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Abstract

We propose a new measure of risk, based entirely on downwards moves measured using high
frequency data. Realised semivariances are shown to have important predictive qualities for
future market volatility. The theory of these new measures is spelt out, drawing on some new
results from probability theory.
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‘It was understood that risk relates to an unfortunate event occurring, so for an

investment this corresponds to a low, or even negative, return. Thus getting returns in

the lower tail of the return distribution constitutes this “downside risk.” However, it is

not easy to get a simple measure of this risk.’ Quoted from Granger (2008).

1 Introduction

A number of economists have wanted to measure downside risk, the risk of prices falling, just

using information based on negative returns — a prominent recent example is by Ang, Chen, and

Xing (2006). This has been operationalised by quantities such as semivariance, value at risk and

expected shortfall, which are typically estimated using daily returns. In this paper we introduce

a new measure of the variation of asset prices based on high frequency data. It is called realised

semivariance (RS). We derive its limiting properties, relating it to quadratic variation and, in

particular, negative jumps. Further, we show it has some useful properties in empirical work,

enriching the standard ARCH models pioneered by Rob Engle over the last 25 years and building

on the recent econometric literature on realised volatility.

Realised semivariance extends the influential work of, for example, Andersen, Bollerslev, Diebold,

and Labys (2001) and Barndorff-Nielsen and Shephard (2002), on formalising so-called realised vari-

ances (RV) which links these commonly used statistics to the quadratic variation process. Realised

semivariance measures the variation of asset price falls. At a technical level it can be regarded as

a continuation of the work of Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen and

Shephard (2006), who showed it is possible to go inside the quadratic variation process and separate

out components of the variation of prices into that due to jumps and that due to the continuous evo-

lution. This work has prompted papers by, for example, Andersen, Bollerslev, and Diebold (2007),

Huang and Tauchen (2005) and Lee and Mykland (2008) on the importance of this decomposition

empirically in economics. Surveys of this kind of thinking are provided by Andersen, Bollerslev,

and Diebold (2006) and Barndorff-Nielsen and Shephard (2007), while a lengthy discussion of the

relevant probability theory is given in Jacod (2007).

Let us start with statistics and results which are well known. Realised variance (RV) estimates

the ex-post variance of asset prices over a fixed time period. We will suppose that this period is

0 to 1. In our applied work it can be thought of as any individual day of interest. Then RV is

defined as

RV =

n∑

j=1

(
Ytj − Ytj−1

)2
.

where 0 = t0 < t1 < ... < tn = 1 are the times at which (trade or quote) prices are available. For
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arbitrage free-markets, Y must follow a semimartingale. This estimator converges as we have more

and more data in that interval to the quadratic variation at time one,

[Y ]1 = p− lim
n→∞

n∑

j=1

(
Ytj − Ytj−1

)2
,

(e.g. Protter (2004, p. 66–77)) for any sequence of deterministic partitions 0 = t0 < t1 < ... <

tn = 1 with supj{tj+1 − tj} → 0 for n → ∞. This limiting operation is often referred to as “in-fill

asymptotics” in statistics and econometrics1.

One of the initially strange things about realised variance is that it solely uses squares of the

data, while the research of, for example, Black (1976), Nelson (1991), Glosten, Jagannathan, and

Runkle (1993) and Engle and Ng (1993) has indicated the importance of falls in prices as a driver

of conditional variance. The reason for this is clear, as the high frequency data becomes dense, the

extra information in the sign of the data can fall to zero — see also the work of Nelson (1992).

The most elegant framework in which to see this is where Y is a Brownian semimartingale

Yt =

∫ t

0
asds +

∫ t

0
σsdWs, t ≥ 0,

where a is a locally bounded predictable drift process and σ is a càdlàg volatility process – all

adapted to some common filtration Ft, implying the model can allow for classic leverage effects.

For such a process

[Y ]t =

∫ t

0
σ2

sds,

and so

d[Y ]t = σ2
t dt,

which means for a Brownian semimartingale the QV process tells us everything we can know about

the ex-post variation of Y . The signs of the returns are irrelevant in the limit — this is true whether

there is leverage or not.

If there are jumps in the process there are additional things to learn than just the QV process.

Let

Yt =

∫ t

0
asds +

∫ t

0
σsdWs + J t,

where J is a pure jump process. Then, writing jumps in Y as ∆Yt = Yt − Yt−, then

[Y ]t =

∫ t

0
σ2

sds+
∑

s≤t

(∆Ys)
2 ,

1When there are market frictions it is possible to correct this statistic for their effect using the two scale estimator
of Zhang, Mykland, and Aı̈t-Sahalia (2005), the realised kernel of Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2006) or the pre-averaging based statistic of Jacod, Li, Mykland, Podolskij, and Vetter (2007).
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and so QV aggregates two sources of risk. Even when we employ bipower variation (Barndorff-

Nielsen and Shephard (2004) and Barndorff-Nielsen and Shephard (2006)2), which allows us to

estimate
∫ t

0 σ2
sds robustly to jumps, this still leaves us with estimates of

∑
s≤t (∆Js)

2. This tells

us nothing about the asymmetric behaviour of the jumps — which is important if we wish to

understand downside risk.

In this paper we introduce the downside realised semivariances (RS−)

RS− =

tj≤1∑

j=1

(
Ytj − Ytj−1

)2
1Ytj

−Ytj−1
≤0,

where 1y is the indicator function taking the value 1 of the argument y is true. We will study the

behaviour of this statistic under in-fill asymptotics. In particular we will see that

RS− p→ 1

2

∫ t

0
σ2

sds+
∑

s≤1

(∆Ys)
2 1∆Ys≤0,

under in-fill asymptotics. Hence RS− provides a new source of information, one which focuses on

squared negative jumps3. Of course the corresponding upside realised semivariance

RS+ =

tj≤1∑

j=1

(
Ytj − Ytj−1

)2
1Ytj

−Ytj−1
≥0

p→ 1

2

∫ t

0
σ2

sds+
∑

s≤1

(∆Ys)
2 1∆Ys≥0,

maybe of particular interest to investors who have short positions in the market (hence a fall in

price can lead to a positive return and hence is desirable), such as hedge funds. Of course,

RV = RS− + RS+.

Semivariances, or more generally measures of variation below a threshold (target semivariance)

have a long history in finance. The first references are probably Markowitz (1959), Mao (1970b),

Mao (1970a), Hogan and Warren (1972) and Hogan and Warren (1974). Examples include the

work of Fishburn (1977) and Lewis (1990). Sortino ratios (which are an extension of Sharpe ratios

and were introduced by Sortino and van der Meer (1991)), and the so-called post-modern portfolio

theory by, for example, Rom and Ferguson (1993), has attracted attention. Sortino and Satchell

(2001) look at recent developments and provide a review, while Pedersen and Satchell (2002) look

at the economic theory of this measure of risk. Of course these types of measures are likely not

2Threshold based decompositions have also been suggested in the literature, examples of this include Mancini
(2001), Jacod (2007) and Lee and Mykland (2008).

3This type of statistic relates to the work of Babsiria and Zakoian (2001) who built separate ARCH type conditional
variance models of daily returns using positive and negative daily returns. It also resonates with the empirical results
in a recent paper by Chen and Ghysels (2007) on news impact curves estimated through semi-parametric MIDAS
regressions.
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to be very informative for exchange rate investments or for the individual holdings of hedge funds

which can go either short or long. Our innovation is to bring high frequency analysis to bear on

this measure of risk.

The empirical essence of daily downside realised semivariance can be gleaned from Figure 1

which shows an analysis of trades on General Electric (GE) carried out on the New York Stock

Exchange4 from 1995 to 2005 (giving us 2,616 days of data). In graph (a) we show the path of the

trades drawn in trading time on a particular randomly chosen day in 2004, to illustrate the amount

of daily trading which is going on in this asset. Notice by 2004 the tick size has fallen to one cent.

Graph (b) shows the open to close returns, measured on the log-scale and multiplied by 100,

which indicates some moderation in the volatility during the last and first piece of the sample

period. The corresponding daily realised volatility (the square root of the realised variance) is

plotted in graph (c), based upon returns calculated every 15 trades. The Andersen, Bollerslev,

Diebold, and Labys (2000) variance signature plot is shown in graph (d), to assess the impact of

noise on the calculation of realised volatility. It suggests statistics computed on returns calculated

every 15 trades should not be too sensitive to noise for GE. Graph (e) shows the same but focusing

on daily RS− and RS+. Throughout, the statistics are computed using returns calculated every

15 trades. It indicates they are pretty close to one another on average over this sample period.

This component signature plot is in the spirit of the analysis pioneered by Andersen, Bollerslev,

Diebold, and Labys (2001) in their analysis of realised variance. Graph (f) shows the correlogram

for the downside realised semivariance and the realised variance and suggests the downside realised

semivariance has much more dependence in it than RS+. Some summary statistics for this data

are available in Table 2, which will be discussed in some detail in Section 3.

In the realised volatility literature, authors have typically worked out the impact of using realised

volatilities on volatility forecasting using regressions of future realised variance on lagged realised

variance and various other explanatory variables5. Engle and Gallo (2006) prefers a different route,

which is to add lagged realised quantities as variance regressors in Engle (2002) and Bollerslev

(1986) GARCH type models of daily returns — the reason for their preference is that it is aimed at

a key quantity, a predictive model of future returns, and is more robust to the heteroskedasticity

inherent in the data. Typically when Engle generalises to allow for leverage he uses the Glosten,

Jagannathan, and Runkle (1993) (GJR) extension. This is the method we follow here. Throughout

we will use the subscript i to denote discrete time.

4This data is taken from the TAQ database, managed through WRDS. Although information on trades is available
from all the different exchanges in the U.S., we solely study trades which are made at the exchange in New York.

5Leading references include Andersen, Bollerslev, Diebold, and Labys (2001) and Andersen, Bollerslev, and Med-
dahi (2004).
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Analysis of the General Electric share price from 1995 to 2005
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Figure 1: Analysis of trades on General Electric carried out on the NYSE from 1995 to 2005. (a):
path of the trades drawn in trading time on a random day in 2004. (b): daily open to close returns
ri, measured on the log-scale and multiplied by 100. The corresponding daily realised volatility
(
√

RVi)is plotted in graph (c), based upon returns calculated every 15 trades. (d): variance
signature plot in trade time to assess the impact of noise on the calculation of realised variance
(RV ). (e): same thing, but for the realised semivariances (RS+

i and RS−
i ). (f) correlogram for

RS+
i , RVi and RS−

i . Code: downside.ox.

We model daily open to close returns {ri; i = 1, 2, ..., T} as

E (ri|Gi−1) = µ,

hi = Var (ri|Gi−1) = ω + α (ri−1 − µ)2 + βhi−1 + δ (ri−1 − µ)2 Iri−1−µ<0 + γ′zi−1,

and then use a standard Gaussian quasi-likelihood to make inference on the parameters, e.g. Boller-

slev and Wooldridge (1992). Here zi−1 are the lagged daily realised regressors and Gi−1 is the

information set generated by discrete time daily statistics available to forecast ri at time i − 1.

Table 1 shows the fit of the GE trade data from 1995-2005. It indicates the lagged RS− beating

out of the GARCH model (δ = 0) and the lagged RV. Both realised terms yield large likelihood

improvements over a standard daily returns based GARCH. Importantly there is a vast shortening

in the information gathering period needed to condition on, with the GARCH memory parameter

β dropping from 0.953 to around 0.7. This makes fitting these realised based models much easier

in practice, allowing their use on relatively short time series of data.
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When the comparison with the GJR model is made, which allows for traditional leverage effects,

the results are more subtle, with the RS− significantly reducing the importance of the traditional

leverage effect while the high frequency data still has an important impact on improving the fit of

the model. In this case the RS− and RV play similar roles, with RS− no longer dominating the

impact of the RV in the model.

ARCH type models and lagged realised semivariance and variance
GARCH GJR

Lagged RS− 0.685
(2.78)

0.499
(2.86)

0.371
(0.91)

0.441
(2.74)

Lagged RV −0.114
(−1.26)

0.228
(3.30)

0.037
(0.18)

0.223
(2.68)

ARCH 0.040
(2.23)

0.036
(2.068)

0.046
(2.56)

0.040
(2.11)

0.017
(0.74)

0.021
(1.27)

0.016
(1.67)

0.002
(0.12)

GARCH 0.711
(7.79)

0.691
(7.071)

0.953
(51.9)

0.711
(9.24)

0.710
(7.28)

0.713
(7.65)

0.955
(58.0)

0.708
(7.49)

GJR 0.055
(1.05)

0.048
(1.51)

0.052
(2.86)

0.091
(2.27)

Log-Likelihood -4527.3 -4527.9 -4577.6 -4533.5 -4526.2 -4526.2 -4562.2 -4526.9

Table 1: Gaussian quasi-likelihood fit of GARCH and GJR models fitted to daily open to close
returns on General Electric share prices, from 1995 to 2005. We allow lagged daily realised variance
(RV) and realised semivariance (RS) to appear in the conditional variance. They are computed
using every 15th trade. T-statistics, based on robust standard errors, are reported in small font
and in brackets. Code: GARCH analysis.ox

The rest of this paper has the following structure. In Section 2 we will discuss the theory of

realised semivariances, deriving a central limit theory for it under some mild assumptions. In

Section 3 we will deepen the empirical work reported here, looking at a variety of stocks and also

both trade and quote data. In Section 4 we will discuss various extensions and areas of possible

future work.

2 Econometric theory

2.1 The model and background

We start this section by repeating some of the theoretical story from Section 1.

Consider a Brownian semimartingale Y given as

Yt =

∫ t

0
asds +

∫ t

0
σsdWs, (1)

where a is a locally bounded predictable drift process and σ is a càdlàg volatility process. For such

a process

[Y ]t =

∫ t

0
σ2

sds,
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and so d[Y ]t = σ2
t dt, which means that when there are no jumps the QV process tells us everything

we can know about the ex-post variation of Y .

When there are jumps this is no longer true, in particular let

Yt =

∫ t

0
asds +

∫ t

0
σsdWs + J t, (2)

where J is a pure jump process. Then

[Y ]t =

∫ t

0
σ2

sds+
∑

s≤t

(∆Js)
2 ,

and d[Y ]t = σ2
t dt + (∆Yt)

2. Even when we employ devices like bipower variation (Barndorff-Nielsen

and Shephard (2004) and Barndorff-Nielsen and Shephard (2006))

{Y }[1,1]
t = µ−2

1 p− lim
n→∞

tj≤t∑

j=2

∣∣Ytj − Ytj−1

∣∣ ∣∣Ytj−1
− Ytj−2

∣∣ , µ1 = E |U | , U ∼ N(0, 1),

we are able to estimate
∫ t

0 σ2
sds robustly to jumps, but this still leaves us with estimates of

∑
s≤t (∆Js)

2. This tells us nothing about the asymmetric behaviour of the jumps.

2.2 Realised semivariances

The empirical analysis we carry out throughout this paper is based in trading time, so data arrives

into our database at irregular points in time. However, these irregularly spaced observations can

be thought of as being equally spaced observations on a new time-changed process, in the same

stochastic class, as argued by, for example, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006).

Thus there is no intellectual loss in initially considering equally spaced returns

yi = Y i
n

− Y i−1

n

, i = 1, 2, ..., n.

We study the functional

V (Y, n) =

⌊nt⌋∑

i=1

(
y2

i 1{yi≥0}

y2
i 1{yi≤0}

)
. (3)

The main results then come from an application of some limit theory of Kinnebrock and Podolskij

(2007) for bipower variation. This work can be seen as an important generalisation of Barndorff-

Nielsen, Graversen, Jacod, and Shephard (2006) who studied bipower type statistics of the form

1

n

n∑

j=2

g(
√

nyj)h(
√

nyj−1),

when g and h were assumed to be even functions. Kinnebrock and Podolskij (2007) give the

extension to the uneven case, which is essential here6.

6It is also useful in developing the theory for realised autocovariance under a Brownian motion, which is important
in the theory of realised kernels developed by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006).
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Proposition 1 Suppose (1) holds, then

V (Y, n)
p→ 1

2

∫ t

0
σ2

sds

(
1
1

)
.

Proof. Trivial application of Theorem 1 in Kinnebrock and Podolskij (2007).

Corollary 1 Suppose

Yt =

∫ t

0
asds +

∫ t

0
σsdWs + J t,

holds, where J is a finite activity jump process then

V (Y, n)
p→ 1

2

∫ t

0
σ2

sds

(
1
1

)
+

∑

s≤t

(
(∆Ys)

2 1{∆Ys≥0}

(∆Ys)
2 1{∆Ys≤0}

)
.

Remark. The above means that

(1,−1) V (Y, n)
p→

∑

s≤t

(∆Ys)
2 1{∆Ys≥0} − (∆Ys)

2 1{∆Ys≤0},

the difference in the squared jumps. Hence this statistic allows us direct econometric evidence on

the importance of the sign of jumps. Of course, by combining with bipower variation

V (Y, n) − 1

2

∫ t

0
σ2

sds

(
1
1

)
p→

∑

s≤t

(
(∆Ys)

2 1{∆Ys≥0}

(∆Ys)
2 1{∆Ys≤0}

)
,

we can straightforwardly estimate the QV of just positive or negative jumps.

In order to derive a central limit theory we need to make two assumptions on the volatility

process.

(H1). If there were no jumps in the volatility then it would be sufficient to employ

σt = σ0 +

∫ t

0
a∗sds +

∫ t

0
σ∗

sdWs +

∫ t

0
v∗sdW ∗

s . (4)

Here a∗, σ∗, v∗ are adapted càdlàg processes, with a∗ also being predictable and locally bounded.

W ∗ is a Brownian motion independent of W .

(H2). σ2
t > 0 everywhere.

The assumption (H1) is rather general from an econometric viewpoint as it allows for flexible

leverage effects, multifactor volatility effects, jumps, non-stationarities, intraday effects, etc. Indeed

we do not know of a continuous time continuous sample path volatility model used in financial

economics which is outside this class. Kinnebrock and Podolskij (2007) also allow jumps in the

volatility under the usual (in this context) conditions introduced by Barndorff-Nielsen, Graversen,

Jacod, Podolskij, and Shephard (2006) and discussed by, for example, Barndorff-Nielsen, Graversen,

Jacod, and Shephard (2006) but we will not detail this here.

The assumption (H2) is also important, it rules out the situation where the diffusive component

disappears.
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Proposition 2 Suppose (1), (H1) and (H2) holds, then

√
n

{
V (Y, n)−1

2

∫ t

0
σ2

sds

(
1
1

)}
Dst→ Vt

where

Vt =

∫ t

0
αs (1) ds +

∫ t

0
αs (2) dWs +

∫ t

0
αs (3) dW ′

s,

αs (1) =
1√
2π

{2asσs + σsσ
∗
s}

(
1
−1

)
,

αs (2) =
2√
2π

σ2
s

(
1
−1

)
,

As =
1

4
σ4

s

(
5 −1
−1 5

)
,

αs (3) αs (3)′ = As − αs (2)αs (2)′ ,

where αs (3) is a 2 × 2 matrix. Here W ′ ⊥⊥ (W,W ∗), the Brownian motions which appears in the

Brownian semimartingale (1) and (H1).

Proof. given in the Appendix.

Remark. When we look at

RV = (1, 1) V (Y, n),

then we produce the well known result

√
n

{
RV −

∫ t

0
σ2

sds

}
Dst→

∫ t

0
2σ2

sdW
′

s

which appears in Jacod (1994) and Barndorff-Nielsen and Shephard (2002).

Remark. Assume a, σ ⊥⊥ W then

√
n

{
V (Y, n)−1

2

∫ t

0
σ2

sds

(
1
1

)}

Dst→ MN

(
1√
2π

∫ t

0
{2asσs + σsσ

∗
s} ds

(
1
−1

)
,
1

4

∫ t

0
σ4

sds

(
5 −1
−1 5

))
.

If there is no drift and the volatility of volatility was small then the mean of this mixed Gaussian

distribution is zero and we could use this limit result to construct confidence intervals on these

quantities. When the drift is not zero we cannot use this result as we do not have a method for

estimating the bias which is a scaled version of

1√
n

∫ t

0
{2asσs + σsσ

∗
s}ds.

Of course in practice this bias will be small. The asymptotic variance of (1,−1) V (Y, n) is 3
n

∫ t

0 σ4
sds,

but obviously not mixed Gaussian.
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Remark. When the a, σ ⊥⊥ W result fails, we do not know how to construct confidence intervals

even if the drift is zero. This is because in the limit

√
n

{
V (Y, n)−1

2

∫ t

0
σ2

sds

(
1
1

)}

depends upon W . All we know is that the asymptotic variance is again

1

4n

∫ t

0
σ4

sds

(
5 −1
−1 5

)
.

Notice, throughout the asymptotic variance of RS− is

5

4n

∫ t

0
σ4

sds

so is less than that of the RV (of course it estimates a different quantity so perhaps this observations

is not so particularly important). It also means the asymptotic variance of RS+ − RS− is

3

n

∫ t

0
σ4

sds.

3 More empirical work

3.1 More on GE trade data

For the GE trade data, Table 2 reports basic summary statistics for squared open to close daily

returns, realised variance and downside realised semivariance. Much of this is familiar, with the

average level of squared returns and realised variance being roughly the same, while the mean of

the downside realised semivariance is around one half that of the realised variance. The most

interesting results are that the RS− statistic has a correlation with RV of around 0.86 and that

it is negatively correlated with daily returns. The former correlation is modest for an additional

volatility measure and indicates it may have additional information not in the RV statistic. The

latter result shows that large daily semivariances are associated with contemporaneous downward

moves in the asset price — which is not surprising of course.

The serial correlation in the daily statistics are also presented in Table 2. They show the RV

statistic has some predictability through time, but that the autocorrelation in the RS− is much

higher. Together with the negative correlation between returns and contemporaneous RS− (which

is consistent for a number of different assets), this suggests one should be able to modestly predict

returns using past RS−.

Table 3 shows the regression fit of ri on ri−1 and RS−
i−1 for the GE trade data. The t-statistic

on lagged RS− is just significant and positive. Hence a small amount of the variation in the
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Summary information for daily statistics for GE trade data
Variable Mean S.D. Correlation matrix ACF1 ACF20

ri 0.01 1.53 1.00 -0.01 0.00
r2
i 2.34 5.42 0.06 1.00 0.17 0.07

RVi 2.61 3.05 0.03 0.61 1.00 0.52 0.26
RS+

i 1.33 2.03 0.20 0.61 0.94 1.00 0.31 0.15
RS−

i 1.28 1.28 -0.22 0.47 0.86 0.66 1.00 0.65 0.37
BPVi 2.24 2.40 0.00 0.54 0.95 0.84 0.93 1.00 0.64 0.34

BPDVi 0.16 0.46 -0.61 -0.10 -0.08 -0.34 0.34 -0.01 1.00 0.06 0.03

Table 2: Summary statistics for daily GE data computed using trade data. ri denotes daily open
to close returns, RVi is the realised variance, RSi are the realised semivariances, and BPVi is the
daily realised bipower variation.

high frequency falls of price in the previous day are associated with rises in future asset prices

— presumably because the high frequency falls increase the risk premium. The corresponding

t-statistics for the impact of RS−
i−1 for other series are given in Table 6, they show a similar weak

pattern.

GE trade data: Regression of returns on lagged realised semivariance and returns
Coefficient t-value Coefficient t-value Coefficient t-value

Constant 0.009 0.03 -0.061 -1.43 -0.067 -1.56
ri−1 -0.012 0.01 -0.001 -0.06 0.016 0.67

RS−
i−1 0.054 2.28 0.046 1.85

RS−
i−1 − 0.5BPVi−1 0.109 1.26

log L -4802.2 -4799.6 -4,798.8

Table 3: Regression of returns ri on lagged realised semivariance RS−
i−1 and returns ri−1 for daily

returns based on the GE trade database.

The RS− statistic has a similar dynamic pattern to the bipower variation statistic7. The mean

and standard deviation of the RS− statistic is slightly higher than half the realised BPV one. The

difference estimator

BPDVi = RS−
i − 0.5BPVi,

which estimates the squared negative jumps, is highly negatively correlated with returns but not

very correlated with other measures of volatility. Interestingly this estimator is slightly autocorre-

lated, but at each of the first 10 lags this correlation is positive which means it has some forecasting

potential.
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Summary information for daily statistics for other trade data
Mean S.D. Correlation matrix ACF1 ACF20

DIS

ri -0.02 1.74 1.00 -0.00 0.00
r2
i 3.03 6.52 0.04 1.00 0.15 0.08

RVi 3.98 4.69 -0.00 0.53 1.00 0.69 0.35
RS+

i 1.97 2.32 0.19 0.55 0.94 1.00 0.66 0.35
RS−

i 2.01 2.60 -0.18 0.46 0.95 0.81 1.00 0.57 0.30
BPVi 3.33 3.97 -0.00 0.53 0.98 0.93 0.93 1.00 0.69 0.37

BPDVi 0.35 1.03 -0.46 0.13 0.52 0.25 0.72 0.43 1.00 0.05 0.04

AXP

ri 0.01 1.86 1.00 0.01 0.01
r2
i 3.47 7.75 -0.00 1.00 0.15 0.09

RVi 3.65 4.57 -0.01 0.56 1.00 0.64 0.37
RS+

i 1.83 2.62 0.22 0.52 0.93 1.00 0.48 0.27
RS−

i 1.82 2.30 -0.28 0.53 0.91 0.72 1.00 0.64 0.36
BPVi 3.09 3.74 -0.04 0.52 0.94 0.83 0.92 1.00 0.69 0.39

BPDVi 0.27 0.90 -0.63 0.27 0.37 0.10 0.62 0.28 1.00 0.20 0.11

IBM

ri 0.01 1.73 1.00 -0.05 0.01
r2
i 3.02 7.25 0.04 1.00 0.13 0.04

RVi 2.94 3.03 0.03 0.55 1.00 0.65 0.34
RS+

i 1.50 1.81 0.24 0.54 0.94 1.00 0.50 0.26
RS−

i 1.44 1.43 -0.24 0.48 0.91 0.74 1.00 0.65 0.34
BPVi 2.62 2.60 0.00 0.51 0.96 0.86 0.93 1.00 0.70 0.38

BPDVi 0.13 0.49 -0.71 0.05 0.13 -0.11 0.44 0.10 1.00 0.04 -0.01

Table 4: Summary statistics for various daily data computed using trade data. ri denotes daily
open to close returns, RVi is the realised variance, RSi is the realised semivariance, and BPVi is
the daily realised bipower variation. BPDVi is the realised bipower downward variation statistic.
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3.2 Other trade data

Results in Table 3 show that broadly the same results hold for a number of frequently traded

assets - American Express (AXP), Walt Disney (DIS) and IBM. Table 5 shows the log-likelihood

improvements by including RV and RS− statistics into the GARCH and GJR models based on

trades. The conclusion is clear for GARCH models. By including RS− statistics in the model

there is little need to include a traditional leverage effect. Typically it is only necessary to include

RS− in the information set, adding RV plays only a modest role. For GJR models, the RV statistic

becomes more important and is sometimes slightly more effective than the RS− statistic.

Trades: logL improvements by including lagged RS− and RV in conditional variance
Lagged variables GARCH model GJR model

AXP DIS GE IBM AXP DIS GE IBM

RV, RS− & BPV 59.9 66.5 50.5 64.8 47.7 57.2 36.7 45.7
RV & BPV 53.2 63.7 44.7 54.6 45.4 56.9 36.0 44.6

RS− & BPV 59.9 65.7 48.7 62.6 47.6 53.2 36.4 42.5
BPV 46.2 57.5 44.6 43.9 40.0 50.0 35.8 34.5

RV & RS− 59.8 66.3 49.5 60.7 47.5 56.9 35.4 42.4
RV 53.0 63.5 43.2 51.5 45.1 56.7 34.7 41.9

RS− 59.6 65.6 48.7 60.6 47.1 52.4 35.4 41.7
None 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: Improvements in the Gaussian quasi-likelihood by including lagged realised quantities in
the conditional variance over standard GARCH and GJR models. Fit of GARCH and GJR models
for daily open to close returns on four share prices, from 1995 to 2005. We allow lagged daily
realised variance (RV), realised semivariance (RS−), realised bipower variation (BPV) to appear in
the conditional variance. They are computed using every 15th trade. Code: GARCH analysis.ox

t-statistics for ri on RS−
i−1, controlling for lagged returns

AIX DIS GE IBM

Trades -0.615 3.79 2.28 0.953
Quotes 0.059 5.30 2.33 1.72

Table 6: The t-statistics on realised semivariance calculated by regressing daily returns ri on lagged
daily returns and lagged daily semivariances (RS−

i−1). This is carried out for a variety of stock prices
using trade and quote data. The RS statistics are computed using every 15th high frequency data
point.

3.3 Quote data

We have carried out the same analysis based on quote data, looking solely at the series for offers to

buy placed on the New York Stock Exchange. The results are given in Tables 6 and 7. The results

7This is computed using not one but two lags, which reduces the impact of market microstructure, as shown by
Andersen, Bollerslev, and Diebold (2007).
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are in line with the previous trade data. The RS− statistic is somewhat less effective for quote

data, but the changes are marginal.

Quotes: LogL improvements by including lagged RS and RV in conditional variance
Lagged variables GARCH model GJR model

AXP DIS GE IBM AXP DIS GE IBM

RV & RS− 50.1 53.9 45.0 53.8 39.7 48.0 31.7 31.5
RV 45.0 53.6 43.3 43.9 39.1 46.3 31.6 31.3

RS− 49.5 50.7 44.5 53.7 38.0 39.4 29.1 30.0
None 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 7: Quote data: Improvements in the Gaussian quasi-likelihood by including lagged realised
quantities in the conditional variance. Fit of GARCH and GJR models for daily open to close
returns on four share prices, from 1995 to 2005. We allow lagged daily realised variance (RV) and
realised semivariance (RS) to appear in the conditional variance. They are computed using every
15th trade. Code: GARCH analysis.ox

4 Additional remarks

4.1 Bipower variation

We can build on the work of Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and Shep-

hard (2006), Andersen, Bollerslev, and Diebold (2007) and Huang and Tauchen (2005) by defining

BPDV =

tj≤1∑

j=1

(
Ytj − Ytj−1

)2
1Ytj

−Ytj−1
≤0 −

1

2
µ−2

1

tj≤1∑

j=2

∣∣Ytj − Ytj−1

∣∣ ∣∣Ytj−1
− Ytj−2

∣∣

p→
∑

s≤t

(∆Ys)
2 I∆Ys≤0,

the realised bipower downward variation statistic (upward versions are likewise trivial to define).

This seems a novel way of thinking about jumps — we do not know of any literature which has

identified
∑

s≤t (∆Ys)
2 I∆Ys

before. It is tempting to try to carry out jump tests based upon it to

test for the presence of downward jumps against a null of no jumps at all. However, the theory

developed in Section 2 suggests that this is going to be hard to implement this solely based on in-fill

asymptotics without stronger assumptions than we usually like to make due to the presence of the

drift term in the limiting result and the non-mixed Gaussian limit theory (we could do testing if

we assumed the drift was zero and there is no leverage term). Of course, it would not stop us

from testing things based on the time series dynamics of the process - see the work of Corradi and

Distaso (2006).

Further, a time series of such objects can be used to assess the factors which drive downward

jumps, but simply building a time series model for it, conditioning on explanatory variables.
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An alternative to this approach is to use higher order power variation statistics (e.g. Barndorff-

Nielsen and Shephard (2004) and Jacod (2007)),

tj≤1∑

j=1

∣∣Ytj − Ytj−1

∣∣r 1Ytj
−Ytj−1

≤0
p→

∑

s≤t

|∆Ys|r I∆Ys≤0, r > 2,

as n → ∞. The difficulty with using these high order statistics is that they will be more sensitive

to noise than the BPDV estimator.

4.2 Effect of noise

Suppose instead of seeing Y we see

X = Y + U,

and think of U as noise. Let us focus entirely on

n∑

i=1

x2
i 1{xi≤0} =

n∑

i=1

y2
i 1{yi≤−ui}+

n∑

i=1

u2
i 1{yi≤−ui} + 2

n∑

i=1

yiui1{yi≤−ui}

≃
n∑

i=1

y2
i 1{ui≤0}+

n∑

i=1

u2
i 1{ui≤0} + 2

n∑

i=1

yiui1{ui≤0}.

If we use the framework of Zhou (1996), where U is white noise, uncorrelated with Y , with E(U) = 0

and Var(U) = ω2 then it is immediately apparent that the noise will totally dominate this statistic

in the limit as n → ∞.

Pre-averaging based statistics of Jacod, Li, Mykland, Podolskij, and Vetter (2007) could be

used here to reduce the impact of noise on the statistic.

5 Conclusions

This paper has introduced a new measure of variation called downside “realised semivariance.” It

is determined solely by high frequency downward moves in asset prices. We have seen it is possible

to carry out an asymptotic analysis of this statistic and see that its limit only contains downward

jumps.

We have assessed the effectiveness of this new measure using it as a conditioning variable for a

GARCH model of daily open to close returns. Throughout, for non-leverage based GARCH models,

downside realised semivariance is more informative than the usual realised variance statistic. When

a leverage term is introduce it is hard to tell the difference.

Various extensions to this work were suggested.
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7 Appendix: Proof of Proposition 2

Consider the framework of Theorem 2 in Kinnebrock and Podolskij (2007) and choose

g (x) =

(
g1 (x)
g2 (x)

)
=

(
x21{x≥0}

x21{x≤0}

)
h (x) = I2

Assume that X is a Brownian semimartingale, conditions (H1) and (H2) are satisfied and note that

g is continuously differentiable and so their theory applies directly. Due to the particular choice of

h we obtain the stable convergence

√
n

{
V (Y, n)t −

1

2

∫ t

0
σ2

sds

(
1
1

)}
→

∫ t

0
αs(1)ds +

∫ t

0
αs(2)dWs +

∫ t

0
αs(3)dW ′

s , (5)

where W ′ is a 1-dimensional Brownian motion which is defined on an extension of the filtered

probability space and is independent of the σ-field F . Using the notation

ρσ (g) = E {g(σU)} , U ∼ N(0, 1)

ρ(1)
σ (g) = E {Ug(σU)} , U ∼ N(0, 1)

ρ̃(1,1)
σ (g) = E

{
g(σW1)

∫ 1

0
WsdWs

}
,

the α(1), α(2) and α(3) are defined by

αs (1)j = σ∗
sρ̃

(11)
σs

(
∂gj

∂x

)
+ asρσs

(
∂gj

∂x

)

αs (2)j = ρ(1)
σs

(gj)

αs (3) αs (3)′ = As − αs (2)αs (2)′

and the elements of the 2 × 2 matrix process A is given by

Aj,j′

s = ρσs

(
gjgj′

)
+ ρσs

(gj) ρσs

(
gj′

)
+ ρσs

(
gj′

)
ρσs

(gj) − 3ρσs
(gj) ρσs

(
gj′

)
.

Then we obtain the result using the following Lemma.
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Lemma 1 Let U be standard normally distrubuted. Then

E
[
1{U≥0}U

3
]

=
2√
2π

, E
[
1{U≥0}U

]
=

1√
2π

,

E
[
1{U≤0}U

3
]

= − 2√
2π

, E
[
1{U≤0}U

]
= − 1√

2π
.

Proof. Let f be the density of the standard normal distribution.

∫ ∞

0
f (x)xdx =

1√
2π

∫ ∞

0
exp

(
−x2

2

)
xdx

=
1√
2π

[
− exp

(
−x2

2

)]∞

0

=
1√
2π

.

Using partial integration we obtain

∫ ∞

0
f (x)xdx =

1√
2π

∫ ∞

0
exp

(
−x2

2

)
xdx

=
1√
2π

[
1

2
x2 exp

(
−x2

2

)]∞

0

− 1√
2π

∫ ∞

0

1

2
x2

(
− exp

(
−x2

2

)
x

)
dx

=
1

2
√

2π

∫ ∞

0
exp

(
−x2

2

)
x3dx

=
1

2

∫ ∞

0
x3f (x) dx.

Thus

∫ ∞

0
x3f (x) dx =

2√
2π

.

Obviously, it holds

∫ 0

−∞
f (x) xdx = −

∫ ∞

0
f (x)xdx,

∫ 0

−∞
x3f (x) dx = −

∫ ∞

0
x3f (x) dx.

This completes the proof of the Lemma.

Using the lemma we can calculate the moments

ρσs
(g1) = ρσs

(g2) =
1

2
σ2

s,

ρ(1)
σs

(g1) =
2√
2π

σ2
s = −ρ(1)

σs
(g2) ,

ρσs

(
∂g1

∂x

)
=

2√
2π

σs = −ρσs

(
∂g2

∂x

)
,

ρ(1)
σs

(
∂g1

∂x

)
= ρ(1)

σs

(
∂g2

∂x

)
= σs,

ρσs

(
(g1)

2
)

= ρσs

(
(g2)

2
)

=
3

2
σ4

s,
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ρ̃11
σs

(
∂g1

∂x

)
=

σs√
2π

= −ρ̃11
σs

(
∂g2

∂x

)
.

The last statement follows from

ρ̃σs

(
∂g1

∂x

)
= E

[
∂g1

∂x
(σsW1)

∫ 1

0
WudWu

]

= 2E

[
σsW11{W1≥0}

∫ 1

0
WudWu

]

= 2E

[
σsW11{W1≥0}

(
1

2
W 2

1 − 1

2

)]

= σsE
[(

W 3
1 − W1

)
1{W1≥0}

]

=
σs√
2π

.

References

Andersen, T. G., T. Bollerslev, and F. X. Diebold (2006). Parametric and nonparametric measurement of
volatility. In Y. Aı̈t-Sahalia and L. P. Hansen (Eds.), Handbook of Financial Econometrics. Amsterdam:
North Holland. Forthcoming.

Andersen, T. G., T. Bollerslev, and F. X. Diebold (2007). Roughing it up: Including jump components in
the measurement, modeling and forecasting of return volatility. Review of Economics and Statistics 89,
707–720.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2000). Great realizations. Risk 13, 105–108.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2001). The distribution of exchange rate
volatility. Journal of the American Statistical Association 96, 42–55. Correction published in 2003,
volume 98, page 501.

Andersen, T. G., T. Bollerslev, and N. Meddahi (2004). Analytic evaluation of volatility forecasts. Inter-
national Economic Review 45, 1079–1110.

Ang, A., J. Chen, and Y. Xing (2006). Downside risk. Review of Financial Studies 19, 1191–1239.

Babsiria, M. E. and J.-M. Zakoian (2001). Contemporaneous asymmetry in garch processes. Journal of
Econometrics 101, 257–294.

Barndorff-Nielsen, O. E., S. E. Graversen, J. Jacod, M. Podolskij, and N. Shephard (2006). A central limit
theorem for realised power and bipower variations of continuous semimartingales. In Y. Kabanov,
R. Lipster, and J. Stoyanov (Eds.), From Stochastic Analysis to Mathematical Finance, Festschrift for
Albert Shiryaev, pp. 33–68. Springer.

Barndorff-Nielsen, O. E., S. E. Graversen, J. Jacod, and N. Shephard (2006). Limit theorems for realised
bipower variation in econometrics. Econometric Theory 22, 677–719.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2006). Designing realised kernels to
measure the ex-post variation of equity prices in the presence of noise. Unpublished paper: Nuffield
College, Oxford.

Barndorff-Nielsen, O. E. and N. Shephard (2002). Econometric analysis of realised volatility and its use in
estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B 64, 253–280.

Barndorff-Nielsen, O. E. and N. Shephard (2004). Power and bipower variation with stochastic volatility
and jumps (with discussion). Journal of Financial Econometrics 2, 1–48.

Barndorff-Nielsen, O. E. and N. Shephard (2006). Econometrics of testing for jumps in financial economics
using bipower variation. Journal of Financial Econometrics 4, 1–30.

Barndorff-Nielsen, O. E. and N. Shephard (2007). Variation, jumps and high frequency data in financial
econometrics. In R. Blundell, T. Persson, and W. K. Newey (Eds.), Advances in Economics and
Econometrics. Theory and Applications, Ninth World Congress, Econometric Society Monographs,
pp. 328–372. Cambridge University Press.

19



Black, F. (1976). Studies of stock price volatility changes. Proceedings of the Business and Economic
Statistics Section, American Statistical Association, 177–181.

Bollerslev, T. (1986). Generalised autoregressive conditional heteroskedasticity. Journal of Economet-
rics 51, 307–327.

Bollerslev, T. and J. M. Wooldridge (1992). Quasi maximum likelihood estimation and inference in dy-
namic models with time varying covariances. Econometric Reviews 11, 143–172.

Chen, X. and E. Ghysels (2007). News - good or bad - and its impact over multiple horizons. Unpublished
paper: Department of Economics, University of North Carolina at Chapel Hill.

Corradi, V. and W. Distaso (2006). Semiparametric comparison of stochastic volatility models using
realized measures. Review of Economic Studies 73, 635–667.

Doornik, J. A. (2001). Ox: Object Oriented Matrix Programming, 5.0. London: Timberlake Consultants
Press.

Engle, R. F. (2002). Dynamic conditional correlation - a simple class of multivariate garch models. Journal
of Business and Economic Statistics 20, 339–350.

Engle, R. F. and J. P. Gallo (2006). A multiple indicator model for volatility using intra daily data. Journal
of Econometrics 131, 3–27.

Engle, R. F. and V. Ng (1993). Measuring and testing the impact of news on volatility. Journal of
Finance 48, 1749–1778.

Fishburn, P. C. (1977). Mean-risk analysis with risk associated below target variance. American Economic
Review 67, 116–126.

Glosten, L. R., R. Jagannathan, and D. Runkle (1993). Relationship between the expected value and the
volatility of the nominal excess return on stocks. Journal of Finance 48, 1779–1802.

Granger, C. W. J. (2008). In praise of pragmatic econometrics. In J. L. Castle and N. Shephard (Eds.), The
Methodology and Practice of Econometrics: A Festschrift in honour of David F Hendry, pp. 105–116.
Oxford University Press.

Hogan, W. W. and J. M. Warren (1972). Computation of the efficient boundary in the E-S portfolio
selection model. Journal of Finance and Quantitative Analysis 7, 1881–1896.

Hogan, W. W. and J. M. Warren (1974). Toward the development of an equilibrium capital-market model
based on semivariance. Journal of Finance and Quantitative Analysis 9, 1–11.

Huang, X. and G. Tauchen (2005). The relative contribution of jumps to total price variation. Journal of
Financial Econometrics 3, 456–499.

Jacod, J. (1994). Limit of random measures associated with the increments of a Brownian semimartingale.
Preprint number 120, Laboratoire de Probabilitiés, Université Pierre et Marie Curie, Paris.
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