RD)′
∣∣∣∣

= −T

2
ln
∣∣∣∣ 1T RX(I − R′

Dξ
[
ξ′(RDR′

D)ξ
]−1

ξ′RD)(I − R′
Dξ
[
ξ′(RDR′

D)ξ
]−1

ξ′RD)′R′
X

∣∣∣∣
= −T

2
ln
∣∣∣∣ 1T RX

[
I −

(
ξ′RD

)′ [(ξ′RD)
(
ξ′RD

)′]−1
(ξ′RD)

]
R′

X

∣∣∣∣
= −T

2
ln
∣∣SXX − SXDξ(ξ′SDDξ)−1ξ′SDX

∣∣ . (11)

Using the identity∣∣∣∣∣ SXX SXDξ

ξ′SDX ξ′SDDξ

∣∣∣∣∣ =
∣∣ξ′SDDξ

∣∣ ∣∣SXX − SXDξ(ξ′SDDξ)−1ξ′SDX

∣∣
= |SXX |

∣∣ξ′SDDξ − ξ′SDXS−1
XXSXDξ

∣∣
equation 11 can be expressed as:

ln L
(
η̃ (ξ) , ξ, Σ̃

(
η̃ (ξ) ξ′

))
= −T

2
ln
|SXX |

∣∣ξ′SDDξ − ξ′SDXS−1
XXSXDξ

∣∣
|ξ′SDDξ|

= −T

2
ln
|SXX |

∣∣ξ′ (SDD − SDXS−1
XXSXD

)
ξ
∣∣

|ξ′SDDξ| .

Hence, the maximum ofln L is given by

min
ξ

∣∣ξ′ (SDD − SDXS−1
XXSXD

)
ξ
∣∣

|ξ′SDDξ|
and following a basic theorem of matrix analysis (see, for example,. Johansen, 1995, Lemma A.8), this
factor is minimized among alln × r matricesξ by solving the eigenvalue problem∣∣ρSDD −

(
SDD − SDXS−1

XXSXD

)∣∣ = 0

or, for λ = 1 − ρ, the eigenvalue problem∣∣λSDD−SDXS−1
XXSXD

∣∣ = 0

for eigenvaluesλi and eigenvectorsvi, such that

λiSDDvi = SDXS−1
XXSXDvi.

If we normalizeξ such thatξ′SDDξ = Ir then the vectors of̃ξ are given by the eigenvectors
corresponding to ther smallest eigenvalues ofSDD − SDXS−1

XXSXD. The maximum log-likelihood
under the rank(M) = r restriction is given by:

max ln L = −nT

2
ln 2π − T

2

[
ln |SXX | +

r∑
i=1

ln
(
1 − λ̂i

)]
− nT

2
(12)

since by choice of̃ξ we have thatξ′SDDξ = Ir, as well asξ′SDXS−1
XXSXDξ = diag(λ̂1, . . . , λ̂r)
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3.5 Testing for the CDS rank

Since CDS(n − r) implies CDS(n − r − 1), it seems natural to seek the maximum degree of CDS. In
general two cases have to be distinguished: (i) the number of breakss is less than the dimension of the
systemn, m = min(s, n) = s < n. In the second case, the number of breakss is not less than the
dimension of the systemn, i.e. m = min(s, n) = n ≤ s.

Suppose in the following thatn ≤ s. Then the following hypotheses might be of interest:

I. CDS(n) : rank(M) = r, r = 0 :. No breaks.
II. CDS(n − r): rank(M) = r, 0 < r < n. There are breaks common to both process.

III. CDS(0): rank(M) = r, r = n. There are breaks independent to each process.

Following Anderson (1951), the likelihood ratio test statistic for testing the CDS(r) against the
CDS(n) is given such that the likelihood ratio statistic is given by:

−2 ln Q( H(r) | H(n)) = T

m∑
i=r+1

ln
(
1 + λ̂2

i

)
which has aχ2-distribution with degrees freedom equal to (n − r)(s − r).

3.6 Representation theorem

One of the advantages of reduced rank regression for analyzing common deterministic shifts is that,
onceη andξ have been found, we can get rid of the shifts by appropriate rotation and conditioning.
Common deterministic shifts imply thatM is of reduced rank. ThusM can be decomposed in the
product of two matrices of full rank,η andξ. Once we have estimatedη andξ, we can transform the
model into new variables in the space of the common break and in its orthogonal complement.

Consider the CDS-VAR(1) where we drop the intercept for simplicity,

xt = Axt−1 + Mdt + εt. (13)

Let us introduce the matricesη⊥ andη, whereη⊥ is ap × (p − r) matrix orthogonal toη, such thatη′

η⊥ = 0rx(p−r), andη = η(η′η)−1. We can multiply through byη′⊥ andη′, in order to obtain:

η′⊥xt = η′⊥Axt−1 + η′⊥εt

η′xt = η′Axt−1 + ξ′dt + η′εt

If we define the new variables̃yt = η′⊥Xt and z̃t = η′Xt, then the conditional model̃yt|z̃t can be
expressed as:

η′⊥xt|η′xt = η′⊥Axt−1 + $η′xt − $η′Axt−1 + ε̃t (14)

where

ε̃t = η′⊥εt − $η′εt

$ = Π12Π−1
22 ,

with Π12 = η′⊥Ση andΠ22 = η′Ση.

Invoking the decomposition:
ηη′ + η⊥η′⊥ = I,
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and inserting it in 14,we get:

η′⊥xt|η′xt = η′⊥A
[
ηη′ + η⊥η′⊥

]
xt−1 + $η′xt − $η′A

[
ηη′ + η⊥η′⊥

]
xt−1 + ε̃t

And the resulting conditional model is free of shifts. That is:

ỹt =
[
η′⊥ − $η′

]
Aηz̃t−1 + $z̃t +

[
η′⊥ − $η′

]
Aη⊥ỹt−1 + ε̃t. (15)

4 A Monte Carlo analysis of the reduced rank regression technique to es-
timate common deterministic shifts:

In this section we analyze the size and power of the rank test for common deterministic shifts. The data
generation process(DGP) will be given by the two dimensional process with two breaks in the intercept
term at timet1 andt2:

xt = Axt−1 + v + ΦDt + εt

wherext =

(
yt

zt

)
, with Dt =

(
dt1

dt2

)
, εt ∼ NID (0,Ω) andΩ =

(
1 0
0 1

)
without loss of

generality.
As experimental design variables we have: the matrixA, the matrixΦ, the sample sizeT and the

points at which the breaks occurt1 andt2. For simplicityA will have the following structure:

A =

(
0.75 0.5
0 α

)

That iszt is strongly exogenous. The benchmark case will haveα = 0.8. We would also be inter-
ested in analyzing the size of the test when the process forzt, becomes close to the unit root. That is,
α = 0.95 , α = 0.975 andα = 0.99. The matrixΦ embeds information about the size of the shift,
the relationship of the shift across variables and the relationship of the shifts across time. We let the
relationship between the breaks change. That is,

Φ = k

(
1
η1

η2

)(
1 ξ1

ξ2

)
whereη1

η2
(η1

η2
= 0.25, 0.5 and1), define the relationship of the breaks across equations,ξ1

ξ2
( ξ1

ξ2
= 0.25, 0.5

and1) define the relationship of breaks across time andk(k = 1, 1.5, 2) define the magnitude in terms
of the standard deviations.

The sample size,T, is 50,100 and 150.t1 = τ1T with τ1 = (0.30, 0.31, ..., 0.6) andt2 = τ2T with
τ2 = 0.70. How the distance between breaks affect the size. The number of replications isN = 10000.

If we rely on a full factorial design the number of experiments would be 18225.
We think that the different hypothesis could be interpreted as follows:

• rank(Φ) = 0. No break
• rank(Φ) = 1. There are breaks common to both process
• rank(Φ) = 2(full rank). There are breaks independent to each process.

As the benchmark case we will take the following values:
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• A =

(
0.75 0.5
0 0.8

)
• k = 2 and ξ1

ξ2
= η1

η2
= 0.25

• α = 0.8
• τ1 = 0.3 andτ1 = 0.7
• T = 50, 100 and150

Figure 1 plots the histogram of the test statistic forT = 50, 100 and150, which should resemble
a Chi square with 1 degree of freedom. Table 1 present the size and power of the test for the three
different sample sizes at the 5 % level of significance. We next analyze how the position of the breaks
may affect the size of the test. Thus for the benchmark case we letτ1 vary from 0.3 to 0.6 with the
second break fixed atτ2T with τ2 = 0.7. The results for the size of the test for the three different sample
sizes(T = 50, 100 and150) are shown in figure 2. The results for the power of the test for the three
different sample sizes(T = 50, 100 and150) are shown in figure 3. A similar analysis is done with
α = 0.95 , α = 0.975 andα = 0.99 and are presented in figure 2. Finally we depart again from the
benchmark case and allowk, ξ1

ξ2
and η1

η2
to change. The results are presented in table 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

.5

1 T=50
mean= 1.2137
std.dev=1.6592       

0 2 4 6 8 10 12 14 16

.5

1

1.5
T=100
mean=0.95789 
std.dev=1.3613       

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

.5

1

1.5
T=150
mean=0.83571           
std.dev=1.1790  

Figure 1 Histogram of the test for the reduced rank ofΦ.

5 Testing for super exogeneity

5.1 The unrestricted system

Before arguing how common deterministic shifts in the conditional mean are related to the concept
of super-exogenity, let us introduce the definitions of weak and super-exogeneity. Let us consider a
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Table 1 Size and power of the test statistic for the benchmark DGP.
T

Size
50 0.077

100 0.047
150 0.031

T
Power

50 0.80
100 0.94
150 0.98

15 20 25 30 35

.07

.08

.09

alpha=0.8

alpha=0.95

alpha=0.975 alpha=0.99

30 35 40 45 50 55 60 65

.05

.075

.1

alpha=0.8

alpha=0.95
alpha=0.975

alpha=0.99

45 50 55 60 65 70 75 80 85 90

.05

.1

.15

alpha=0.8

alpha=0.95

alpha=0.975

alpha=0.99

Figure 2 Size of the test statistic for different values ofα andτ1 varying from0.3 to 0.6.
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15 20 25 30 35

.8

.85

.9

.95

alpha=0.8

alpha=0.95

alpha=0.975

alpha=0.99

30 35 40 45 50 55 60 65

.925

.95

.975

alpha=0.8

alpha=0.95

alpha=0.975

alpha=0.99

45 50 55 60 65 70 75 80 85 90

.98

.99

1

alpha=0.8

alpha=0.99

alpha=0.975

alpha=0.95

Figure 3 Power of the test statistic for different values ofα andτ1 varying from0.3 to 0.6.

Table 2 Size and power of the test statistic for the benchmark case and allowingk, ξ1
ξ2

and η1

η2
to vary.

T=50 Power Range Size Range

k=1 (0.45,0.59) (0.049,0.060)
k=1.5 (0.64,0.86) (0.065,0.083)
k=2 (0.88,0.96) (0.087,0.091)

T=100 Power Range Size Range

k=1 (0.65,0.77) (0.031,0.045)
k=1.5 (0.84,0.93) (0.040,0.062)
k=2 (0.94,0.99) (0.047,0.073)

T=150 Power Range Size Range

k=1 (0.69,0.81) (0.022,0.044)
k=1.5 (0.98,0.97) (0.046,0.055)
k=2 (0.97 0.99) (0.046,0.060)
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statistical model for the bivariate processxt = (yt, zt)
′ with parametersθ ∈ Θ. We are interested in a

function ofθ, called the parameters of interest, i.e.τ = τ(θ).
Definition 2. Weak exogeneity: The processzt is called weakly exogenous for the parameter of interest
τ if there exist a parametrization of the model such that:

f(x1, .., xT , α, β) =
T∏

t=1
ht(zt|x1, .., xt−1, α)

T∏
t=1

gt(yt|zt,x1, .., xt−1, β)

(α, β) ∈ AxB

τ = τ(β) is identified.

Definition 3. Super exogeneity: The processzt is called super exogenous for the parameter of interest
τ(β) and the classz of interventions if there exist a parametrization of the model such that:

f(x1, .., xT , α1, ..., αT , β) =
T∏

t=1
ht(zt|x1, .., xt−1, αt)

T∏
t=1

gt(yt|zt,x1, .., xt−1, β)

(α1, ..., αT , β) ∈ zxB

τ = τ(β) is identified.

The previous section used reduced rank regressions as a modelling devise to find common determ-
inistic shift features. In this section we present an alternative analysis of common deterministic shifts.
Though the concept of common deterministic shifts was presented in terms of the unrestricted model, its
most insightful applications had been shown within the conditional model. Hendry and Mizon (1998)
have advanced two different situations in which common deterministic shifts could play an essential role
in modelling. They refer to this situations as thecontemporaneous correlationcase and thebehavioral
relation case.

Reconsider the VAR(p) in equation (1). If we apply the partitionxt = (y′t : z′t)′ and consider just
one lag,p = 1, we have:(

yt

zt

)
=

(
A11 A12

A21 A22

)(
yt−1

zt−1

)
+

(
νyt

νzt

)
+

(
εy,t

εz,t

)
(16)

If we consider all information as of timet − 1 and denote it byIt−1, the unrestricted model can be
written as: (

yt

zt

)
| It−1∼NID

((
µy,t

µz,t

)
,

(
Σyy Σyz

Σzy Σzz

))
(17)

whereµy,t := E (yt | It−1),µz,t = E (zt | It−1) and the intercept termν is subject to regime shifts.
In thecontemporaneous correlation caseyt can be seen as a policy variable whereaszt is a instru-

ment that policy makers can use in order to reach their goal in terms ofyt.Thebehavioral relationcase
refers to the situation in which agents form rational expectations (aboutzt) and there is an interest in
analyzing how changes in the expectations may affect the plan of the agents (yt). In both cases common
deterministic shifts is introduced to justify invariance of the conditional model due to changes in the
marginal model. The existence of a specific linear relationship relating breaks (ΣyzΣ−1

zz ) together with
weak exogeneity (see Engle, Hendry and Richard, 1983) would introduce the necessary conditions in
order to investigate policy analysis.

5.2 The conditional system

Valid conditioning requires weak exogeneity of the marginal process with respect to the parameters of
interest in the conditional model. Using the normality ofεt, the model in equation (16) can be expressed
in terms of the conditional and marginal model as:
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yt | zt, It−1 ∼ NID
(
µy|z,t,Ω

)
(18)

zt | It−1 ∼ NID (µz,t,Σzz) , (19)

where the density ofyt conditional onzt, It−1 is determined by:

µy|z,t : = E (yt | zt, It−1) = µy,t + ΣyzΣ−1
zz (zt − µz,t)

Ω : = Var (yt | zt, It−1) = Σyy − ΣyzΣ−1
zz Σzy.

Rewriting equation in terms on the corresponding mean, we get:(
I −ΣyzΣ−1

zz

0 I

)(
yt

zt

)
=

(
I −ΣyzΣ−1

zz

0 I

)(
A11 A12

A21 A22

)(
yt−1

zt−1

)

+

(
I −ΣyzΣ−1

zz

0 I

)(
νyt

νzt

)
+

(
uy,t

uz,t

)
(20)

where the variance matrix of the transformed residuals is block diagonal:

ut ∼ NID

((
0
0

)
,

(
Ω 0
0 Σzz

))

This type of models are prone to suffer from the Lucas critique. That is, changes in the marginal
model leads to non-constancy of the conditional model. Shifts of the marginal model can induce shifts
in the conditional model, but a convenient linear combination can induce constancy in the conditional
process: (

I −ΣyzΣ−1
zz

)( νyt

νzt

)
=

(
ν̄y

ν̄z

)
. (21)

If we model

(
νyt

νzt

)
with the corresponding intervention variables, equation 16 can be rewritten

as:

xt = µ̄ +
p∑

i=1

Aixt−i + ΦDt + εt, (22)

Note that the condition in equation 21 requires that shifts in the process forzt implies a shift in the
process foryt. Hence super exogeneity would imply a reduced rank condition on the coefficients of the
intervention variables used to model the unrestricted system(Φ), such we can rewrite the previous model
as

xt = µ̄ +
p∑

i=1

Aixt−i + ηξ′Dt + εt,

Furthermore in other for super exogeneity to hold the conditional model should be invariant to the
set of interventions in the marginal process which would imply

η′⊥ =
(

I −ΣyzΣ−1
zz

)
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So the reduced rank of the coefficient of the intervention dummies with specific restrictions on the
null space ofη and weak exogeneity imply super-exogeneity which postulates the invariance of the
conditional model under a set of interventions in the marginal model.1

5.3 Testing procedure for super-exogeneity:

The previous subsection showed how super-exogeneity of theyt process with respect to a set of inter-
ventions(shifts in the conditional mean of the marginal process) required a reduced rank condition of the
coefficients of the intervention variables. In order to implement a likelihood ratio test for super exogen-
eity with respect to these class of interventions we need to estimate the model under the null(reduced

rank ofΦ = ηξ′ and specific restrictions onη, η =

(
ΣyzΣ−1

zz

−I

)
) and under the alternative(the unres-

tricted model with the reduced rank ofΦ = ηξ′ imposed). We propose three alternative procedures to
implement the super exogeneity test. They differ in the way in which the model is estimated under the
null:

5.3.1 First procedure:

Estimation of the model under the restrictionsη =

(
ΣyzΣ−1

zz

I

)
.

Let us depart from the model:
RX = ΦRD + E

with the reduced rank restriction imposed such thatΦ = ηξ′,

RX = ηξ′RD + E (23)

The maximum likelihood of this model under the super-exogeneity restriction can be calculated as
follows:

(1) We depart from initial estimates ofη(η0) and Σ(Σ0). In model given by equation 23 we can

impose the restriction that

(
Σyz,0Σ−1

zz,0

I

)
⊂ η0 leaving the rest of the space ofη0 unrestricted.

Under the null, if we multiply though byη′0,we get:

η′0RX = ξ′RD + η′0E

(2) We can apply OLS in the previous equation an obtain estimates ofξ′(ξ′1).
(3) Givenξ′(ξ′1) andΣ(Σ0) we can then obtain new estimates ofη(η1) andΣ(Σ1).

We can loop in this algorithm till convergence where in each iteration the restriction(
ΣyzΣ−1

zz

I

)
⊂ η is always updated.

1Many models in economics are expressed in terms of rational expectations. They can be expressed as the behavioral
relation:

E (yt | It−1) = µ∗
y + ΨtE (zt | It−1)

or in short form:µy,t = µ∗
y+Ψtµz,t. However, whenΨt is constant, the plan and the expectation have a common deterministic

shift. In order to achieve constant relationship between plans and expectations it was needed that(I : −Ψ) was the relationship
that link shifts in the mean of themarginalprocess and the conditional process.
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5.3.2 Second procedure:

An alternative estimation procedure of the model under the restrictionsη =

(
ΣyzΣ−1

zz

I

)
can be based

on the first order conditions of the likelihood function. Let us depart from the concentrated likelihood
function,

ln L = −nT

2
ln 2π − T

2
ln |Σ| − 1

2
trΣ−1

[
(SXX − SXDξη′ − ηξ′SDX + ηξ′SDDξη′)

]
We can write the linear restriction forξ andη, as:

vec(ξ) = Hϕ + h

vec(η′) = Gχ + g

The derivatives for the likelihood with respect toξ andη are given by:

∂lnL

∂ϕ
= H ′vec(SDXΣ−1α) − H ′vec(SDDξη′Σ−1η) (24)

∂lnL

∂χ
= G′vec(ξ′SDXΣ−1) − H ′vec(ξ′SDDξη′Σ−1) (25)

On substituting the restrictions ofξ in 24 we get:

ϕ(χ,Σ) =
[
H ′(η′Σ−1η ⊗ SDD)H

]−1 [
H ′(η′Σ−1 ⊗ I)vec(SDX ) − H ′η′Σ−1η ⊗ SDDh

]
(26)

Similarly for χ we can substitute the restrictions forη in 25 and we get:

χ(ϕ,Σ) =
[
G′(Σ−1 ⊗ ξ′SDDξ)G

]−1 [
G′vec(ξ′SXDΣ−1) − G′ (Σ−1 ⊗ ξ′SDDξ

)
g
]
. (27)

It can easily be seen that the first order condition forΣ for givenχ andϕ is given by:

Σ(ϕ,χ) = SXX − SXDξη′ − ηξ′SDX + ηξ′SDDξη′ (28)

Hence for initialϕ andΣ we can imposed the restrictions onη and obtain estimates ofξ from 26.
For givenξ andΣ new estimates ofϕ can be obtained from 27. For givenξ andη, equation 28 delivers

new estimates ofΣ. We can then iterate in this algorithm with the restrictionη =

(
ΣyzΣ−1

zz

−I

)
always

updated.
The likelihood ratio test can be shown to have a Chi squared distribution withp − r degrees of

freedom, wherep is the dimension of the system anr is the rank ofΦ. The degrees of freedom result
just from comparing the tangent space ofηξ′ with and without restrictions.
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5.3.3 Third procedure:

An alternatively testing procedure can be implemented just with linear regressions2 . In order to show
this alternative procedure let us depart from model 16(

yt

zt

)
=

(
A11 A12

A21 A22

)(
yt−1

zt−1

)
+ Φ

(
dt1

dt2

)
+

(
εy,t

εz,t

)
(29)

whereΦ is a matrix of coefficients of the intervention variables,Φ =

(
µy

t1 µy
t2

µz
t1 µz

t2

)
.

The conditional model is given by:

yt = A11yt−1 + A12zt−1 + µy
t1dt1 + µy

t2dt2 + E(εy,t|εz,t),

or,
yt = A11yt−1 + A12zt−1 + µy

t1dt1 + µy
t2dt2 + ω(zt −A21yt−1 −A22zt−1 −µz

t1dt1 −µz
t2dt2)+ ε̃y,t,

with ε̃y,t = εy,t − ωεz,t which can be rewritten as:

yt = ωzt + (A11 − ωA21)yt−1 + (A12 − ωA22)zt−1 + (µy
t1 − ωµz

t1)dt1 + (µy
t2 − ωµz

t2)dt2 + ε̃y,t

and the marginal model is given by:

zt = A21yt−1 + A22zt−1 + µz
t1dt1 + µz

t2dt2 + εz,t (30)

Under the super exogeneity condition we have the restrictions(µy
t1 − ωµz

t1) = 0 and(µy
t2 − ωµz

t2) =
0. Which are the reduced rank conditions of equation 21. These restrictions can also be written as
µy

t1
µz

t1
= µy

t2
µz

t2
= ω, where the specific restrictions on the null space ofη becomes clearer. Under the null of

super-exogeneity we have that the conditional process reduces to

yt = ωzt + (A11 − ωA21)yt−1 + (A12 − ωA22)zt−1 + ε̃y,t (31)

The parameters in the conditional model areθc = {ω,A11−ωA21, A12−ωA22,Ω} = {θ1
c , θ

2
cθ

3
c , θ

4
c}

and the parameters in the marginal model areθm = {A21, A22, µ
z
t1, µ

z
t2,Σzz} = {θ1

m, θ2
m, θ3

m, θ4
m, θ5

m}.
The properties of the Gaussian distribution imply that the parameters in the marginal process are vari-
ation independent of the parameters in the conditional process. The two equations(equation 31 and
30) can be estimated separately and the full maximum likelihood estimate is made up of two factors
corresponding to the marginal and conditional distribution. The maximum likelihood estimator of the
unrestricted model is just the likelihood of model under the reduced rank restriction, which can be
obtained by a reduced rank regression. The maximum likelihood of the unrestricted model is jus the
estimated model with the reduced rank condition imposed.

6 Conclusions

This paper puts together two topics of research, common deterministic shifts and super-exogeneity
issues. We have shown how common deterministic shifts can be analyzed with simple and widely
known techniques, reduced rank regressions. Deterministic shifts in the conditional mean of economic
variables is a recurrent feature in empirical economics. These shifts happen to affects not just one single

2This altenative procedure was suggested to us by Soren Johansen.
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economic variable but affect contemporaneously other related variables. Furthermore these shifts that
repeat themselves in time, might be related linearly and this linear relationship might prevail throughout
time. We have here proposed a technique that can be used to analyze such phenomena, and can help to
gather important information about how breaks are related thought economic variables and across time.
Frequently, deterministic shifts are induced by policy changes. Policy makers move the level of some
variables in order to affect some target variables and reach specific goals. When deterministic shifts are
induced by policy makers, the relationship between common deterministic shifts and super-exogeneity
become apparent.

One important advantage of this approach is that departing from the unrestricted model we depart
from a more general model that does not impose a priori any relationship among shifts in the mean of
the individual process. This could be useful in case in which there did not existed an exact knowledge
about a classification between target and instrument nor about their relationship. Think of a monetary
model where some short interest rates are included (say the discount rate and the interbank rate) to-
gether with some variables of interest that the policy maker wants to influence. The identification of the
linear relationship linking shifts in the mean of the different processes would give valuable information
both about the exact relationship between them and about the transmission (the weights of the linear
relationship that govern shifts) .

The methodology developed in this paper is restricted by two major assumptions. First that, condi-
tional on the breaks, the system is stationary which excludes integrated-cointegrated systems. Secondly
that the breaks points are known a priori. But it should be not too difficult to overcome these recent
limitations.

In case of cointegration the following system is of interest:

∆xt = αβ′xt−1 + ηξ′Dt + εt

which maps the I(1) system into its vector equilibrium representation. The system can then be estimated
by a switching algorithm which does reduced-rank estimations of (i)α, β conditional onη, ξ and (ii)
η, ξ conditional onα, β. Thus one would combine the techniques developed in this paper with the well
established cointegration analysis of Johansen (1995)(see Toro (1999)).

The main drawback of the reduced rank regression techniques proposed in this paper comes from
the fact that the shift points are assumed to be known in advance. If the break points are unknown, then
the Markov-switching approach provides a powerful tool to model the system.

xt = Axt−1 + ΦDt + εt,

whereDt contains the indicator functions. Krolzig (1997) considers the statistical analysis of this system
when the (potentially reduced) rank ofΦ = ηξ′ is imposed to the system. In an LIML approach, each
equation could be estimated separately. Assume that the number of regime isM = 2. ThenM − 1
smoothed regime probabilities associated with each equation can be collected to the matrixDt and be
used in the reduced rank regression approach discussed above. Again one might consider the potential
cointegration of the variables which suggests the combination of including the switching algorithm on
each M-step of the EM algorithm for MS-VAR models.
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