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Abstract: A vector autoregression with deterministic terms and with no restric-
tions to its characteristic roots is considered. Strong consistency results for the least
squares statistics are presented. This extends earlier results where deterministic terms
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1 Introduction

The strong consistency of least squares estimators in an vector autoregression with
deterministic terms is studied. Autoregressions generally have three types of asymp-
totic behaviour in that they may be stationary, a random walk type process or an
explosive process. For the econometric analysis of non-explosive time series it usually
suffices to use weak consistency and weak convergence arguments as in the work by
Phillips (1991) and Johansen (1996). When a time series has explosive features it
is mathematically more natural to use strong consistency arguments exploiting that
explosive processes tend to follow persistent trajectories with probability one.

The first results showing strong consistency for explosive first order autoregres-
sions were due to Rubin (1950) and Anderson (1959), with some generalisations by for
instance Fuller, Hasza and Goebel (1981) and Jeganathan (1988). A general strong
consistency result for vector autoregressions was given by Lai and Wei (1985) and
this is generalised here to a situation with deterministic terms as seen in economet-
ric models. The employed techniques are to a large extent derived using methods
presented by Lai and Wei (1982, 1983a.,b, 1985) and Wei (1992).

The paper is organised so that §2 presents the model and an overview of the main
results. The proof follows in §3-10 and will be outlined in §2.

The following notation is used throughout the paper: For a matrix a let a®? =
ao/, whereas a ® (3 is the Kronecker product and equals for example (o113, a120) if
a € RY2 Further diag (o, ...,,) is a block diagonal matrix with diagonal blocks
aj. When « is symmetric then Ay, (@) and Ay (@) are the smallest and the largest
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eigenvalue respectively. The choice of norm is the spectral norm ||a|| = {Apax (a®?)}1/2
implying that [Ja™|| = {Amin(a®?)} /2. While E (g,|.F;_1) is a conditional expectation
the notation (Y;|Z;) denotes the residual of the least squares regression of Y; on Z;.
The abbreviation a.s. is used for properties holding almost surely.

2 The autoregressive model and main results

The model in this paper is for a p-dimensional time series, Xi_,...,Xo,..., X7
satisfying a k-th order vector autoregressive equation

k
Xt = ZAthfj_‘_/'Lthl +€t7 for t = 1,...,T, (21)
j=1

J

where D; is a deterministic term and ¢; an innovation term.

The innovations are required to satisfy the local Marcinkiewicz-Zygmund condi-
tions for convergence of explosive processes introduced by Lai and Wei (1983a). These
are that (g;) is a martingale difference sequence with respect to an increasing sequence
of o-fields (F;) with the properties that some conditional moments of higher order
are bounded and that the conditional variance has positive definite limit points.

Assumption 2.1 For some y > 2 it holds sup, E(||,||*™ | Fi—1) < 00 a.s.
Assumption 2.2 liminf; . A\uinE (61} Fi—1) > 0 a.s.

Each of the Assumptions 2.1, 2.2 exclude the possibility that the innovations
could be autoregressive conditional heteroscedastic (ARCH) as proposed by Engle
(1982). Therefore these conditions would probably be perceived as too strong for
non-explosive situations, but for general autoregressions they are convenient.

The deterministic term D, is a vector of terms such as a constant, a linear trend, or
seasonal dummies. Inspired by Johansen (2000) the deterministic terms are required
to satisfy the difference equation

D,=DD, ,, (2.2)

where D has characteristic roots on the complex unit circle and linearly independent
coordinates as described by the following assumption.

Assumption 2.3 |eigen (D)| =1 and rank (Dy, ..., Dgnp) = dim D.

With this type of deterministic terms the time series can be written conveniently
in companion form. The stacked process X;_; = (X,_;,...,X] ) satisfies

X; =BX;_1 + puDi_1 + exy,



when defining matrices B, p and a process ex as

_ Ay A Ay _ puD [ &
B - { Ip(k—l) 0 ) M= 0 9 eX,t - 0 )
while S; = (X4, D;) that combines X; with the deterministic process D; satisfies

St = SSt_l + €st, (23)

where S and eg; are defined as

(B _ [ exy
=(05) (W)

The main object of interest is the least squares estimator for the parameters
Aq, ..., Ag, p which has the form

R . T T -1
(Alv' .- 7Al€7ﬂ) - (A17‘ - 7Akﬂu) = thsgfl (Z SI§21> ’
t=1 t=1

where S% is the outer product S;_1S;_,. The partial estimator for the dynamic pa-
rameters Ay, ..., Ay can correspondingly be written in terms of the residuals (X;|D;)
from regressing the companion vector X; on the deterministic terms D, as

(Ay, .. Ap) — (AL, Ap) = iet(Xt,l\Dt,l)’ {ZT;(XH;DH)@}_ ,

t=1 t=1

while the least squares variance estimator satisfies

A 1z ®2 1 ®2
Q== (Xi|Si1)™" = 7 20 (& Se-1)™
T t=1 T t=1
The first main result gives a bound for a studentised version of the joint estimator.

Theorem 2.4 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied. Then

T —1/2 7
(Z St®21> S8 16, E o {T(l’g)/Q} for all ¢ < ~v/(2+7).
=1

t=1

The remainder term can be decomposed as a sum of the following terms:

O(maxi<r ||ef]|) = o {71972} if max |eigen (B)| > 1,
O{(log T)*/*} if B has eigenvalues of length 1,
O{(loglog T)*/?} if min |eigen (B)| < 1.



Special cases have been proved by Potscher (1989, Lemma A.1) for dimD = 0 and
¢ = 0 and by Nielsen (2001a) who proves a univariate version holding in probability.

The proof of Theorem 2.4 relies on a separation of the stochastic and deterministic
components using that (330, §%%)"1/25,_; can be rewritten as

-1/2 —1/2
(X 02) " D+ { XL (Kol D)) (Xia| D)

by partitioned inversion. For the least squares estimator itself a more complete un-
derstanding of the interaction between the deterministic components and unit root
processes appearing in the denominator matrix is needed. Such results are not avail-
able as yet and the following consistency results are therefore only partial although
they do represent some improvement over previous results and include a complete
description of the pure stationary and purely explosive cases where |eigen(B)| # 1.

Theorem 2.5 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied. Then

~

(Ah ) Ak) - (Alu R 7Al€) = O{(T_l lOg T)I/Q}
If B and D have no common eigenvalues then
(Av,o A ) = (Avs o Ay p) 2 o(T42) for all€ < 7/(247).

The issue of strong consistency of the least squares estimator was first discussed
for a univariate, explosive, Gaussian first order autoregression, with dimX = 1,
dimD = 0, by Rubin (1950) and Anderson (1959). Lai and Wei (1985, Theorem
4) studied the special case without deterministic terms, so dimD = 0, and gave a
weaker result with £ = 0. A related generalisation has previously been presented by
Duflo, Senoussi and Touati (1991, Theorem 1) in the case where the explosive roots
have multiplicity one whereas their Theorem 2 seems false in suggesting that the least
square estimator for B otherwise is inconsistent.

A direct consequence of Theorem 2.4 concerning the studentised least squares
estimator is that the least squares variance estimator can be estimated consistently.

Corollary 2.6 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied. Then

Il

Aas 1 X
Q "fZétg@Q—i—o(T*g) forall & < /(24 7).
=1
While the Assumptions 2.1, 2.2 suffice to ensure that the sequence (771 Y1, £22)
is relatively compact with positive definite limit points as argued by Lai and Wei
(1985), some further structure is needed to get convergence to an interpretable matrix.

In the light of the Assumptions 2.1, 2.2 it is convenient to apply the following sufficient
condition used by Chan and Wei (1988).

Assumption 2.7 E(s%?|F,_1) = Q a.s. where Q is positive definite.

4



This gives rise to the following convergence result.

Theorem 2.8 Suppose Assumptions 2.1, 2.7 are satisfied. Then

1 L o as - . v 1
?75:216;? :Q+O(T C)’ forall(<m1n<m,§).

Corollary 2.6 and Theorem 2.8 lead to an immediate result for the least squares
variance estimator.

Corollary 2.9 Suppose Assumptions 2.1, 2.3, 2.7 are satisfied. Then

~as 1 L ®2 —¢ . Y 1
0= thlgt +0(T ) fO’I" all§<m1n m,i .

There is potential for many other econometric applications of Theorem 2.4. An
example is lag length determination where it is conceptually important to establish
the lag length before determining the location of the characteristic roots, see Potscher
(1989), Wei (1992) and Nielsen (2001b). Other examples are unit root testing (Nielsen
2001a) and cointegration analysis (Nielsen, 2000) where the asymptotic inference
results also can be used without knowledge about the characteristic roots.

The remainder of the paper gives the proofs of these results. To a large extent the
proofs follow those of Lai and Wei (1983b and 1985), but with many modifications
because of the deterministic term. The proof is outlined as follows. In §3 the process
X, is decomposed into autoregressive components Uy, Vi, W; with charateristic roots
outside, on, and inside the unit circle, respectively. The order of magnitude of the
deterministic process, D;, and the process itself, X, is discussed in §4 and §5. The
next sections are concerned with the order of magnitude of the denominator matrix
M, = Zthl Sfa_Ql. As a first step the sample correlation of U; and D; is considered
in §6. The order of magnitude of the largest and the smallest eigenvalue of My is
then discussed in §7 and §8. The next step is to discuss sample correlations of all
possible combinations of the processes U, V;, W;, D; in §9 and finally the main results
are proved in §10.

3 Decompositions of the process

The process X; is decomposed in two ways to facilitate the subsequent asymptotic
analysis. The first decomposition concerns the stochastic part of process while the
second decomposition disentangles deterministic and stochastic parts of the process.

The first decomposition separates the eigenvalues of the companion matrix B for
the stochastic part of the process. Following Herstein (1975, p. 308) there exists a
regular, real matrix M which transforms B into a real block diagonal matrix with



blocks U, V and W having eigenvalues with absolute value less than one, equal to
one and larger than one, respectively. That is

U, U 0 0 pup Ui e
M 0 g _ Vil [0V 0 Via 4| e
0 Il4imD ¢ W, 0 0 W Hw Wi Ewit

Dy 0O 0 0 D D, 4 0

For the purpose of proving the results of §2 it can be assumed without loss of generality
that B = diag(U, V, W) is block diagonal and S, = (U], V/, W/, D;)’.

The second decomposition seeks to separate the stochastic and deterministic com-
ponents and is based on two arguments. The processes U, W;, D, are first separated
by a similarity transformation using that the matrices U;W and D have no common
eigenvalues, while the processes V;, D; have to be discussed in more detail since the
matrices V and D may in general have common eigenvalues.

The processes U;, W; are linear functions of the deterministic process D; and they
are first shown to satisfy the relationships

Ut = ﬁt + ,ZLUDt where ﬁt = UUtfl + €Uty (31)
W, = Wi + iy Dy where W, = WW,_; + e,

with [jo = Uy — iy Dy and WO = Wy — iy Dy. The argument is the same in both cases.
Taking U, as an example consider the companion matrix for the vector (U/, D;) and
apply a similarity transformation of the form

_( lamu  —fiy U wy 1 (U py+Upy —pyD
M_< 0  lamD o M 0 D M= 0 D '

The result (3.1) then follows by arguing that fi;; can be chosen so p,;+Ufi,;— iy D = 0
which is a consequence of the next Lemma 3.1.

Lemma 3.1 Consider matrices D € R4, N € R™™ and the equation pD—Nji =
for some p, i € R™?. The solution [i is unique for all p if and only if the matrices
D and N have no common eigenvalues.

Proof of Lemma 3.1.  Following Magnus and Neudecker (1999, p.30) the
equation of interest can be written as vec(iD — Ni) = (D' ® I,, — [; ® N) vecfi =
vecu. A unique solution exists when D' ® I,, — I; ® N has full rank.

Two properties of Kronecker products are needed. First, the two matrices D' ® I,
and I;® N commute and hence they are simultaneously unitarily similar to triangular
matrices (Mirsky, 1961, Theorem 10.6.5). Secondly, a Kronecker product F' ® G
has eigenvalues of the form f;g; where f, g are the eigenvalues of F,G respectively,
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see Magnus and Neudecker (1999, Theorem 2.3.1). As a consequence the matrix
D' ® I, — I; ® N is unitarily similar to a triangular matrix with diagonal elements
given by d; — n; where d; and n; are eigenvalues of D and N respectively. Hence, if
D and N have no common eigenvalues then D’ ® I,, — I; ® N has full rank.

Now suppose D and N have a common eigenvalue A and let x and y be associated
eigenvectors so D'z = Az and Ny = Ay. Since (D' ® I,, — I; ® N) vec(yz') = 0 then
vec(yx') is an eigenvector for D' ® I,, — I; ® N associated with the eigenvalue 0. m

In the special case where B has no eigenvalues in common with D the same
argument can be made for the entire process X; as for the Uy, W; processes. That is

X, =X, + jixD; where X, =BX;_; + ex,. (3.3)

When it comes to the general situation where V and D are allowed to have common
eigenvalues it is convenient first to discuss the special case where V and D have their
eigenvalues at one and are both Jordan matrices

A E
, (3.4)
E
A
with (A, F) = (1,1). In that situation V; will be shown to satisfy
‘/;f = ‘Z‘/ + ,[LVDt where ‘715 = Vf/t_l + v and Dt = f)Dt_l, (35)

with V; = Vj and where D is of the form (3.4) with dimD = dimV + dimD. To see
this write the process (V;, D;) in companion form as

Vi . A% My Vica + Evit
D,/ \0 D D, 0 ’
which has solution
Vi S (Vo Y ([ evay Vo \' (Vo
(Dt)_];)(o D o JT{o D D ) 36

Two properties of the companion matrix will be need. First, it satisfies

Vo opy Tyimv \
(IdimV7O)< 0 D )( 0 )—V.

Secondly, since V and D are both Jordan blocks of the form (3.4) with eigenvalues
at one a matrix M exists so that

_ Vouy -1
M-]W(0 D)M



is a block diagonal matrix with diagonal elements that are Jordan blocks of the form
(3.4) with (A, E) = (1,1). Extracting the marginal solution for V; from (3.6) and
using these properies shows

-1
=> Viey; + Vi, + (Igimv, 0) M‘lMtM< l()) ) ,
j=0 0

which in turn can be written as V; + ji,, D' Dy for some fiy, and D.

In general V and D can have eigenvalues anywhere on the unit circle. Suppose
these occur at [ distinct complex pairs exp(i6;) and exp(—i6;) for 0 < §; < 7 which of
course reduce to a single eigenvalue of 1 or —1 if §; equals 0 or 7. Following Herstein
(1975, p. 308) and using Assumption 2.3 to D there exists regular, real similarity
transformations My and Mp that block-diagonalise V and D as

MyVM;' = diag(V,,...,V;)  where  V;=diag(V;1,..., Vim,),
MpDM,' = diag(Dy,...,D)),

where the sub-blocks V;,, and D, are real Jordan matrices of the form (3.4), and
where (A, E) is one of the pairs

cosf —sind 1 0
(1,1), (-=1,1), or {(sme cos 0 ),(0 1)} for0 <0 <m. (3.7

Using the same argument as above it therefore holds in general that V; has rep-
resentation (3.5) where V, has sub-components V;t and ijt of dimension dim 'V
and dim V,, respectively and D, has sub-components D],t of dimension dlmD
dim D; 4+ max,, dim V; ,,.

Combining the results (3.1), (3.2), (3.5) with the notation

- [21‘/ (07 laU)
Xt = Y;f ) /1 = /]V )

shows that the process without loss of generality can be represented as
X; =X, + aD; where X, =BX,;+ex; D;=DD,. (3.8)
It is convenient also to introduce the dimensions
§; =dimD,/dim4A;, &, =dimD,/dim4A;, v, =dimV;,/dmA;,
as well as the maxima

6= max; (Sj, o= max; 6j, V=maX;mVjm.



4 Limiting results for the deterministic component

In the following the order of magnitude of the deterministic process D; and the de-
nominator matrix Y7, D2 will be described.
The main result is formulated using normalisation matrices

Np = diag (Ng,,...,Ns,) where N, = diag{(A;/T)" ",...,(A;,T)°}. (4.1
Theorem 4.1 Suppose Assumption 2.3 is satisfied. Then it holds
(i) max,<r | NpDr|| = O (1) and in particular || Dr|| = O(T°71).
(1) limy o T~V 2] [ (NpDi_1)®? is positive definite.
(it6) maxier D(Y ooy DE2) 71Dy = O(T1).
Two lemmas concerning the order of D, and Z?zl Dj,f are needed.
Lemma 4.2 Let D;; denote the last element of the initial vector D;o. Then
Ns,Djy = f(6;,t/T) @ AsDj 104+ O(T),  uniformly in t,
where f is the polynomial vector f (n+ 1,u) = {u"/(n!),...,u°/ (0)}.

Proof of Lemma 4.2. The process D, satisfies D,; = D;DLO where

AY b, DAY oo Db(E, 6 — 1A ST

0 I\ b(t, 6; — 2) At %+
D=9 : ’

0 0 At

and b(-,-) is the binomial coefficient. The desired result then follows by noting that
b(t,n) = t"/n! + O(t"~!) uniformly in ¢ while [|A"|| < [[A||"=1. =

Lemma 4.3 .

(i) T 300y (Ns, Dju1)®* = (|| Dy oll?/ dim Ay) [ f (85,u)% du @ E; +O(T1).
(1) If Assumption 2.3 is satisfied then the limiting matrixz in (i) is positive definite.
(idi) T34 (N5, Dju1)(Ns,, Diny-1)' = O(T 1) for j # m.

Proof of Lemma 4.3. (i) By Lemma 4.2 the cross product satisfies

1 L /t-1 pra=? t—1 t—1 1
— / —1\/ —
f t; <—T ) Aj DJ'J,ODj,l,O(Aj ) + 0O (T ) :



Trigonometric identities show that ALD;, 0D, o(AL) equals Ej||D; 1 0l/?/ dim A; + R;
where R; = 0 for dim A; = 1 and R; = cos (26t) A+sin (20t) B for some constant ma-
trices A, B when dim A; = 2. When dim A; = 1 the desired result follows immediately,
whereas when dim A; = 2 it follows from the result

T
T=15 (t/T) " % cos (20t +a) = O(T™Y)  for 0 <6 <,
t=1

for any constant a, see Gradshteyn and Ryzhik (1965, 2.633.2).

(i7) Note that the vector f(n,u) can be expressed as a non-singular linear trans-
formation of the first n Legendre polynomials, p(n,u) say, which have the property
that fol p(n,u)®*du = I,, giving the positive definiteness.

(743) Use the same type of arguments as in (i), noting that AlD;, 0D, | o(AL,)
equals cos (20t) A + sin (260t) B for some constant matrices A, B. m

/

Proof of Theorem 4.1. (i) The result follows from Lemma 4.2 by stacking the
processes N, D;; and using the triangle inequality.

(i1) Lemma 4.3 implies that 7' 3.7, (NpD;)®? converges to a block diagonal
matrix with positive definite diagonal elements.

(73i) The desired result follows from (i),(i¢) and replacing each D, with NpD;. m

5 The order of magnitude of the process

In the following the order of magnitude of the process X; is investigated. This is a
generalisation of Lai and Wei (1985, Theorem 1) where the case without deterministic
components is considered. Subsequently a convergence result is given for the explosive
component W;.

Theorem 5.1 Suppose Assumptions 2.1, 2.3 are satisfied. Then, for & <~/ (24+7),

o{T1=8/2} 1 O(T*™Y) ) if max |eigen (B)| < 1,
Xzl = { O{(T?'loglog T)/?} + O(T*) if max |eigen (B)| = 1,
O{T"' max |eigen (B)|"} if max |eigen (B)| > 1.

Proof of Theorem 5.1. By (3.8) it holds X; = X, + /lf)t. Lai and Wei (1985,
Theorem 1) show the results for the purely stochastic component X; whereas the
order of the deterministic component D; follows from Lemma 4.2. m

When studying the process W; Lai and Wei (1985) use the following generalisation
of the Marcinkiewicz-Zygmund Theorem.

Theorem 5.2 (Lai and Wei, 1983a, Corollaries 3 and 4)

Suppose Assumptions 2.1, 2.2 are satisfied. Then for any sequence of matrices A; the
series Zle Aser converges a.s. if and only if the series Zthl | A¢]| converges.

If this holds, and Ay, # 0 for infinitely many t then P(> 2, Aier =Y) = 0 for any
variable Y that is F;-measurable for some t.
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This result yields a more precise statement about the order of magnitude of the
explosive component.

Corollary 5.3 Suppose Assumption 2.1, 2.2, 2.3 are satisfied. Then

(1) W ITWy converges a.s. to W =Wy + > 2, Wtey, satisfying P(a'W = 0) =0
for any a € R4™W,

(id) Sy (W W]l = 3202, [[W W | as.

Proof of Corollary 5.3. (i) The decomposition (3.2) and Theorem 4.1, 7 show
that Wy = Wy +o(WT). The result then follows from Theorem 5.2, see also Lai and
Wei (1985, Lemma 2).

(i1) Rewrite S0 [[W=TW, 4| = S, [W-T=#DWI=, || and use (i) and
that ||[W~7|| is exponentially decreasing. m

6 Correlation between stationary and deterministic component

One major difference between the results presented here and the work of Lai and Wei
(1985) is that deterministic terms are included in the model. Before turning to the
question of how big the denominator matrix can be in §7 it is convenient to consider
the asymptotic order of magnitude of correlations between the zero mean process with
roots smaller than one, U,, and the deterministic component, D;.

As a first step towards discussing the sample correlation of U, and D, results
of Lai and Wei concerning the matrices T3 ¢¥? and T~ 3./_, U#? are stated.
The results give conditions for relative compactness of sequences of such matrices.
Recalling that the relative compactness of a sequence is the property that the limit
points fall in a compact set, this enables a discussion of the order of magnitude of the
sequence under weak assumptions. In particular, a condition is given ensuring that
the limit points are bounded away from zero.

Theorem 6.1 (Lai and Wei, 1985, Theorem 2, equation 3.7, Example 3).
Suppose Assumption 2.1 is satisfied. Then, with probability one, the matrix sequences

1z 1z
(- gg®2:Tz1>, {—ZE(5§2}951):T21}
Tim Ti=

are relatively compact with the same limit points.
If in addition Assumption 2.2 is satisfied the limit points are positive definite.

Since ey, is a linear combination of ex, the sequence (T3 €53 : T > 1) is
therefore relatively compact. In addition the following results can be shown.
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Theorem 6.2 (Lai and Wei, 1985, Theorem 2, Example 3).
Suppose Assumptions 2.1, 2.2 are satisfied. Then it holds with probability one that

Eisalimitpointof( Ze .T>1>

7=0

1 T
Z B’E(B’)’ is a limit point of {Z BJT eG(B) T > 1}
=
and positive definite if ¢ > kdim X, where k is the lag length ,

as well as it holds

T

1
Ey s a limit point of (T eUt T> 1)
i=
oo / 1 T
> U'Ey (U') is positive definite and a limit point of (T SUS T > 1) .
t=0 t=1

Before turning to the sample correlation of U, and D, it is useful to cite the
following univariate result by Wei (1985).

Lemma 6.3 (Wei 1985, Lemma 2)

Suppose Assumption 2.1 is satisfied. Let (z;) be a sequence of random variables

adapted to (F,) with s3 = Y|, x2. Assume 23 = o(sx ") a.s. for some n > 0.

Then

T
> 215 ™ O {sr (loglog sr)'/*}

t=1
The result for the sample correlation of U, and D, can now be stated and proved.

Theorem 6.4 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied. Then, for all n > 0,
T 2z p T ~1/2
(Z Uf%) (Z Ut1D{L_1> (Z D7§)—21> a.s. O(Tnfl/Q).
t=1 t—1 =

Proof of Theorem 6.4. Theorem 6.2 shows that || 2], UE%||71/2 is O(T—/?)
so it suffices to show that (3/_, U; 1D, ) (31—, D¥%)~1/2 is o(T").

The main contribution arises from the sum (3. U:D}) (3, DF?)~/2 for an o
satisfying 1 > o > 0. With this in mind and using U; = UU;_; + ey, the object of
interest can be written as

T ) T_1 Te—1 T -1/2
(2 U, .D,_, +UT Z U, 7aD) + Z > Uleyy 5D> (2 D,<?;21> . (6.1)

t=T"% =T s=0 t=1
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The first two terms in (6.1) are o (7). To see this bound their norm by
1/2

-1
(T"‘ max_ HUtH+THUHTa max HUtH> {maXD (ZD ) Dt} :

1<t<

and use Theorems 4.1, 5.1 and that ||U||"" decreases exponentially.
The third term in (6.1) is o(7™). To see this use D, = D*D,_4 and the normalisa-
tion Np given in (4.1) to rewrite it as

To—1 T—1 ) ) T—1—s 02 —1/2
>, U’ ( > eU,t—sDt—sND> { > (NpDy) } .
s=0

=T t=—s

The norm of this expression is bounded by

Te-1 M= o |rere - —1/2
2. U 20 evesDeNp || || 22 (NpDia)
5=0 (=T =1
Since the sum 7" ||U||® converges it suffices to show that the last two components

can be approxunated uniformly by a variable which is o(7").

The sum 3., " (NpD;_1)®* is approximately equal to Y, (NpD;_1)®* which
converges to a positive definite matrix, see Theorem 4.1. The norm of the approxima-
tion error, Zf:T—Ta+1 (NpD,_1)®*, is bounded by T* max,. || NpDy||* = O (T*~!) =
o(1), due to Theorem 4.1.

In a similar way Z?:_Tla evi—sD;_, is approximately Z:;F:_ll ey D}, which is not
dependent on s. Considering each element of this matrix and applying Lemma 6.3
shows that this is o(T"N;'). The approximation error can be bounded by

-1
27 max || ey || {maXD' (ZD ) Dt}

1/2
t<T

Using Theorems 4.1, 5.1 this is seen to be o(T%"%/2) which is o(1) for a small o. =
Some immediate consequences of these results are the following examples.

Example 6.5 Suppose Assumptions 2.1, 2.7 are satisfied. Then Theorems 6.1 and
6.2 imply T-' Y0 68?2 — Qa.s. and T Y, UP? — 3202, UQ (U as.
Example 6.6 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied. Then Theorems 6.2,
6.4 and equation (3.1) imply that the sequence of matrices
1 L 1 L - 2@.8.1T~2 1
(Ut|Dt) = = L (GD)** = = 3 U +o(T"7)
T & Ti= Ti=

is relatively compact with positive definite limit points. Moreover, this series converges
almost surely if T—! Zthl e¥? is convergent. According to Example 6.5 this is for
instance the case if the additional Assumption 2.7 is satisfied.
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7 The largest eigenvalue of the denominator matrix

The order of magnitude of the largest eigenvalue of the denominator matrix My =
Zstl S®2 can now be described. This is followed by a convergence result for the
purely explosive case and a bound for the rate of convergence of sum of powers of Us.

First, the largest eigenvalue of My is considered in the following generalisation of
Lai and Wei (1985, Corollary 1).

Theorem 7.1 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied. Then

O (T) +0O(T%71) if leigen (B)| < 1,
Amax (M7) 2 {0 O(T%loglog T) + O(T#-1)  if |eigen (B)| < 1,
O{T?~? max |eigen (B)[*"} for general B.
Proof of Theorem 7.1. If max |eigen (B)| < 1 then X, = U, + p,D; by (3.1).
Lai and Wei (1985, Corollary 1) show Apax(31_, UF?) = O(T) a.s. and the result
then follows from Theorems 4.1, 6.4. If max |eigen (B)| > 1 the result follows directly

from Theorem 5.1. ®m

For the explosive part of the process the following generalisation of Lai and Wei
(1985, Corollary 2) can be established.

Corollary 7.2 Suppose Assumption 2.1, 2.2, 2.3 are satisfied and min |eigen(B)| > 1
so My = Z;‘FZI W22 and recall the definition of W in Corollary 5.3. Then

WMy (W) 55 Fy = Y (WW)®2
t=1

where Fy, is positive definite a.s., hence

8
»

lim 7! log Ain (My)

T—00

lim 77" log Amax (M7) %

T—o0

2log min |eigen (W)] ,

g

2log max |eigen (W) .

Proof of Corollary 7.2. Let Rr denote the difference between the matrices
WIS WEHW-TY and W-T 32 WE*(W-T). The decomposition (3.2) shows

T
e =0 (sma |2 5 Wi ) + O (T L [ W)
t<T =1 =T

which vanishes for large T" due to Theorem 4.1,i and Corollary 5.3,i. The desired
result is then a direct consequence of Lai and Wei (1983b, Theorem 2). m

While Theorem 7.1 gives a bound for the sum of squares of the process the follow-
ing result gives a bound for sum of higher order powers of the stationary component.
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Theorem 7.3 Suppose Assumption 2.1 is satisfied. Then, for allmp >0 and ( <~

1
T1+n

T .
> [IT 1 = 0.
=1

t

Proof of Theorem 7.3. For notational convenience define eyy = Up. Using
Holder’s inequality it follows that

t

Z UtijeU,j

g=0

2+¢ . ¢
HUtH2+< = < { ) HU(tJ)/2H(2+C)/(1+C)} Z% HU(t’”)/QGU,jHQ*C.
= ]:

J

Summation over ¢ then gives the following bound

14+¢
T - 00 ) T i )
tzl 1+ < {ZO ||UJ/2||(2+O/(HO} tzl Z% [T ey 2+

Changing summation index in the double sum this can be bounded further by

L Fr 24 o (1T 74/2](24€)/(14) e % d 2+¢
2 MG <4 30 1T ;}HU f 2 llewsl™ )

The first two sums converge, while the third term can be decomposed as

T T T

2 2 2 2
52 lew 1€ = 35 {llewss 7€ — Ellleass "€ 17 2)  + 52 Elleass €170 1),
J= J=

j=0

The latter term is of order O (T') = o(T**") by Assumption (2.1). The first term is a
martingale. Normalised by 77 it converges to zero a.s. on the set where

5= e { Jleu 1< = e 4 171-0)|| s} < o,
J:

see Hall and Heyde (1980, Theorem 2.18). Minkowski’s inequality shows that this
sum is finite if the sum Z;’;Oj_(lJr”)E(HeUJH2M | Fi—1) is finite. Assumption (2.1)
ensures this is the case. ®

8 The smallest eigenvalue of the denominator matrix

Three results are given concerning the order of the inverse of the denominator matrix,
M, = Z?zl S22 | of the least square estimator in the non-explosive case. Using
the techniques of Chan and Wei (1988) it can be proved that T My is bounded
from below in a weak convergence sense. The first result goes some way toward an
almost sure version of this result in showing that the partial denominator matrix

15



TS (X|Dy)¥? is bounded from below while the second result shows that the
joint matrix T~*My is bounded from below in the special case where S and D have
no common eigenvalues. In combination these results can be used to establish the
third result concerning the order of maxye<;<y S{M;lst without actually establishing
the order of M;l and this will suffice to prove the main theorems.

The first result concerns the partial denominator matrix 3, | (X;|D;)** and is
related to Lai and Wei (1985, Theorem 3).

Theorem 8.1 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied and |eigen (B)| < 1.
Then

T

1z 1
Hminfm, (= D2 X%2 ) > liminfApn, § = 32 (X1 D 1)®* p > 0.
T t—1 T—o00 T

To prove Theorem 8.1 the following Lemma is needed. This Lemma ensures that
Lai and Wei (1982, Lemma 1) concerning the order of magnitude of normalised least
squares estimators can be used.

Lemma 8.2 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied. Then Ty = inf(T : My
is invertible) < oo a.s.

Proof of Lemma 8.2. It suffices to show that «'Myu > 0 for all u € R4™S g0
u # 0 and some T Since u'Mpu = Zt L SP3u = u(Sy, ..., Sr_1)®%u it is equivalent
that (So, ..., Sr_1)R spans R4S for some invertible matrix R.

The decompos1t10n (3.8) shows that X; = X, + D, where X, = BX,_; + ext
and D, = DD,_;. The Cayley-Hamilton Theorem, see Herstein (1975, p.334), implies

that if det(A, 5 — D) = meSD d; A" D7 with do = 1 is the characteristic poly-
nomial of D then Z?LI%D d;D;_j = Z?;%D d;DImP—ip < =0 and in particular
ZdlmD d; Xy Z?;HSD det,j = 2, say. Define

ddim D
. I dim D
R _ dl ddim D :
do
dy 0
do

and partition R as a (2 x 2)-block matrix so the upper right block is a dim D-
dimensional square matrix. The above properties then show that (Si,...,Sr)R is
an upper triangular (2 x 2)-block matrix. The lower right block is (Do, ..., Dy, 1)
which spans R¥™P by Assumption 2.3. It is left to prove that the upper left block
(Zgimbr - - - s Zoaimp_1) Spans RI™MX. The process z, is a linear combination of the
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process (X!,..., X i Daimx) Which satisfies a first order autoregression without
deterministic terms. The desired result then follows from Lai and Wei (1985, Theorem

3) using Assumptions 2.1, 2.2. m

Proof of Theorem 8.1. Let m = dim X. Using the model equation (2.3) and
that D;_1_; = D779 D; the process X; can be rewritten as

m—1 ) m—1 ) .
X, =Y Blex, j+ Y B'uD'"/D, + B"X; ,,
j=0 j=0

where ex o = Xy, ex+ = —puD;_; and X_; = 0 for £ > 0. It follows that

t=0 t=0 t=0 \ j=0

-1 = gp Dl fmo1 @2
Yo (Xe| D) > > (XD, Xyn) 7 = D0 Blex ;| Dy, Xi_pm, . (81)

It is now argued that the lower bound in (8.1) satisfies

®2 ®2
T—1 (m—-1
Dt,Xtm> =Y (Z BﬂeX“) +0(ogT). (82

=0

T-1 [ m—1 )
Z Z BJGX,t,j

t=0

The norm of the difference between the left hand side and the first term on the right
is bounded by

2
J I T ) / T—j , 22) /2
e (5 ) w2 () o)
=\ Dy = Dy S\ Diyy '

The first sum is finite, so when normalised by the denominator term it is seen to be
O (1) due to Lemma 8.2. The normalised second term is O{(log T')'/2} due to Lai and
Wei (1982, Lemma 1) which can be used because of Lemma 8.2.

Using Lai and Wei (1982, Lemma 1) once again it follows that

T m—1 . @2 a.s m=—1 T . ®2
Z Z BJBX,tfj = Z Z (B]eX,tfj) + O (lOg T) . (83)
j j=0 t=1

The proof is completed by combining (8.2), (8.3) and Theorem 6.2. =
When B and D have no common eigenvalues Theorem 8.1 can be extended.

Theorem 8.3 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied and B and D have no
common eigenvalues. Then iminfr o Apin(T7'Mz) > 0 a.s.
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Proof of Theorem 8.3. Due to the representation X; = Xt + fix D, given in
(3.3) it suffices to show the result for sums of squares of

& lamx  fix (X
St_( 0 lamp St = D, )
If det(AMgims — B) = Z?LHEJB bjAdimB_j is the characteristic polynomial of B the
Cayley-Hamilton Theorem, see Herstein (1975, p.334), implies Z?;I%B bBdmB-i —
and hence
B diiB b ST b B ex
e 3=0 e (Z?izntl)B bdeimej) Di_gimB |

Since B and D have no common eigenvalues then det(Z?i:"SB b, DImMB=I) £ (). Tt

follows that liminfr oo Apin (771 ZtT:dimﬁH y¥?) > 0 a.s. using Theorems 4.1, 6.2,
6.4 and Lai and Wei (1985, equation 3.19). The argument is finished as in proof of
Lai and Wei (1985, Theorem 3). =

The final and more technical result addresses the order of S!M,'S;. Lai and
Wei (1985, Lemma 4) show that max;<y S{M,'S; vanishes when |eigen (B)| < 1
and dimD = 0. For the subsequent analysis it suffices to take a maximum over
just T* < ¢t < T for some 0 < a < 1 requiring that 0 < |eigen (B) |, but allowing
dimD > 0.

Theorem 8.4 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied and 0 < |eigen (B)]
1. Then maxracicr SIMZ'S; = o(T—/*) a.s. for all a,¢ s0 0 < a < 1 and

min{vy/(2 4+ ~), 1/2}.

Theorem 8.4 will be proved in a few steps following Lai and Wei (1983b). The
first step is to strengthen their Lemma 3.

<
<

Lemma 8.5 Let (a;) be a sequence of non-negative numbers satisfying

(i) there exists C' >0 and k > 0 such that az11 < a, + Ct™" for all large t.
(i1) S2)  a; = o(T?) for all § > 0,

Then ap = o(T—*) for all p < min(1,x/2).

Proof of Lemma 8.5. Condition () implies that for every 0 < p < 1 then
it holds minp~;>7 70 a; > ap — 2CTP" for all large T'. In particular, choosing p to
satisfy 0 < p < min(1, k/2), it is seen that

T T
Yag> > a>T* (aT — 2CT”_’"‘) > T ar —2C for all large T.
t=1

t=T—T"

Combining this with (i) it follows that a; < T°(3,, a; + 2C) = o(T?). Since &
can be chosen arbitrarily small this proves the desired result. m

The second step is generalise Lai and Wei (1983b, Lemma 617).
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Lemma 8.6 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied and max |eigen (B)| < 1.
Define Ty as in Lemma 8.2. Then

(i) S;_\M;'S;_q <1 fort>Ty,

(i) Z?:TO S M; 'S = O(log 7).

Proof of Lemma 8.6. The proof is the same as that of Lai and Wei (1983b,
Lemma 6ii) using the generalisations of their Theorem 3 and Lemma 6,i presented
above in Theorem 7.1 and Lemma 8.2. m

The third step is to generalise Lai and Wei (1983b, Lemma 7).

Lemma 8.7 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied, 0 < |eigen (B)| < 1.
Then
. 1/2 _ 1/2 _
(d) [|M;2S' ML, SMY|| < 14 O{(T1og T)V2} a.s.
(i1) SpMyi, St < S Mz Sr_1 4+ o(T%/?) a.s. for all ¢ < min{y/(2+7),1/2}.

Proof of Lemma 8.7. (i) Using Lai and Wei (1983b, Lemma 5¢) in the same
way as in the proof of Lai and Wei (1983b, Lemma 77) it holds

MMz SMIZ|| < (1 - Qw + Qi)™ < (1 =2 Qwl)

where

T

Ow — M; /2 (z s) (8) M2

=1
This expression can be rewritten using the identities

. ~1/2
= o) =) e M S XOID)T] B
=1
for ¢ = (Igimx,0). The desired result follows by noting that M;l/ 2 Zle Si1€lyy
is O{(logT)'/?} according to Lai and Wei (1982, Lemma 1), which can be used
because of Lemma 8.2, while the term (B') ™ {321, (Xi_1|Ds_1)®*} 12 is O(T1/?)
by Theorem 8.1.
(1) Noting that Sp = SSp_1 + egr it holds

. pe VRTINS VI .
M, /28y = {MTWS "My, (S 1)'MT1/2} M, 287 + M Pes .

The norm of the first term is less than (S}_,Mz'Sy_1)Y2[1 + O{(Tt1og T)"/*}]1/2
by (7). This is in turn bounded by (S5 ,Mz'Sy 1)Y2 + O{(T'log T)1/4} due to
Lemma 8.6,i. The second term equals /{3, (X, 1|D; 1)%*}~/?ex 1 according to
the identities (8.4) and is seen to be o(T~¢/2) by Theorems 5.1, 8.1. =
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Theorem 8.4 can now be proved.

Proof of Theorem 8.4. The Lemmas 8.6,i7 and 8.7,i7 show that the conditions
of Lemma 8.5 are satisfied for the sequence S;M, 'S, with x = (/2 and therefore
t/4S/M, 1 S; = o(1) for large t. For t > Ty then M, ' > M, so S{M;'S; < SIM, 1} S,
and thus for all ¢ > 0 and almost every outcome a T} exists so for allt,T'soT >t > T}
it holds S;M7'S; < S/M; | S; < €. This in turn implies that for all € > 0 and almost
every outcome a T} exists so for all 7" so T' > T} it holds maxye<iyp S{M;lst <
SIM LS, < € as desired. =

9 Sample correlations

It has already been established in §6 that the sample correlation of U, and D, vanishes
asymptotically. In the following the remaining sample correlations of pairs of the

processes U, V;, Dy, W, are studied. A first result concerns the sample correlation of
Wt and Ut7 _Dt.

Theorem 9.1 , Suppose Assumptions 2.1, 2.2, 2.3 are satisfied. Then
T -1/2 ,p T ~1/2
(Z I/Vt®21> (Z Wt—1D£1> (Z DEZ)Ql) = 0 (T_I/Q) 7
t=1 t—1 =

T -1/2 , o T ~1/2
(Z I/Vt®21> (Z VthUt/1> (Z Ut®21> “ oo (ng/z) for all £ < T
=1 =1 t=1 2+
The bound for the sample correlation of W, and U, should be viewed in the light
of the results of Anderson (1959). He found that Yy = (3.1, W22)"V2S"L W ¢
is convergent when the innovations ¢; are independent, identically distributed but in
general divergent. The stated result combined with Theorem 6.1 shows that the order
of Yr is at most o{T1—8/2},

Proof of Theorem 9.1. The norms of the two expression are bounded by

T ~1/2

S (W W, )

t=1

ml/?2

W W (0.1)

(=)

The last two terms of (9.1) are convergent according to Corollaries 5.3, 7.2. It holds
mp = O(T~") by Theorem 4.1, whereas my = o(T~¢) since Theorem 5.1 shows U7 so
max;<7 |U;]|? is o(T"~¢), while the denominator term is O(7~!) by Example 6.6. m

where m is either of

2

U

max

s=1 t<T

—1
T
mp = max D, (Z D?%) Dy,  my=

For the sample correlation between W; and (V/, D;) a different type of proof is
needed using the results of §8. This is because the order of the smallest eigenvalue of
(V/, D;) is unknown.
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Theorem 9.2 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied. Then, for all { <
min{~y/(2 + ), 1/2}, it holds

I 2 _1/2 L ‘/t 1 ' I ‘/t 1 2 71/2 a.s
> WEL > Wi N 3 - LS o(TC/3),
t=1 t=1 Dt—l t=1 Dt—l

Proof of Theorem 9.2. For convenience define

o Vi . Vv Hy . Evi _T ®2
o5 5= (U 8) wm () -fon o

Since Y7 (W~ TW;)®? is convergent according to Corollary 7.2 it suffices to show
Ry =W TS w8 M;"* is 0(1). Follow Anderson (1959, Theorem 2.2) in

writing
WIW, =W T (W =W Wry) + WD (W T ).

Since W,_; — W=TW,_ | = Z 'WSey, 14, it follows, for any 0 < o < 1, that

Tal T T—t

Ry = WT Z WS M2 - W T S ZW w1455 M
t=T2 s=1
+ Z W (W TWp ) Si_ M2, (9.3)
t=T%

The first two terms in (9.3) vanish exponentially fast. Their norm is less than

i (maxHW W+ ma el 3 5 W )rg;agnstn I

t<Te

s=T< r=1

where |[W|""~" vanishes exponentially, M7! = O(1) by Lemma 8.2 and the remain-
ing terms are of polynomial order according to Theorem 5.1, Corollary 5.3.
The final term in (9.3) is o(7T~%/®). Tts norm is less than

-T - t—T ! —1 1/2
W (S Iw) (s, szt

where the first two components converge, see Corollary 5.3, and the last component
is o(T~¢/%) by Theorem 8.4. =

Remark 9.3 The bottleneck in the proof of Theorem 9.2 is the order of magnitude
of maxya < SIML'S,. By extending the weak convergence results of Chan and Wei
(1988) it can be proved that this term is Op(T~') when |eigen(B)| < 1 implying that
the sample correlation between Wy and (V/, D}) is Op(T~1/?).
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Wei (1992, Theorem A.1) consider the sample correlation between U, and V; in the
univariate case dim X = 1 when D, is absent and ¢, is a martingale difference sequence
satisfying Assumptions 2.1, 2.7. That result can be generalised and strengthened by
a proof resembling that of Theorem 6.4.

Theorem 9.4 Suppose Assumptions 2.1, 2.2, 2.3 are satisfied. Then, for all £ <
v/ (2+7),

Eo) "B G HEGR)T) e

Proof of Theorem 9.4. Define S;, S, eg;, My as in (9.2). Theorem 6.2 shows
(S, UE2)1/2|| is O(T/2) so it suffices to show Ry = 31, Uy Si_ My s
o(T"/?). Inspired by the proof of Theorem 6.4 and Wei (1992, Theorem A.1) write

U, = Zzl US*16U¢,5 +ur Ut,l,Ta for some 0 < o < 1 so that

e . . T T T B
Ry = (Z UaS  +U" S UqpeS  + 3 % Uslert_skq;l) M2,
t=1

t=T>+1 t=T241 s=1
(9.4)

The first term in (9.4) is o{T(~9/2}. The norm of the sum S, U;_1S/ | is
bounded by T max, 7« ||U;|| max, e ||S;|| which is of the desired order when « is
chosen small enough and using Theorem 5.1 while M;l/ ? is bounded due to the
positive definiteness of My stated in Lemma 8.2.

The second term in (9.4) is o(1). By Cauchy-Schwartz’ inequality its norm is
bounded by [[U||"" (X, U Y4 ars Si_iMz'S;—1)Y? where |[U||"" vanishes
exponentially and the other terms are O{ (T log T)*/?} due to Theorem 6.2 and Lemma
8.6,11.

The third term of (9.4) is o{T19/2}. Its norm is bounded by

T
7 —1/2
> eur-sS; My

t=T+1

TQ{

-1
> Iulr
s=1

I

according to the triangle inequality. Holder’s inequality implies

L 1/2 I e I 1 q/2 /e
/ - 1] _

S epu S| My s( > H%AV’) { S (S, M5, ) } ,

t=T>41 t=T2>}1 t=T>41

for2<p<2+~yandp!+qg!=1 Since ¢/2 <1 and T® > Ty for large T then
(SIM1S,)¥? < SIMLS, < SIM, LS, so the last term is o(T™) for all > 0 according
to Lemma 8.6, 4. Due to Theorem 7.3 then >°,_ju; [levs—s|? < Sor_; levll? is o(T7)
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Ut ‘/t Wt Dt
U 1 oT%?) oT~¢?) o(T"1/?)

14 L o(T%) 01
W, 1 O(T~1/?)
D, 1

Table 1: Order of pairwise sample correlations, with > 0 and £ < /(2 + 7).

(Us|Dy)  (ViDy)  (Wi|Dy)
(Uil D) 1 o(T%/%) o(T /)
(Vi|Dy) 1 o(T¢/%)
(Wi Dy) 1

Table 2: Order of pairwise sample correlations, with > 0 and £ < /(2 + 7).

uniformly in s. Overall the sum in ¢ is therefore o{7!=¢)/2} uniformly in s. The desired
result then follows since Y7, ||U||° converges. m

The Tables 1 and 2 give an overview of the sample correlation results of Theorems
6.4, 9.1, 9.2, 9.4. All pairs of Uy, V;, W;, D, have been considered except for V;, D,
which has non-negligible sample correlation when V and D have common character-
istic roots. To produce these tables it is used that the marginal sample correlation,
C (z,y), of processes z, y; relates to the joint correlation by

C {x ( g )} —o(T™) & Clz,(yl2)}=0(T™) and C(z,2)=0(T7%,

according to the formula for partitioned inversion, as well as by
C{(mi|ze) , (yel20)}
= {Lime + C(2,2)Y 2 {C(2,y) = C(2,2) C(2,9)} {Lamy + C (v, )%}

As a consequence of the results summarised in Table 2 the condition |eigen(B)
can be eliminated in Theorem 8.1 concerning the lower bound for Y1, (X,|D,)

Corollary 9.5 Suppose Assumption 2.1, 2.2, 2.3 are satisfied. Then

1 X 1Z a.s.
lim inf A, (? ZX%) > lim inf i, {? S (Xt_1|Dt_1)®2} >0.

T—o0 t=1 t=1

—-1/2

<1
®2

Proof of Corollary 9.5. Let R, = (U/,V/)". Using a similarity transformation
M as described in §3 and the results in Table 2 shows Zle(Xt,l\Dt,l)m equals

(M*l)’ { > i (Rt61|Dt_1) Zthl (VVfﬂDt—l)@Q } M {1+0(1)},

a.s. Apply Theorem 8.1 to the upper left block and Corollary 7.2 and Theorem 9.1
to the lower left block. m
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10 Proofs of main results

The proofs of the main results in Theorem 2.4, 2.5 and 2.8 now follows. The first of
these results concerns the studentised least squares estimator.

Proof of Theorem 2.4. The process S; is a linear combination of R, =
(U}, V/, D;) and W;. As a consequence of Theorems 9.1 and 9.4 the sample correlation
of R; and W, vanishes asymptotically, see also Table 1. The vector of interest therefore

equals
T/ RE2 0 21 /R
t—1 {—1 /
g 11+0(1)},
0w ) B e

so the non-explosive and explosive components can be considered separately.
For the explosive component note that the norm of (Y, W2)"V2 > W, ¢
is bounded by

S (W)

t=1

12 ,p
(1w Wi ) el

where the first two terms are convergent because of the Corollaries 7.2, 5.3. The order
of the last term is given in Theorem 5.1.

For the non-explosive part with max |eigen (B)| < 1 Lai and Wei (1982, Lemma
1) together with Theorem 7.1 shows the desired result.

For max |eigen (B)| < 1 then Lemma 6.3 combined with Theorems 4.1, 6.2 and
6.4 shows the result. m

By combining Theorem 2.4 with results for the denominator matrix established in
67,8 the strong consistency result for the least squares estimator can now be proved.

Proof of Theorem 2.5. Consider first the partial estimator. Transforming X,
into (R, Wy) with R, = (Uj, V{) using a similarity transformation M as described in
§3 shows that (Aq,..., Ax) — (A1,..., Ag) equals

1

i Rt,l _D i Rtfl D 2 M—l
t=1 o Wi ! t=1 Wi ! '

The sample correlation between (R; 1|D;) and (W;_1|D;) vanishes asymptotically so
it suffices to prove the result for the two special cases where max |eigen(B)| < 1 so
dim W = 0 and where min |eigen(B)| > 1 so dim R = 0. In the first case the desired
order follows from Theorems 2.4, 8.1 while in the second case the statistic vanishes
exponentially fast due to Theorem 2.4 and Corollary 7.2.

The second result for the full estimator when B and D have no common eigenvalues
follows from Theorems 2.4, 8.3. =
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Proof of Theorem 2.8.  Assumption 2.7 shows that m;, = d/(¢? — Q)b for
arbitrary dim X-vectors a and b. Hall and Heyde (1980, Theorem 2.18) show that if
1 <p<2then Y] my = o(T'¢) a.s. on the set {3°°°, tPCDE([|[my|” | Fir) < 00}
This set has probability one if p < 14++/2 and p({—1) < —1 according to Assumption
2.1. These restrictions are satisfied when ¢ < min{vy/(2++),1/2}. =
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