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Analysis of economic time series often involves correlograms and partial correlo-
grams as graphical descriptions of temporal dependence. Two methods are available
for computing these statistics: one based on autocorrelations and the other on scaled
autocovariances. For a stationary time series the resulting plots are nearly identical.
When it comes to economic time series that usually exhibit non-stationary features
these methods can lead to very different results. This has two consequences: (i) in-
correct inferences can be drawn when confusing these concepts; (ii) a better discrim-
ination between stationary and non-stationarity appears when using autocorrelations
rather than autocovariances which are commonly used in econometric software.

Keywords: correlogram, covariogram, non-stationarity.

1 Introduction

The analysis of an economic time series Xi, ..., X7 often involves correlograms and
partial correlograms as graphical descriptions of temporal dependence. Two methods
are available for computing these statistics: one based on sample autocorrelations
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and one based on scaled sample autocovariances
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for 0 < u < T and where for instance Yleu is the sample average of Xi,..., X7 4.
To distinguish these methods it is perhaps more appropriate to refer to g, as yielding
scaled covariograms, or simply covariograms.

For a stationary time series the sample variance is of course constant over time
rendering the correlograms and covariograms to be nearly identical. When it comes
to non-stationary economic time series correlograms and covariograms can be very



different. This has two consequences: (¢) incorrect inferences can be drawn when
following a long established tradition in confusing these concepts; (ii) a better dis-
crimination between stationary and non-stationarity appears when using correlograms
rather than the more commonly used covariograms.

Correlograms rather than covariograms were used in early work such as the sem-
inal paper by Yule (1926), the monograph by Wold (1938, p.12), and the analysis
of agricultural price series by Kendall (1943). Being concerned with stationary time
series Wold (1938, p.12) and Kendall (1945) could then allow themselves to com-
pare sample correlograms with population covariograms. When developing higher
order asymptotic theory researchers such as Bartlett (1946), and Quenouille (1947)
concentrated on sample covariograms which are more analytically tractable than cor-
relograms, while Anderson (1942) simplified the problem further by restricting the
analysis to circular autoregressions. Perhaps as a consequence of this work recent
text books such as Brockwell and Davis (1996) and many time series computer pro-
grams such as Ox 3, PcGive 10, R 1.3, and RATS 4.3 have adopted covariograms
rather than correlograms as the basic descriptive statistics of temporal dependence.
Some authors like Hendry (1995) use correlograms and accordingly early versions
of PcGive reported correlograms but this was changed in version 10, see Doornik
and Hendry (2001, p.259). Apparently this was in response to users complaining
the output differed from all other packages’, hence the dangers of consensus over
verisimilitude!

In the following it is demonstrated how correlograms and covariograms differ for
non-stationary time series. As a first illustration some typical economic time series are
investigated. Stylised features of these series can be captured either by a first order
autoregression or a cumulated random walk. Such series are analysed mathematically.

2 Definitions

While the literature appears to be in agreement on the definition of sample correlo-
grams and covariograms there are several definitions of the corresponding population
versions in circulation. These are discussed in the following along with partial correl-
ograms and covariograms.

For the definition of population correlograms the joint distribution of the time
series X1, ..., X7 has to be specified. When thinking of the time series as a realisation
of an infinitely lived process (X;)icz this has to be done with some care since the
marginal distribution of the vector (Xji,...,Xr) will in general be different from
the conditional distribution of (X7,..., X7)" given the information set at time zero.
Having made a choice of distribution population correlograms and covariograms can



be defined as
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where Corr, Cov, and Var are the correlation, covariance, and variance defined with
respect to the chosen distribution for X,..., X7. In general p,, and v, , will vary
both with ¢ and u. The exception is when these are evaluated with respect to a
stationary distribution so p,,, = 7, 1 invariant in .

The sample partial correlogram, p,, is defined in terms of the usual sample partial
correlation of X; and X;_, corrected for X;_1,..., X;_, while a general definition of
partial covariograms, a,, is based on the Yule-Walker equations, see Brockwell and
Davis (1996, p.57,93). For the sake of the arguments in this paper it suffices to look
at the first order statistics p; = r; and a; = g; and the second order statistics
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where 7, ,, ., generalises 7, as the u-th autocorrelation of the time series X, ..., Xr_,
and is given by
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The population partial autocorrelation is defined as
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This function indicates the order of an autoregression. For an autoregression of or-
der ¢ it holds for © > ¢ that X; and X;_, are conditionally independent given the
intermediate observations X; i,...,X; 441 and thus m, = 0. In general it holds
m1 = pyp and for a time series with a joint normal distribution the second order
partial autocorrelation is

P2 — Pr,1Pr—1,1
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Population partial covariograms, o, are usually defined with respect to a sta-
tionary distribution, see Brockwell and Davis (1996, p.43,45,93), while no unique
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Figure 1: Data series

definition is available for time varying distributions. Here the definitions a1 = v,
and
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are used as they give a good match to the sample partial covariograms. The partial
covariogram «;, and the partial correlogram m;, will in general be different. An
exception is the case where a stationary normal distributed time series is considered.

3 Correlograms for typical economic time series

To illustrate the different definitions four economic times series are studied. The four
series are shown in Figure 1. The first three series are quarterly log prices, inflation
measured as differenced log prices and log total expenditure for the UK for the period
1963:1-1989:3. The fourth series is monthly log prices from the Yugoslavian hyper-
inflation, 1990:12-1994:1. Detailed econometric analysis of the UK series can be found
in Doornik, Hendry and Nielsen (1998), which also lists other papers analysing this
data set. Petrovi¢ and Mladenovi¢ (2000) have analysed the Yugoslavian price series.

Rather than discussing detailed congruent models for these data it is perhaps
more instructive to discuss stylised models. The total expenditure series and similar
series measuring the output have been studied in numerous papers since Nelson and

4



UK total expenditure

1.0

0.5

0.0

0 5 10 15 20 0 5 10 15 20
i 10 Y ugoslavian prices

. 05—
0.0 0.0 %\&&%

Figure 2: Correlogram, r,, shown with crosses, covariogram, g,, shown with boxes.
Horizontal lines indicate 95% confidence bands for testing the hypothesis of no serial
dependence at a given lag length, see Bartlett (1935), Box and Jenkins (1970, p.35).

Plosser (1982) and are usually described as near (1) autoregressions with a linear
trend, perhaps with a few dummies to account for events like the fiscal expansions in
1972 and 1979 followed each by an oil crisis, see Doornik, Hendry and Nielsen (1998).
In the same way the UK inflation could be described as near I(1) autoregressive with
a constant level and UK prices as near |(2) autoregressive with a linear trend. Series
like the Yugoslavian price series have been studied less in the literature. Following
the work of Juselius and Mladenovi¢ (2002) it is described as autoregressive with a
unit root and an explosive root. To facilitate later discussion these stylised models
are summarised as first and second order autoregressions as follows,

UK expenditure: (1 -0.9L)X; = & + linear trend. (8)
UK inflation: (1 -0.9L)X; = e; + constant, 9)

UK prices: (1 —-0.95L)(1 —0.95L)X; = &, + linear trend, (10)
Yugoslavian prices: (1—-2L)(1 — L)X, = ¢ + constant, (11)

Sample correlograms and covariograms for the four economic time series are shown
in Figure 2. The most striking difference is perhaps for the Yugoslavian prices. The
correlogram shows strong persistence while the covariogram is exponentially declining.
For UK prices and UK expenditure both methods show strong persistence in that the
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Figure 3: Partial correlogram, p,, shown with crosses, partial covariogram, a,, shown
with boxes. Horizontal lines are 95% confidence bands for testing the hypothesis of
no serial dependence at a given lag length, see Quenouille (1949), Box and Jenkins
(1970, p.65).

curves are almost linearly declining although with different slopes. For UK inflation
the methods yield more or less the same exponentially declining curve.

Partial correlograms and covariograms are shown in Figure 3. The first impression
is that the partial correlogram is much more noisy than the partial covariogram.
This is in particular the case for the relatively short Yugoslavian price series. A
more important difference is that for the two highly persistent price series the partial
covariograms tend to suggest a shorter lag length than the partial correlogram. The
stylised models for the two price series given in (11), (10) suggest that at least two
lags are needed in agreement with the partial correlogram.

In combination the correlograms and the partial correlograms appear to be able to
discriminate the stochastic behaviour of the four time series. As an example the very
different stylised models for UK prices and UK total expenditure can be discriminated
by the partial correlogram but not very well by the correlogram itself. The two price
series are perhaps most difficult to discriminate using the correlograms and partial
correlograms and in this instance the covariogram may be useful.



4 Properties of population correlograms

For non-stationary time series population correlograms and covariograms are in gen-
eral different. This is demonstrated by asymptotic analysis of these functions for a
first order autoregression and for a cumulated random walk.

For a first order autoregression

X =PBXi1+p+ ey, (12)

with uncorrelated, standardised innovations ¢; it holds Cov (X}, X; ) = “Var(X; ),
regardless of the initial value X, being random or fixed. The correlogram and covar-
iogram can therefore be expressed entirely in terms of variances,

_ g Var(X,_,) ) "* _uVar(X, )
Pl = Var(X,) T T P Nar(x)

When the initial value X, is fixed it holds Var(X;) = ZE;E (% . Computing this
geometric progression and expanding asymptotically for large values of ¢ shows

pt,u R ﬂuv Vt,u ~ ﬁu’ fOI' ‘ﬂ‘ < 17 (13)
Pro B (L =u/2t), v, =" (1—wu/t), for|6]=1, (14)
pt,u ~ 17 Vt,u ~ ﬁiua fOI' ‘ﬂ‘ > 1’ (15)

so for the non-stationary situations |3| > 1 the correlogram declines more slowly than
the covariogram.
Consider now a cumulated random walk,

Y=Y Y (16)

with uncorrelated and standardised innovations. A tedious calculation given in Ap-
pendix A shows that
3u? 3u
pt,uxl_@v Vt,uxl_gv
so once again the correlogram declines more slowly than the covariogram. For this
highly non-stationary process it is interesting to study the second order partial auto-
correlation and partial scaled autocovariance. For large ¢ these are

1+ s
Mo R — — Qg R —
t72 t27 t72 42,: Y
see Appendix A. The cumulated random walk satisfies a second order autoregressive

equation. Unlike the partial autocovariance the partial autocorrelation points to the
fact that the process has second order dependence.

(17)

(18)
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5 Properties of sample correlograms

Sample correlograms and covariograms are studied for the first order autoregression
(12) and for the cumulated random walk (16). For the latter process also the partial
correlograms and covariograms are studied. Proofs are reported in Appendix B.

The first order autoregression (12) with independent and standardised innovations
has correlogram and covariogram satisfying

ra = (Y, gu = B, for [B] <1, (19)

Ty 1, Gu =5 7, for |3] > 1, (20)
D u D u(N — A)

Ty =~ _ﬁu guNl—i_Tu fOI‘ﬂ—l,,LL—O, (21)
D 6u D 3u

ruxl—ﬁ, guxl—?, for g =1,u#0. (22)

Here the approximations are valid for large values of 7' and a not too large value
of u. In (19), (20) the limiting argument holds almost surely while in (21), (22)
convergence in distribution is applied termwise to the asymptotic expansion. The
quantities A, D, N are defined in terms of a standard Brownian motion as

A=(Bi-B)), D= [y(Bs—B)%ds, N=[,(Bs—B)dB,.

Following Rothenberg (2002) it holds that N/D and —1/(2D) have the same expec-
tation, so taking expectations term wise in the asymptotic expansions in (21) shows

ET(r, — 1)~ —E(2D) ' > —E(2D) ! — E(A/D) ~ ET(g, — 1). (23)

It is of interest to compare these sample results with the population results re-
ported in §4. In the stationary case there is a perfect match. For the explosive case r,,
and p,, both converge to one, while g, and v,,, have the same general shape. For the
random walk case without a linear trend, see (14), (21), the functions are all linear
decreasing with a slope of t ! or 7. Just as p,,, > 7,,, it holds that on average r,, is
larger than g, in the sense of (23). Turning to the case of a random walk with a linear
trend the sample results (22) do not match the population results (14) exactly. The
sample correlogram shows much stronger persistence than the population correlogram
as one could perhaps expect for a series with a linear trend.

These results facilitate interpretation of the correlograms and covariograms for
UK expenditure and inflation given in Figure 2. The stylised model for the inflation
series (9) is a near-integrated autoregression with a constant level, so a combination
of (19) and (21) is observed. The autoregressive coefficient is so far from unity that
the difference (23) between correlogram and covariogram can hardly be seen. For
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the expenditure series the combination of near-integratedness and a linear trend is so
dominating a feature that (22) gives a good guidance to interpreting the plot.

A frequently used diagnostic test for autocorrelation is based on the test statistic
suggested by Box and Pierce (1970). In its simplest form the test statistic is Q = T'g?
which is asymptotically x?(1) if the time series X; is a sequence of independent mean
zero normal variable with constant variance. The above results for the first order
autoregression show that if the alternative is formulated as first order autoregressive
dependence then the test based on () is biased in that the power decreases towards
zero as || — oo. Using the test statistic Tr7 will give a more reliable test that has
power close to one for large values of || as well as having the same properties as the
test based on @) for small values of |3|.

Turning to the cumulated random walk (16) with independent and standardised
innovations the sample correlogram and covariograms have properties matching the
sample version in that

re=1-0p(T?), g.=1-0p(T"). (24)

This highly persistent series satisfies a second order regression and provides an ex-
ample where the sample partial covariogram is not useful in determining the autore-
gressive order. Looking at the sample partial autocorrelation and autocovariance of
second order it holds

p2=—1+o0p(l),  az=op(l), (25)

while the time series Y; satisfies a second order regression. This type of discrepancy
was noted in a simulation study by Paulsen and Tjgstheim (1985, Table 4). It matches
the population properties found in (18) as well as the actual realisations for both the
UK and the Yugoslavian prices seen in Figure 3.

For a stationary autoregression of order ¢ it holds that both autocorrelation and
autocovariance vanish for orders higher than ¢ so inferences about the lag length can
be drawn from both approaches. As an example Hannan and Quinn (1979) base
their information criterion on the partial covariogram. The analysis of Nielsen (2001)
shows that inferences based on the partial correlogram are actually valid regardless
of whether the autoregression is stationary or not. While those arguments are based
on asymptotic analysis the simulation study by Paulsen and Tjgstheim (1985) shows
that for finite samples of strongly autocorrelated but stationary autoregressions it is
preferable to draw inferences from the partial correlogram. This recommendation is
followed by software like PcGive 10 and RATS 4.



6 Conclusions

It has been shown for non-stationary autoregressive time series that incorrect infer-
ences can be drawn when confusing the concepts of correlograms and covariograms.
Choosing between the two, correlograms tend to give a better discrimination between
stationarity and non-stationarity than covariograms.
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A Derivation of the population results for a cumulated random walk

The population results (17), (18) for the cumulated random walk Y; given in (16) are
found by first deriving the variance and covariance and then expand the appropriate
functions of those for large values of ¢. '

The variance and covariance of Y; = 23:1 e = 22:1 1€;_;11 are given by

Var(;) = Y!  i*= %t(t +1)(2t + 1), (26)
Cov(V;,Y; ) = Var(Y;,)+uCov(Y Ve, Vi)
= Var(Yi,) +uY"Vi= %(t —uw)(t—u+ D)2t +u+1), (27)

where Gradshteyn and Ryzhik (1965, 0.121.2) has been used.
Combine the expressions (26), (27) in the ratios

_ Cov(Yy,Yiw) u u U
Ttw = T Var(Y)) B (1_t) (1_t+1> (1+2t+1>’
Var(Yi_u) u u 2u
Var(Y;) (1_t) (1_t+1> (1_2t+1>'

Taylor expanding the first expression for large values of ¢ and fixed values of u gives
Cov(Yy, Yi—u) 3u  3u 4w —Tu  3u(4u? —5)
Yoo TVar(v) 2 i 8B 1o
which is the formula for +,, in (17), while the second expression expands as
Var(Y;_,) . 3u N 3u(2u+1)  4u’ +12u® + 5u N 3u(4u® + 8u + 3) N
Var(Y;) t 2t2 4¢3 8t

+o(t™?),  (28)

o(t™?).

Applying a Taylor expansion of (1 + 2)~'/2 to the latter expression gives

Var(Y;)) m 3u N 3u(5u — 2) n 5u(Tu? — 6u + 2)
Var(Yi_,) 2t 8t2 16t3
3u(105u3 — 140u? + 92u — 24) _5
+ 2800 +o(t™). (29)

Multiplying (28) and (29) gives the expression for p,, in (17) which is

3u?  u(u—1)(u—2) 3u(—3u®+ 8u? — 28u + 16) e
=1——— 7). 30
P 82 8¢9 - 1284 o). (30
Inserting the expression for v, , and p,, in (28) and (30) into the definition (7) for

a2 and (6) for m, 9, respectively, yields the desired expressions (18).
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B Derivations of the sample results

At first some general formulas for correlograms and covariograms are derived. Sub-
sequently the particular time series are studied.
The generalised autocorrelation (5) can be written as

S+ Sio
V/S11(S11 + 2510 + Soo)

Tyvw =

T—w

where S;; = > 114

R;1R;; and Ry and Ry, are defined in terms of

—1T—w ——I'—w—u —1T—w —I'—w—u, def

(Xt - X1+u+v) = (thu - X1+v ) + (Xt - Xt*u - X1+u+v + Xl—i—'u ) = Rl,t + R07t.

Provided that (S10/511)? = O(Sp0/S11) = o(1) for large T and fixed u, v, w an asymp-

totic expansion shows

S [ S\’
wvw ~ 1— - . 2
fu 251, <2sn> (32

If in addition it holds (810/811)2 = 0(800/511) then

Soo
251

(33)

Tu,v,w ~1-

To derive expressions for the covariograms g, is rewritten in the same way as

T T
_ ZtT:uH(Xt — X7)(Xi—w — X7) def | o Sy — 53
ZtT=1(Xt - 7?)2 51

: (34)

Uu

where S; is the denominator of g, and

= T

So =3 it (Xe — Xo ) (Xew — X)), S5 =3y e (X — X1 )2

B.1 Proof of sample expression (19) for the asymptotically stationary case

For |3] < 1 the result is well-known. It can be proved using laws of large numbers for
linear processes, see Phillips and Solo (1992, Theorem 3.1, 3.7), that

T_I(S117S107 5007 SI7S27 53) (E} (1”6114 - 172 - 26“7 176u - 170)/(1 - 62)

The desired results for r, and g, then follow from (31), (34).
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B.2 Proof of sample expression (20) for the explosive case

For |3| > 1 the distribution of the sample expressions are invariant to p since Xt —
p/(1 — ) satisfy an autoregression without intercept but with initial value Xy =
Xo—p/(1 = (). Lai and Wei (1983, Theorem 2) prove that

BUX=mW, BTN XEE W (-5,
where W = X, + S, B e is a continuous random variable. Moreover it holds
BEYL XS w/(1-8"Y, BTYL Xiew; = o(T?),  for j>0.

where the first result is proved as that of Z?zl X2 and the latter result follows as in
Lai and Wei (1983, Equation 4.18). The desired results for r, and g, follow from (31)
and (34) noting that X; — X; , = Z?;& Fey+ (6" —1)X,, and
BRI (S, S, S) S {L (8"~ 1), (8"~ DAL - 5,
B8, 82,83) = AL (" = 1) 1= BT WE/(1 - 677).

B.3 Proof of sample expression (21) for random walk with constant level

For 3 =1 and p = 0 then AX; = &; and the distributions of r, and g, are invariant
to Xy, which can then be chosen as Xy = 0. It then holds X; — X;_, = Z?Zl Et—utj

and X;_, = sz e;. The Law of Large Numbers and Donsker’s invariance principle

combined with the Continuous Mapping Theorem, see Billingsley (1968), then imply
Tﬁl(Tilsll, Sl(), Soo, Tﬁlsl, SQ, Sg) B> (D, UN, u, D, UN, UA)

The desired results for r,, and g, follow by inserting these expressions in (33), (34).

B.4 Proof of sample expression (22) for random walk with linear trend

For 3 =1 and ¢ # 0 then AX; = p + ¢ and the distributions of the sample
expressions are invariant to Xy, which can then be chosen as Xy = 0. It then holds
X;— Xy = pu+ Z};l ety and Xy o = p(t —u) + Zi:{ g;j. Noting that a linear
trend dominates a random walk the Law of Large Numbers and Donsker’s invariance
principle combined with the Continuous Mapping Theorem, see Billingsley (1968),
then imply

T35u 5 y/12,  Si=O0p(T¥?), T 'S0 %% u,

T3S 5 p?/12, Sy =0p(T??), T 2855 pPu/d.

The desired results for r,, and g, follow by inserting these expressions in (33), (34).
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B.5 Proof of sample expressions (24), (25) for I2 proces
For the cumulated random walk Y; given by (16) it holds

t—u 4 j
Vi—Yiu=u) &+ Zj:tfqul Z?ztfqul Ei-
Let C, = fos B,dr denote the integrated Brownian motion, C' = fol C,ds and define

Ieo = [4(Cy —C)%ds, Iop= [4(Cs—C)(By, — B)ds, Igp= [4(Bs— B)%ds.

It then follows from Donsker’s invariance principle combined with the Continuous
Mapping Theorem, see Billingsley (1968), that

T8 > Ice, T3S0 2 ulop T 2Sgy 2 u*Ipp,

T_4S1 B> Icc, T_3SQ B> UICB, T_353 B> U(Cl - 6)2

Inserting these expressions in (32), (34) gives the results

” :1_U_2 IBB . IC_B ? +O (T—3) :1_’LLICB +O (T—Q)
oo 12 | 2Ice Ioc F 9 Tlcc i ’

which are expansions of higher order than what is reported in (24). Inserting these
expansions in the definitions of py and as in (4) then gives (25).
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