
 

 

Panel Data Discrete Choice Models of Consumer Demand  

By  

 

Michael P. Keane 

University of Oxford, Department of Economics and Nuffield College 

 

 

Prepared for The Oxford Handbooks: Panel Data 

 

 

June 3, 2013 

 

 

 

 

 

 

 

 

Acknowledgements: Keane‘s work on this project was supported by Australian Research Council grants 

FF0561843 and FL110100247.



1 
 

1. Introduction 

This chapter deals with the vast literature on panel data discrete choice models of 

consumer demand. The reason this area is so active is that very high quality data is available. 

Firms like Nielsen and IRI have, for over 30 years, been collecting panel data on households‘ 

purchases of consumer goods. This is known as ―scanner data,‖ because it is collected by check- 

out machine scanners. Available scanner data sets often follow households for several years, and 

record all their purchases in several different product categories. The typical data set not only 

contains information on the universal product codes (UPC) of the consumer goods that 

households buy on each shopping trip, but also information on several exogenous forcing 

variables, such as price and whether the goods were displayed or advertised in various ways.  

To my knowledge the first paper using scanner data to study the impact of price and other 

marketing variables on consumer demand was Guadagni and Little (1983) in Marketing Science.  

But few economists knew about scanner data until the mid to late 90s. Once they became aware 

of this treasure trove of data, they started to use it very actively. Today, estimation of demand 

models on scanner data has become a major part of the field of empirical industrial organization.    

Thus, the consumer demand literature based on scanner data is unusual relative to other 

literatures discussed in this Handbook in two respects. First, it remains true that the majority of 

work in this area is by marketers rather than economists. Second, this is an uncommon case 

where the ―imperial science‖ of economics (see, e.g., Stigler (1984)) has experienced a 

substantial knowledge transfer from another area (i.e., marketing). Furthermore, it should be 

noted that discrete choice models of consumer demand are also widely used in other fields like 

transportation research, agricultural and resource economics, environmental economics, etc.. 

Given that the literature on panel data models of consumer demand is so large, I will 

make no attempt to survey all the important papers in the field. Instead, I will focus on the main 

research questions that dominate this area, and the progress that has been made in addressing 

them. Thus, I apologize in advance for the many important papers that are not cited. 

The most salient feature of scanner panel data is that consumers exhibit substantial 

persistence in their brand choices. In the language of marketing, consumers show substantial 

―brand loyalty.‖  A second obvious aspect of the data is that, if we aggregate to the store level, 

then in most product categories the sales of a brand jump considerably when it is on sale (i.e., 

typically the price elasticity of demand is on the order of 3 to 5). Superficially these two 
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observations seem contradictory. If individual consumers are very loyal to particular brands, then 

why would demand for brands be very price sensitive in the aggregate? 

In light of these empirical observations, the first main objective of the panel data demand 

literature has been to understand the underlying sources of persistence in brand choices. Based 

on work by Heckman (1981) on employment dynamics, it is now understood that persistence in 

brand choices may arise from three sources: (i) permanent unobserved heterogeneity in tastes, 

(ii) serial correlation in taste shocks, or (iii) ―true‖ or ―structural‖ state dependence.  

Only the third source of persistence (i.e., state dependence) involves a causal effect of 

past choices on the current choice (and, likewise, an effect of the current choice on future 

choices). Uncovering whether state dependence exists is of great importance in both marketing 

and industrial organization. If it exists, then current marketing actions, such as price discounts, 

will affect not only current but also future demand. This has important implications for pricing 

policy, the nature of firm competition, etc..  

The second major objective of the literature has been to distinguish alternative possible 

explanations for structural state dependence (assuming that it exists). Some of the potential 

explanations include habit persistence, learning about quality through trial, inventory behavior, 

variety seeking behavior, switching costs, and so on.  

A third, but closely related, major objective of the literature has been to understand the 

dynamics of demand. Most important is to understand the sources of the observed increase in 

demand when a brand is on sale. The increase in sales may arise from three sources: (i) brand 

switching, (ii) category expansion, or (iii) purchase acceleration, also known as cannibalization. 

In everyday language, these correspond to (i) stealing customers from your competitors, (ii) 

bringing new customers into the category, or (iii) merely accelerating purchases by consumers 

who are loyal to a brand and who would have eventually bought it at the regular price anyway.  

The distinction among these three sources of increased demand is obviously of crucial 

important for pricing policy. For example, if most of the increase of sales that results from a 

price discount is due to cannibalization of future sales, then a policy of having periodic price 

discounts obviously makes no sense.    

The estimation of discrete choice models with many alternatives is a difficult 

econometric problem. This is because the order of integration required to calculate choice 

probabilities in such a model is typically on the order of J-1, where J is the number of choice 
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alternatives. The development of simulation methods for the estimation of multinomial discrete 

choice models in the late 80s was largely motivated by this problem (see McFadden (1989)).   

As discussed in Keane (1994), in the panel data case the required order of integration to 

construct the choice probabilities in discrete choice models is much higher. This is because it is 

the probability of a consumer‘s entire choice sequence that enters the likelihood function. Thus, 

the required order of integration is (J-1)∙T, where T is the number of time periods. In typical 

scanner panels T is on the order of 50 to 200 weeks, so the order of integration is very high. 

In Keane (1994), I developed a method of ―sequential importance sampling‖ that makes 

estimation of panel data discrete choice models feasible. In the special case of the normal errors, 

which gives the panel probit model, this method is known as the ―GHK‖ algorithm. GHK is a 

highly accurate method for approximating multi-dimensional normal integrals. It is notable that  

the development of simulation based econometric methods has gone hand-in-hand with the 

desire to estimate demand models with large choice sets, multiple time periods, and complex 

error structures.  

The outline of the remainder of the chapter is as follows. In section 2, I describe a fairly 

general panel data discrete choice model. Section 3 discusses the econometric methods needed to 

estimate such models. Then, Section 4 discusses the theoretical issues involved in distinguishing 

state dependence from heterogeneity, while Section 5 discusses empirical work on state 

dependence and/or choice dynamics. Section 6 concludes. 

 
2. The Typical Structure of Panel Data Discrete Choice Models   

Here I describe the typical structure of demand models used in marketing (and more 

recently in industrial organization). Let j =1,…,J index alternatives, t =1,…,T index time, and i 

=1,…,N index people. Then the ―canonical‖ brand choice model can be written as follows: 

 
                                                                                 (1) 

 

                                                                                       (2) 

 
Equation (1) expresses the utility that person i receives from the purchase of brand j at time t. 

Utility (Uijt) depends on a vector of product attributes Xijt and the utility or attribute weights β. 

Utility also depends on consumer i‘s intrinsic preference for brand j, which I denote by αij. It is 

further assumed that utility depends on whether brand j was chosen by person i on the previous 
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choice occasion (dij,t-1=1). Finally, there is a purely idiosyncratic person, time and brand specific 

taste shock εijt. This is allowed to be serially correlated, with the fundamental shocks ηijt being 

iid. Equation (2) simply says that person i chooses the brand j that gives him greatest utility at 

time t. Of course, in a discrete choice model we only observe choices and not utilities. 

Before turning to the econometrics it is important to give an economic interpretation to 

the terms in (1). A utility function that is linear in attributes is quite standard in the demand 

literature (see Lancaster (1966) for the classic exposition of attribute based utility). But in (1) we 

assume the utility weights β are common across consumers (as in traditional logit and probit 

models). This is a strong assumption, but it is only for expositional convenience.
1
 The simulation 

methods discussed below can easily accommodate heterogeneity in β. 

I will focus attention on heterogeneity in the brand intercepts αij. These capture consumer 

heterogeneity in tastes for attributes of alternatives that are not observed by the econometrician 

(see Berry (1994), Elrod and Keane (1995), Keane (1997)). For example, in some products like 

cars or clothing or perfume, different brands convey a certain ―image‖ that is hard to quantify. 

Heterogeneous tastes for that ―image‖ would be subsumed in the αij. Of course, even mundane 

products have unobserved attributes (e.g., the ―crispness‖ of different potato chips).      

It is worth emphasizing that one of the attributes included in Xijt is price, which we denote 

by pijt. The budget constraint conditional on purchase of brand j is Cit = Iit - pijt. As frequently 

purchased consumer goods are fairly inexpensive, it makes sense to assume the marginal utility 

of consumption of the outside good is a constant over the range [Iit-pmax, Iit-pmin], where pmax and 

pmin are the highest and lowest prices ever observed in the category. This justifies making utility 

linear in consumption of the outside good. If we use the budget constraint to substitute for Cit, we 

obtain a conditional indirect utility function that is linear in income and price.  

Furthermore, income is person specific and not alternative specific. Because income is 

the same across all alternatives j for an individual, it does not alter the utility differences between 

alternatives. As a result, income drops out of the model and we are left with only price. It is 

important to remember, however, that price only appears because we are dealing with an indirect 

utility function, and its coefficient is not interpretable as just another attribute weight. The price 

coefficient is actually the marginal utility of consumption of the outside good. 

                                                           
1
 Product attributes can be ―vertical‖ or ―horizontal.‖ A vertical attribute is something like quality that all consumers 

would like more off. A horizontal attribute is something like saltiness of crackers, which some people would like 

and others dislike. Thus, for horizontal attributes, even the sign of β may differ across consumers. 
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Thus, an important implication of consumer theory is that the price coefficient should be 

equal across all alternatives. However, it will generally vary across people, as the marginal utility 

of consumption is smaller for those with higher income. This can be accounted for by letting the 

price coefficient depend on income and other household characteristics.     

The next important feature of (1) is the lagged choice variable dij,t-1. This captures an 

effect of lagged purchase of a brand on its current utility evaluation. Heckman (1981) calls this 

―structural‖ state dependence. Most papers use more elaborate forms of state dependence than 

just lagged purchase. For instance, Guadagni and Little (1983) used an exponentially smoothed 

weighted average of all the lagged dijs for s=1,…,t-1, and this specification is popular in the 

marketing literature. But I will focus on the first-order Markov model for expositional purposes.  

There are many reasons why a structural effect of lagged purchase on current utility may 

exist; such as habit persistence, learning, inventories, variety seeking behavior, switching costs 

and so on. I discuss efforts to distinguish among these sources of state dependence in Section 5.  

First, in Section 4, I‘ll focus on the question of whether state dependence exists at all 

(whether γ≠0). This question alone has been the focus of a large literature. The question is 

difficult to address, because failure to adequately control for heterogeneity and other serial 

correlation will lead to what Heckman (1981) called ―spurious‖ state dependence. Furthermore, 

there are deep econometric and philosophical issues around the question of whether it is even 

possible to distinguish state dependence from heterogeneity (or serial correlation in general).  

Finally, equation (1) includes idiosyncratic taste shocks εijt. These may be interpreted in 

different ways, depending on ones perspective. In the economic theory of random utility models 

(Bloch and Marschak (1960), McFadden (1974)) choice is deterministic from the point of view 

of the consumer, who observes his/her own utility. In that case, choice only appears to be 

random from the point of view of the econometrician, who has incomplete information about 

consumer preferences and brand attributes. As Keane (1997) discusses, the εijt can be interpreted 

as arising from unobserved attributes of brands for which people have heterogeneous tastes that 

vary over time. This is in contrast to the brand intercepts αij, which capture unobserved attributes 

of brands for which people have heterogeneous tastes that are constant over time. However, in 

psychology- based models of choice, the εijt are interpreted as genuinely random elements of 

choice behavior. I am not aware of a convincing way to distinguish between these two 

perspectives.  
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If the εijt arise from time-varying tastes, it is plausible that tastes show some persistence 

over time. This motivates the AR(1) specification                    where ijt is iid over time 

and people. If >0 then taste shocks exhibit temporal persistence.  

If the ijt are correlated across brands it implies some brands are more similar than others 

on the unobserved attribute dimensions for which people have time-varying tastes. Similarly, if 

the intercepts αij are correlated across brands it implies some brands are more similar than others 

on the unobserved attribute dimensions for which people have time-invariant tastes. Brands that 

are more similar on the latent attribute dimensions, will ceteris paribus, have more switching 

between them and higher cross-price elasticities of demand.   

These ideas are the basis of the ―market mapping‖ literature that uses panel data to 

determine the location of brands in a latent attribute space (see Elrod (1988), Elrod and Keane 

(1995), Keane (1997)). For example, in a market map for cars, Mercedes and BMW would 

presumably lie close together in one part of the space, while Ford and Chevy trucks would also 

lie close together but in a very different part of the space. An estimated market map can, for 

example, help a firm to determine who its closest competitors are.  

Note that the multinomial logit model assumes all errors are uncorrelated. This makes all 

brands ―equally (dis)similar‖ (i.e., equally spread out in the market map) so that all cross-price 

elasticities of demand are equal. It was a desire to escape this unrealistic assumption that resulted 

in work on simulation methods – see, e.g., Lerman and Manski (1981) and McFadden (1989) – 

that make estimation of the multinomial probit model (with correlated normal errors) feasible. 

This is the focus of the next section. 

 

3. Estimation of Panel Data Discrete Choice Models   

Here I discuss the computational problems that arise in estimating panel data discrete 

choice models. Maximum likelihood estimation of the model in (1)-(2) requires distributional 

assumptions on the intercepts αij and the errors ijt. The most common assumptions in the 

literature are that the intercepts are either multivariate normal (αi ~ N(0,Σ)) or multinomial, while 

the ijt are either normal (it ~ N(0,Ω)) or iid type I extreme value. If both the αij and ijt are 

normal we have the random effects panel probit model. If the αij are normal while the ijt are 

extreme value we have a normal mixture of logits model (N-MIXL). If the αij are multinomial we 

have a discrete mixture of probits or logits. These are often called ―latent class‖ models.   
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Estimation of the model in (1)-(2) requires some identifying normalizations. In discrete 

choice models, there is no natural scale for utility, and only utility differences among alternatives 

determine choices. Thus, one alternative (often but not always a ―no purchase‖ option) is chosen 

as the base alternative, and its utility is normalized to zero. Hence, the error covariance matrices 

Σ and Ω are of rank (J-1) rather than J. The scale of utility is usually fixed by letting the 

idiosyncratic errors ijt be standard normal or standard type I extreme value. 

Now, consider the panel probit case. In order to form the likelihood for a person i we 

need to form the probability of his/her observed sequence of choices given the observed vector 

of covariates. That is, we need        )          )            ), where  j(t) denotes the index j 

of the option that the consumer actually chose at time t, while the Xit ≡ (xi1t,…,xiJt) are vectors of 

covariates for all J alternatives at time t. The difficulty here is that, given the structure (1)-(2), 

this joint probability is very computationally difficult to construct.  

First, consider the case where γ=ρ=0. That is, there is no state dependence and the 

idiosyncratic errors εijt are serially independent. Then the only source of persistence in choices 

over time are the brand specific individual effects (αi1,…, αiJ). This gives an equicorrelated 

structure for the composite error terms              , so we have a ―random effects probit 

model.‖  Here, choice probabilities are independent over time conditional on the αij, so we have: 

 

 (     )          )            )  ∫ ∏  (     )        )     )   
   

 

  
               (3) 

 

Each conditional probability  (     )         ) is a cross-section probit probability. As is well 

known, these are multivariate normal integrals of dimension J-1. When J≥3 or 4, it is necessary 

to use simulation methods like the GHK algorithm to evaluate these integrals. As the focus here 

is on panel data issues and not problems that already arise in cross-section discrete choice 

models, I‘ll refer the reader to Geweke and Keane (2001) for further details. 

The key problem in forming the choice probability in (3) is how to evaluate the integral over the 

density f(α|Σ) of the multivariate normal (J-1)-vector of individual effects α. Butler and Moffitt 

(19**) proposed a computationally efficient Gaussian quadrature procedure to evaluate normal 

integrals like that in (3). The procedure involves replacing the integral in (3) with a weighted 

sum over Gauss-Hermite quadrature points. If J=2, so α is a scalar, we have: 

 

 ̂   (     )          )            )  ∑ ∏    (     )          )
 
   

 
                     (4) 
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The αg are the quadrature points, and the wg are the associated weights. Butler and Moffitt (1982) 

describe the derivation of the weights and points, and find that rather accurate evaluations of 

normal integrals can be obtained using just several points (i.e., typically only 6 or 7). 

In the case of J=3 one needs two sets of quadrature points (αi1,αi2) and the single sum in (4) is 

replaced by a double sum. In general, a J-1 dimensional sum is required. Thus, quadrature, like 

other numerical methods for evaluating integrals, suffers a curse of dimensionality.  As a result, 

the quadrature method is applicable when J is fairly small (i.e., J≤3).  

However, a useful strategy when J is large is to impose a relatively low dimensional 

factor structure on Σ. Then the required order of integration in (3) is the number of factors (F) 

regardless of the size of J-1. Lancaster (1963) discussed the idea that in a market with many 

products, those products may only be differentiated on a few attribute dimensions (e.g., there are 

hundreds of brands of cereal, but they differ on only a few attributes like sugar content, fibre 

content, etc.). Work on ―market mapping‖ using scanner data finds that the unobserved attribute 

space for most products is well described by just a few factors (e.g., F≤3), even when J is very 

large (see Elrod (1984), Elrod and Keane (1995), Keane (1997), Andrews and Manrai (1999)).  

Another advantage of using a factor structure with F<J-1 is that, in general, the number of 

parameters in Σ is J∙(J-1)/2. Even for modest J it is cumbersome to estimate so many parameters. 

And, although formally identified, estimation of large covariance matrices creates severe 

practical/numerical problems in discrete choice models (see Keane (1992), Keane and Wasi 

(2013)). But in a model with F factors the number of factor loadings to be estimated is F∙(J-1), 

which increases only linearly with J, thus breaking the curse of dimensionality. 

Given the speed of modern computers, a brute force frequency simulation approach is 

also feasible, even when J is very large. That is, let {αd}d=1,…,D denote D draws from the f(α|Σ) 

density obtained using a random number generator. This gives: 

  

 ̂   (     )          )            )  
 

 
∑ ∏  (     )         )

 
   

 
                        (5) 

 
The similarity between (4) and (5) is notable, as each involves evaluating the choice probabilities 

at a discrete set of α values and summing the results. The difference is that the quadrature points 

are chosen analytically so as to provide an accurate approximation with as few points as possible, 

while in (5) the αd are simply drawn at random. This means that the number of draws D must be 

quite large to achieve reasonable accuracy (i.e., at least a few hundred in most applications).  
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However, the virtue of simulation is that, unlike quadrature and other numerical methods, 

it does not suffer from the curse of dimensionality. The simulation error variance in simulation 

estimators of probabilities is of order 1/D, regardless of the size of J. That is, in equation (5) we 

have  ̂             ⁄ ) by the Central Limit Theorem, where s
2
 =  ( ̂     )

 
 and it is 

assumed that the simulation errors are iid across draws d. Simulation also substitutes machine 

time for human time, as in complex models with J>2 the quadrature points can be cumbersome 

to derive analytically.      

In any simulation estimation method it is important that one hold draws fixed as one 

iterates on the model parameters. Failure to do so creates two related problems: (i) the simulated 

likelihood will ―jump‖ when the draws change, so the change in the likelihood is not solely due 

to updating of parameters, (ii) such draw induced changes in the simulated likelihood play havoc 

with the calculation of likelihood derivatives and the operation of parameter search algorithms.     

But holding the draws {αd}d=1,…,D fixed would appear to be impossible in the random effects 

probit model, because as Σ changes it seems one must take new draws for α from the new f(α|Σ). 

A standard ―trick‖ that can be used to hold draws fixed as Σ changes works as follows: First let Σ 

= AA‘, where A is the lower triangular Cholesky matrix. Then let α = Aμ where μ is a standard 

normal vector. The ―trick‖ is to draw μ rather than α, and hold the draws {μd}d=1,…,D fixed as we 

iterate on the elements of A. Then the draws {αd}d=1,…,D will vary smoothly as we vary A, 

causing  ̂    to vary smoothly. This procedure has the added benefit that iteration on elements of 

A rather than the elements of Σ guarantees that  ̂ will always be a positive definite covariance 

matrix (by definition of the Cholesky transform). 

A more sophisticated way to simulate the integral in (3) is to use sequential importance 

sampling, as developed in Keane (1993, 1994). This approach, known as the ―GHK‖ algorithm 

in the special case of importance sampling from the normal, is described in quite a few papers in 

the literature,
2
 so I just give a basic example here. Continue to consider the case of γ=ρ=0, and 

define the composite error: 

 
                                                                                                                        (6)  

 
Equation (1) implies a bound on               such that option j is chosen at time t: 

                                                           
2
 Aside from the two papers cited in the text, see also Hajivassiliou, McFadden and Ruud (1996), Geweke, Keane 

and Runkle (1994, 1997), Geweke and Keane (2001).  
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                                               )                              (7) 

 

To simplify even further, consider the case where J=2. As we noted earlier, the utility of a base 

option (say #1) is normalized to zero, leaving a single utility index Uit for the other option (say 

#2). Hence we do not need the j subscript in this case. We write that j=2 is chosen over j=1 iff: 

 
                                                                                                              (7‘) 

 
Now, to be concrete, consider the problem of simulating the probability of a particular sequence 

                  ). That is, T=3 and the consumer chooses option 2 in all three periods.   

To implement the GHK algorithm we divide the sequence probability into transition 

probabilities. That is, we have: 

  

                              )             ) 

 
                     )                               )                  (8) 

 

A key point is that the transition probabilities in (8) depend on lagged choices and covariates 

despite the fact that we have assumed γ=0, so there is no true state dependence (only serial 

correlation). This occurs because of a fundamental property of discrete choice models:  

Specifically, as we only observe choices and not the latent utilities, we cannot construct 

lagged values of the error term. For instance, if      , all this tells us is that          . 

Thus we cannot form the transition probability                ). We can only form: 

 

                     )                       )                                  (9) 

 

Notice that both the lagged choice and lagged covariates are informative about the distribution of 

    as they enable us to infer its truncation (i.e.,          ). And, given that the errors are 

serially correlated, we have a conditional density of the form                 ). 

The computational problem that arises in discrete choice panel data models becomes 

obvious when we move to period 3. Now, the fact that             ) only tells us that 

          and          . We have that: 

 
                               )                                 )       (10) 
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The point is that the history at t=1 still matters for the t=3 choice probability, because of the fact 

that            contains additional information about the distribution of νi3 beyond that 

contained in the t=2 outcome,          . Thus, the conditional density of νi3 has the form 

                          ). And the probability of the sequence (2, 2, 2) is: 

 

∫ ∫ ∫                        )
 

     

 

     

 

     
              )    )              (11) 

 

Thus, the probability of a 3 period sequence is a 3-variate integral. And the probability of a T 

period sequence is a T-variate integral, as the entire history matters for the choice probability in 

any period. If we consider J>2, then the probability of a T period sequence is a T∙(J-1) variate 

integral. This explains the severe computational burden of estimating panel probit models. 

This problem is in sharp contrast to a linear model with serially correlated errors, such as: 

 
                                                                                             (12) 

 

Here we can form E(yit | xit, εi,t-1) =              because, conditional on any estimate of β, we 

observe the lagged error                      . Similarly, if we could observe     and     in 

the probit model, then, letting   
  and   

  denote the observed values, equation (11) becomes: 

 

∫     )   
 

     
 ∫            

 )   
 

     
 ∫            

       
 )   

 

     
       (13) 

   
Thus the sequence probability would simply be the product of three univariate integrals. The 

basic idea of the GHK algorithm is to draw values of the unobserved lagged νt‘s and condition on 

these, enabling us to use equations like (13) to evaluate sequence probabilities rather than (11). 

Guided by the structure in (13), the GHK simulator of the sequence probability in (11) is: 

 

 ̂                          )                                                                          (14) 

 

       
 

 
∑ ∫     )   

 

     
 
   ∫  (   |     

 )   
 

     
∫  (   |     

       
 )   

 

     
 

   

where {  
    

 }   
  are draws from the conditional distributions of ν1 and ν2 given that option 2 

was chosen in both periods 1 and 2. So GHK replaces the 3-variate integral in (11) by three 

univariate integrals, and two draws from truncated normal distributions.  
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A key aspect of the GHK algorithm is how to draw the {  
    

 }   
 sequences in (14) 

appropriately. The first step is to construct the Cholesky decomposition of the covariance matrix 

  of the error vector (           ). Note that   is equicorrelated because the     have a random 

effects structure. But the algorithm does not change in any way if    has a more complex 

structure, such as that which would arise if the AR(1) parameter ρ were non-zero. For the 

Cholesky decomposition we have: 

 

(

   

   

   

)  (
 

      

         

)(

   

   

   

)                                                    (15) 

 

where a11 = 1 to impose that    
  =1, which is the identifying scale restriction on utility. It is 

straightforward to draw ηi1 = νi1 from a truncated standard normal such that          . This 

can be done by drawing a uniform   
  on the interval [F(-Xi1β), 1] and then setting   

 =   (  
 )   

Next, we have that          
       . Thus, the truncation           implies 

truncation on η2 of the form     
 

   
[           

 ]. So we now draw a uniform   
  on the 

interval  (
 

   
[           

 ]), and set   
 =   (  

 ). This process can be repeated multiple 

times for person i so as to obtain a set of draw sequences {   
     

 }
   

 
. Consistent with our 

earlier discussion, it is the uniform draws {   
     

 }
   

 
 that should be help fixed as one iterates. 

The GHK algorithm can be extended to multiple periods in an obvious way, by adding 

additional terms to (14). The bound on the time t draw is always of the form     
 

   
[      

     
            

  ]. With T periods one needs to evaluate T univariate integrals and draw T-1 

truncated normals. These operations are extremely fast compared to T-dimensional integration. 

Next we consider the case where the αij are normal while the ijt are extreme value. This 

gives the normal mixture of logits model (N-MIXL). It has been studied extensively by Berry 

(1994), Berry et al (1995), Harris and Keane (1999), McFadden and Train (2000), Train (2003) 

and others. The choice probabilities have the form: 

 

  (     )         )             )         )) [  ∑               )
 
   ]⁄              (16) 

 
The probability simulator for this model is closely related to the frequency simulator in (5), 
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except that now we use a logit kernel rather than a probit kernel. As before, let {αd}d=1,…,D denote 

D random vectors (α1d,…, αJd) drawn  from the f(α|Σ) density, and form the frequency simulator: 

 

  ̂      (     )          )            )                                                                    (17) 

 

             
 

 
∑ ∏           )        )  ) [  ∑               )

 
   ]⁄ 

   
 
     

 

One advantage of MIXL is that, in contrast to the random effects probit, once we condition on 

the individual effects αi = (αi1,…, αiJ), the choice probability integrals have a closed form given 

by the logit kernel exp(∙)/[1+exp(∙)]. This makes simulation of the model rather fast and easy.    

By introducing correlation across alternatives via the f(α|Σ) distribution, the N-MIXL 

model relaxes the strong IIA assumption of multinomial logit. A number of papers have 

considered more general distributions for α than the normal. For instance, Geweke and Keane 

(1999), Rossi, Allenby and McCulloch (2005) and Burda, Harding and Hausman (2008) consider 

mixture-of-normals models. Indeed, an entire family of MIXL models can be obtained by 

different choices of the f(α|Σ) distribution.      

The next set of models that have been popular in the consumer demand literature are 

―latent class‖ models. In these models there are a discrete set of consumer types, each with its 

own vector of brand specific individual effects. That is, we have (αi1,…, αiJ)   (  
      

 ) where 

c=1,…,C indexes types or classes. One estimates both the α
c
 vector for each class c, as well as 

the population proportion of each class, π
c
. We then obtain unconditional choice sequence 

probabilities by taking the weight sum over type specific probabilities: 

  

   (     )          )            )  ∑   ∏  (     )        
 ) 

   
 
                      (18) 

 

Here  (     )        
 ) is typically a logit or probit kernel. We can interpret the latent class 

model as a special case of MIXL where the mixing distribution is discrete (in contrast to the 

normal mixing distributions we considered earlier). Note that the probability in (18) is analytical 

when a logit kernel is used (no simulation methods are needed). 

To my knowledge, Kamakura and Russell (1989) was the first paper to apply the latent 

class approach in marketing. Work by Elrod and Keane (1995) showed that the latent class 

approach tends to understate the degree of heterogeneity in consumer preferences. I think it is 
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fair to say that with the advent of simulation methods, latent class models have become relatively 

less widely-used (at least in academic research) compared to probit and mixed logit models that 

allow for continuous heterogeneity distributions.  

Recently Keane and Wasi (2013) used several different data sets to compare the fit of 

latent class models to that of several alternative models with continuous heterogeneity 

distributions (including N-MIXL and the mixture-of-normals model). We found that models with 

continuous heterogeneity distributions typically provided a much better fit to the data.  

Nevertheless, we also found that the simple structure of latent class models often provides useful 

insights into the structure of heterogeneity in the data, and helps one to understand and interpret 

results from the more complex models. Thus, it appears that latent class models still have a 

useful role to play in interpreting discrete choice demand data, even if they are outperformed by 

other models in terms of fit and predictive ability. 

3.B. Extension to Serially Correlated Taste Shocks  

So far, I have conducted the discussion of methods for estimating the model in equations 

(1)-(2) in the case where γ=ρ=0. That is, there is no state dependence and the idiosyncratic errors 

(or taste shocks) εijt are serially independent. Then the only source of serial correlation was brand 

specific individual effects. I now consider generalizations of this model. As we discussed in 

Section 2, it is quite plausible that unobserved brand preferences vary over time rather than being 

fixed. An example is the AR(1) process in (1). Starting with Keane (1997) and Allenby and Lenk 

(1994), a number of papers have added AR(1) errors to the random effects structure.  

It is simple to discuss extension of the methods we have described to this case of serially 

correlated εijt, as in every case the extension is either simple or practically impossible. For 

instance, the Butler and Moffitt (1982) quadrature procedure relies specifically on the random 

effects probit structure and it cannot be extended to serial correlation in εijt.  

Latent class models are designed specifically to deal with permanent unobserved 

heterogeneity, so they cannot handle serially correlated idiosyncratic errors. In principle one 

could have a model with both discrete types and serially correlated idiosyncratic errors. But the 

resultant models would no longer generate closed form choice probabilities as in (18). They 

would only be estimable using simulation methods.  

On the other hand, the random effects probit model can easily be extended to include 

serially correlated idiosyncratic errors (like the AR(1) structure in (1)). To estimate this model 
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using the GHK algorithm, one simply constructs the covariance matrix   in a way that 

incorporates the additional source of serial correlation. Then, construct the corresponding 

Cholesky matrix and draw the {  
        

 }
   

 
 sequences in (14) accordingly. Unlike the 

random effects case, the   will no longer be equicorrelated. But the algorithm described in 

equations (13)-(15) does not change in any way if    has a more complex structure. 

The frequency simulator in (5) can also be extended to allow for serially correlated εijt. 

For instance, take the model                     where                    and αi ~ 

N(0,Σ) and it ~ N(0,Ω). We can in principle simulate choice probabilities in this model just by 

drawing the αi and it from the appropriate distributions and counting the frequency with which 

each option is chosen.  

However, this approach is not practical, because if we draw the entire composite error 

              the model will deterministically generate particular choices and choice 

sequences, as in equations (6)-(7). So, equation (5) would become: 

  

 ̂   (     )          )            )  
 

 
∑ ∏  (     )             )

 
   

 
                  (19) 

  

where  (     )             ) is an indicator function for the choice dij(t),t being observed at time t 

given the draws αd and εdt. The practical problem is that the number of possible sequences is J
T
. 

As we noted in the introduction, this is a very large number even for modest J and T. As a result, 

most individual sequences have very small probabilities. Hence, even for large D the value of 

(19) will often be zero. As Lerman and Manski (1981) discussed, very large simulations sizes are 

needed to provide accurate simulated probabilities of low probability events. 

A potential solution to this problem, proposed by Berkovec and Stern (1991) and Stern 

(1992), is to reformulate the model to ―add noise‖ and ―smooth out‖ the indicator functions in 

(19). For instance, we could re-write the model as                         , where all the 

serial correlation in the time-varying errors is captured by the εijt process, while the ωijt are iid 

random variables (perhaps normal or extreme value). Then (7) is replaced by the condition: 

 
                                                            )           (20) 

 

These inequalities generate conditional probabilities  (     )             ) where P(∙|∙) depends 

on the distribution chosen for the ωijt. These probabilities are smooth functions of the model 
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parameters provided that the ωijt are continuous random variables. Simply plug these expressions 

into (19) to obtain: 

 

 ̂    (     )          )            )  
 

 
∑ ∏  (     )             )

 
   

 
              (21) 

 
Note that there are two ways to interpret (21). One could consider (20) the ―true‖ model and 

view (21) as an unbiased probability simulator for this model. Alternatively, one could view the 

errors ωijt as simply a smoothing device, and view (21) as a smoothed version of (19). Such ad 

hoc smoothing will induce bias in the simulator, as noted by McFadden (1989).  

The normal mixture of logits model (N-MIXL), where the αij are normal while the ijt are 

iid extreme value, can also be easily modified to accommodate serially correlated idiosyncratic 

shocks. Since the probability simulator for this model (equation (17)) is a frequency simulator, 

the procedure is exactly like what I just described, except in reverse. In this case the extreme 

value errors ωijt, which are present in the basic model, play the role of the ―noise‖ that smooths 

the simulated probabilities. It is the serially correlated shocks εijt that are added. 

3.C. Extension to Include State Dependence 

Finally, consider including true state dependence (γ ≠ 0) in the model in (1)-(2). The 

difficult here is that we must not only simulate the error terms, but also lagged choices. Methods 

based on frequency simulation are not easily extended to this case. We can easily simulate entire 

choice histories from the model in (1)-(2) by drawing the αi and it from the appropriate 

distributions. In each period these draws imply that one choice is optimal, as it satisfies (2). This 

choice is then treated as part of the history when we move on to simulate data for the next period.   

So the frequency simulator in (19) would become:  

  

          ̂   (     )          )            )  
 

 
∑ ∏  (     )                    )

 
   

 
             (22) 

  

where  (     )                    ) is an indicator function for the choice dij(t),t being observed at 

time t given the draws αr and εrt and the lagged simulated choice dr,t-1. The practical problem here 

is the same as we discussed in the γ = 0 case. The number of sequences is so large that we are 

unlikely to obtain draws that are consistent with a consumer‘s observed choice history, so in 

most cases (22) will simply be zero. Very large simulations sizes are needed to provide accurate 

simulated probabilities of low probability events. 
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In contrast, the GHK algorithm can be easily applied to estimate models that include 

individual effects, serial correlation and structural state dependence without any modification to 

the procedure described earlier. This is because the central idea of the algorithm is to construct 

random draw sequences that are required to be consistent with a consumer‘s observed choice 

history. These are then used to simulate transition probabilities from the choice at t-1 to the 

choice at t. (See equations (14)-(15) and the surrounding discussion).  

In fact, Keane (1993, 1994) interpreted the GHK algorithm as an importance sampling 

algorithm where stochastic terms are drawn in a constrained way so that they must be consistent 

with observed choice histories (see equation (7)). These draws are not taken from the correct 

distribution given by αi ~ N(0,Σ), it ~ N(0,Ω) and ρ. Rather, this is only used as a source density 

to generate draws that satisfy the constraints implied by the observed choice history. Importance 

sampling weights are then applied to these sequences when they are used to construct the 

probability simulator. That is, when taking the average over draws as in (14), sequences of draws 

that have greater likelihood under the correct distribution are given more weight. It turns out that 

in GHK the importance sampling weights simplify to transition probabilities as in (14). 

There are ways to use frequency simulation in conjunction with smoothing or importance 

sampling to construct feasible simulators in the presence of state dependence. For example 

Keane and Wolpin (2001) and Keane and Sauer (2010) develop an algorithm based on the idea 

that all discrete outcomes are measured with some classification error. Then, any simulated draw 

sequence has a positive probability of generating any observed choice history. This is the 

probability of the set of misclassifications needed to reconcile the two histories. But this 

approach is not likely to be useful in most demand estimation contexts, as scanner data measuer 

choices quite accurately.         

 

4. Testing for the Existence State Dependence   

A large part of the literature on panel data discrete choice models of consumer demand 

has been concerned with estimating the degree of true state dependence in choice behavior.  

Researchers have been concerned with the question of whether, and to what extent, the observed 

(substantial) persistence in choice behavior over time can be attributed to unobserved individual 

effects and/or serially correlated tastes on the one hand, vs. true state dependence on the other. 

We can gain some valuable intuition into the nature of state dependence by considering 
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the linear case. So we reformulate equation (1) to be: 

 

                                                                                   (23) 

 
where now Uit is an observed continuous outcome. I have suppressed the j subscripts to save on 

notation. By repeated substitution for the lagged Uit, we obtain: 

 

      (
    

   
)  (                   )            (                   )    (24) 

 
Here Uij0 is the initial condition of the process. In conventional panel data analysis with large N 

and small T the treatment of initial conditions is often quite critical for the results. But in scanner 

data panels, where T is typically much larger, the results are not usually very sensitive to the 

treatment of initial conditions. Hence, I will not dwell on this topic here. Wooldridge (****) has 

an excellent discussion of this topic. 

The critical thing to note about (24) is that lagged Xs matter for the current U iff γ ≠ 0. 

Thus, the key substantive implication of structural state dependence is that lagged Xs help to 

predict current outcomes. This point was emphasized by Chamberlain (1984, 1985). But, as 

Chamberlain (1985, p.14) noted, ―In order to make the distinction [between serial correlation and 

true state dependence] operational, there must be at least one variable which would not have a 

distributed lag response in the absence of state dependence.‖ That is, to test for state dependence 

we need at least one variable    
  where we are sure that lagged    

  does not affect Uit directly, 

but only affects it indirectly through its affect on lagged U. This is analogous to saying that we 

have an      
  that is a valid instrument for Ui,t-1 in equation (23).   

To be concrete, in consumer demand applications using scanner data, the covariates in X 

are typically (i) the observed characteristics of the products in the choice set, which are typically 

time invariant, (iii) a set of brand intercepts, which capture intrinsic preferences for brands 

and/or mean preferences for the unobserved attributes of brands, and (iii) the ―marketing mix‖ 

variables, such as price, promotion activity and advertising activity, which are time varying. As 

only the marketing mix variables are time varying, at least one of these (price, display, ad 

exposures, etc.) must play the role of      
  in our effort to identify true state dependence.  

Is it plausible that a variable like price would affect current demand only through its 

affect on lagged demand? At first glance the answer may seem completely obvious: Why should 
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the lagged price affect current demand? After all, it doesn‘t enter the consumer‘s current budget 

constraint. Isn‘t the only plausible story for why lagged price would predict current demand that 

it shifts lagged demand, which then affects current demand via some state dependence 

mechanism (like habit persistence, inventory, switching costs, etc.)? 

But a closer examination of the issue reveals that there are subtleties. For example, Berry, 

Levinson and Pakes (1995) argue that prices of different car models may be positively correlated 

with their unobserved (to the econometrician) quality. This would tend to bias price elasticities 

of demand toward zero. They proposed using exogenous instruments for price to deal with this 

problem. Notably, however, they considered data with only one or a few periods. In the scanner 

data context, where there are many periods, it is much more straightforward to use brand 

intercepts to capture unobserved attributes of brands. In the typical scanner data context, once 

one controls for brand intercepts, there is no reason to expect that prices are correlated with 

unobserved attributes of the alternatives.    

In contrast to the brand intercepts, which capture mean preferences for the unobserved 

attributes of products, the αi are mean zero random variables which are interpreted as capturing 

heterogeneity in tastes for unobserved attributes of products. In my view, it is also plausible that 

prices are uncorrelated with the αi. Why would the price of a product be correlated with person 

i‘s intrinsic taste for that product? One person‘s tastes are too insignificant a part of total demand 

to affect the price of a product. In general, the random effects assumption: 

 

 (               )   (   )                                                                       (25) 

 
is plausible when the Xs include only brand attributes and marketing mix variables like price.   

Finally, consider the time-varying taste shocks εijt. It seems highly implausible that 

idiosyncratic taste shocks of individuals could affect the price of a product. Thus I would argue it 

is quite plausible that the strict exogeneity assumption holds: 

 

 (                )                                                                                        (26) 

 
But this assumes the εijt are independent across consumers. A source of potential concern is 

aggregate taste shocks that generate cross-sectional dependence. But I would argue that, in 

weekly data, it is implausible that unanticipated aggregate taste shocks could influence the 

weekly price. In most instances there is simply not enough time for retailers to assess the demand 
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shift and alter prices so quickly. On the other hand, seasonal demand shocks are presumably 

anticipated long enough in advance to be reflected in the price are. Thus, I would argue that (26) 

is plausible even in the presence of aggregate shocks, provided one includes seasonal dummies.  

These arguments support treating price and other marketing mix variables as strictly 

exogenous in (24), and estimating this equation by random effects. Let‘s say we assume that 

price is a ―variable which would not have a distributed lag response in the absence of state 

dependence.‖ Then we can test for the existence of state dependence by testing the significance 

of lagged price variables.  

So far we have presented arguments that price is strictly exogenous with respect to 

idiosyncratic consumer tastes, but we have not yet confronted the question of whether lagged 

prices might have a direct effect on current demand Uit. In fact, there are a number of reasons to 

expect it might. I will describe three mechanisms that may generate such an effect: 

(i) Reference price effects. There is a large literature in marketing arguing that 

consumer demand does not depend of price itself but rather on how the price compares to a 

―reference price.‖ Key early work in this area was by Winer (1986). The reference price is 

typically operationalized as the average price of a product, or as some moving average of past 

prices. Reference price effects were originally motivated by psychological theories of choice. For 

instance, if the current price is higher than the reference price the consumer may perceive the 

price as ―unfair‖ and be unwilling to pay it. But regardless of how one rationalizes the reference 

price variable, its existence implies that all lagged prices help to predict current demand.       

(ii) Inventory effects. Erdem, Imai and Keane (2003) argued that reference price effects 

could be motivated as resulting from inventory behavior. If a product is storable, consumers will 

try to time their purchases for when price is relatively low. This creates an economic rationale 

for consumers to care about current price relative to a reference price. More generally, 

consumers are more likely to buy if current price is low relative to expected future prices. Thus, 

lagged prices matter if they are useful for forecasting future prices.      

(iii) Price as Signal of Quality. Another mechanism for lagged prices to have a direct 

effect on current demand is if consumers have uncertainty about product attributes and use price 

as a signal of quality. Erdem, Keane and Sun (2008) estimated a model of this form. In such a 

model, a history of high prices will cause relatively uninformed consumers to infer that a brand 

is high quality. As a result, willingness to pay for a product is increasing in its own lagged prices. 
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Of course, such a mechanism becomes less important as consumers gain experience with a 

product category.  

In all the above examples, the true model exhibits some form of dynamics, but not what 

is generally known as true state dependence. As Chamberlain (1985, p.12) states, ―The intuitive 

notion is that if occupancy of a state affects an individual‘s preferences or opportunities, then 

there is state dependence.‖ This intuitive notion does not hold in the above three examples: (i) in 

the reference price model the actual purchase of a brand has no effect on its reference price. Only 

price realizations affect references prices. (ii) In the inventory model, lagged prices of a brand 

only matter because they affect expected future prices.
3
 (iii) The signaling model resembles the 

reference price model in that higher lagged prices increase willingness to pay for a brand.   

Conversely, there are plausible cases where lagged prices are insignificant in (24) but true 

state dependence nevertheless exists. A well-known class of structural models that generates true 

state dependence is the consumer learning model. In the learning model consumers have 

uncertainty about product attributes and learn about them over time through use experience, 

advertising and other signals. Examples of structural learning models are Ecsktein, Horsky and 

Raban (1988), Roberts and Urban (1988), Erdem and Keane (1996), Ackerberg (2003), Crawford 

and Shum (2005) and Ching (2010). In the learning model of Erdem and Keane (1996), which 

Keller (2002) calls ―the canonical economic model of brand equity,‖ consumers are risk averse 

with respect to variability in brand quality. As a result, they are willing to pay a premium for 

familiar brands whose quality is relatively certain, as opposed to less familiar brands with equal 

expected quality but greater uncertainty. For this reason, lagged purchases affect the current 

utility evaluation, because they reduce ones uncertainty about a product‘s attributes. 

Thus, if we estimate (24), and the true model is a learning model, we might expect to find 

that lagged prices matter because they influence lagged purchase decisions. But this is not so 

clear. In the simplest Bayesian learning model, with use experience as the only signal, the 

perceived variance of brand j at time t is: 

 

     
  [(     

 ⁄ )       )    
 )⁄ ]

  
                                                                (27) 

                                                           
3
 Of course, lagged purchases do affect current inventory, which is a state variable. And, if there are 

inventory carrying costs, consumers are less likely to buy, ceteris paribus, if current inventory is high. 

Furthermore, current inventory is more likely to be high in cases where recent lagged prices were low. 

But note that inventory is affected by past purchase of a category, not purchase of a particular brand.  
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Here,     
  is consumer i‘s prior uncertainty about the quality of brand j, while   

  is variability of 

experience signals. Nij(t) is the total number of times that consumer i bought brand j prior to t. 

We would expect lower lagged prices to lead to higher Nij(t) and hence lower     
 . But, at the 

same time, a brand with relatively low     
 ‘s (across all consumers in the market) may charge 

relatively high prices because it has more brand equity. This leaves the correlation between 

lagged prices and current demand ambiguous.  

This argument amounts to a statement that estimates of (24) may be unrevealing because 

prices and the     
  are jointly determined in the learning model – rendering prices endogeneous 

in (24). Fully structural estimation of the learning model resolves this problem by modeling the 

relationship between prices, the Nij(t) and the     
 . But of course this requires a strong set of 

maintained structural assumptions.    

In light of the above arguments, I do not believe that the significance or insignificance of 

prices (or other marketing mix variables) in (24) provides a relatively ―assumption free‖ test of 

whether true state dependence exists. If lagged prices are significant, it may be because of 

reference price, inventory, quality signaling or other factors that cause lagged prices to directly 

influence current demand. Conversely, insignificance of lagged prices does not necessarily rule 

out the existence of state dependence, as illustrated by the example of the learning model. 

Now consider the additional issues that arise in testing for state dependence in the case of 

a discrete dependent variable, as in (1)-(2). Recall from our discussion in Section 3, that in the 

case of a random effect but no state dependence (or other forms of serial correlation), we have:              

 

 (                                         )           )                                   (28) 

 

Thus, the choice probability at time t depends on the whole history of the process {       }   
   , 

and not just on Xit. In equation (10), we gave a simple intuition for why, based on a three period 

case with only two alternatives, where the consumer chooses option 2 in all three periods: 

 
                               )                                 )     (10‘) 

 
That is, the reason the whole past history helps to predict dit is that we can‘t observe lagged 

utility, only lagged choices. But information on lagged choices, such as di1=di2=2, implies 

conditions like           and          , which are informative about the distribution of 
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the current error. In fact, as we noted earlier, the conditional density of νi3 in this case has the 

form                           ). This exact same argument holds regardless of whether 

the source of serial correlation in the errors is a random effect, serial correlation in the time-

varying error component, or both. 

As Heckman (1981) discussed, the fact that lagged choices help to predict the current 

error means that lagged choices will tend to be significant in a discrete choice model with serial 

correlation, even if there is no true state dependence. This phenomenon is known as ―spurious 

state dependence.‖ The fact that the whole history matters when there is serial correlation makes 

it extremely difficult to distinguish true state dependence from serial correlation.
4
  

Nevertheless, an important positive result about identification in the probit model is the 

following: Assume that the errors ηijt in (1) are normal, and that αi ~ N(0,Σ), giving a random 

effects probit. Then the coefficient γ on the lagged dependent variable is identified in (1). This is 

because, as Chamberlain (1984, p.1279) notes: ―the most general multivariate probit model 

cannot generate a Markov chain. So we can add a lagged variable and identify γ.‖ That is, if the 

multivariate distribution of the composite errors νi ={ν1,…,νT} is diagonal (no serial correlation), 

the probit (with γ=0) generates that choices are independent over time (conditional on Xi). 

Alternatively, if the errors are serially correlated (but γ=0) then the whole history of choices prior 

to time t helps to predict the choice at time t. The intermediate case of a Markov process cannot 

be attained regardless of the specification of the error structure. It can only be attained by 

including a lagged dependent variable (i.e., allowing γ ≠ 0). 

There are two practical implications of these results:  

First, if one estimates a discrete choice model without adequately controlling for random 

effects and serial correlation, then one is likely to find spurious state dependence. Indeed, 

numerous studies since Guadagni and Little (1983) have found that the estimated strength of 

state dependence in consumer brand choices declines substantially when one controls for 

heterogeneity and serial correlation. 

Second, within the probit framework, one can test if state dependence exists by including 

rich controls for heterogeneity and serial correlation and then testing the significance of lagged 

                                                           
4
 Note that a random effect will generate a situation where all lags are equally informative about the 

current error term. In contrast, a process like a stationary AR(1) generates a situation where more recent 

choices are more informative, although the whole history still matters. Even if the errors are MA(1), the 

whole history of the process helps to predict the current choice. 
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dependent variables. This approach was pursued in Keane (1997) and in a number of subsequent 

papers, such as Paap and Franses (2000), Smith (2005), Dubé, Hitsch and Rossi (2010) and many 

others. This work consistently finds evidence for the existence of state dependence.       

Chamberlain argued, however, that tests within the probit framework were suspect 

because of their reliance on the probit functional form – in particular, the fact that it is not 

possible within the probit framework to choose and error structure that generates a Markov 

chain. Chamberlain (1985, p.14) went on to suggest that a test based on regressing the current 

choice on current and lagged Xs (and controlling for heterogeneity) ―should not be very sensitive 

to functional form.‖ However, we discussed tests based on lagged Xs (especially price) earlier, 

and found that strong economic assumptions underlie such tests in the consumer demand context. 

Chamberlain (1985) went on to argue that a completely non-parametric test for state 

dependence cannot exist, because one can always find a latent variable αi such that: 

 
                  )              )          )                                              (29) 

 
That is, one can always find a distribution of αi such that {di1,…,diT} is independent of 

{Xi1,…,XiT}. He gives a simple example (p. 1281) where αi is simply a unique integer assigned to 

every different configuration of Xs in the data. This is equivalent to a latent class model with a 

discrete distribution of types. Each type has its own vector of multinomial choice probabilities. 

And each configuration of Xs in the data corresponds to a different type. Then, type summarizes 

all the information in the Xs, giving independence of d and X conditional on α. 

Chamberlain defines a relationship of X to d as ―static‖ conditional on α if X is strictly 

exogenous (conditional on α) and if dt is independent of {Xi1,…,Xi,t-1} conditional on Xt and α. If 

a relationship is static there is no structural state dependence. Equation (29) implies there always 

exists a specification of α such that the relationship of X to d is static. Thus, we cannot test for 

structural state dependence without imposing some structure on P(∙|∙) and the distribution of α. 

However, I do not view this negative result as disturbing. As Koopmans et al (1950) 

noted long ago, we cannot learn anything of substance from data without making some a priori 

structural assumptions (see Keane (2010a,b) for discussion of this issue). So I would be very 

surprised if that were not true with regard to drawing inferences about state dependence. In other 

words, the fact that our inferences about the nature of state dependence, heterogeneity and serial 
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correlation in tastes are contingent on our modeling assumptions is not at all unique to this set of 

issues. It is the normal state of affairs throughout economics and the natural sciences as well.
5
 

A good example of imposing structure is Chamberlain (1984)‘s ―correlated random 

effects probit model,‖ henceforth CRE. In this model, αi is constrained to be a linear function of 

the time varying elements of Xi, which I denote by Zi, plus a normal error term, giving: 

 
                                                                                                     (30) 

 
Note that the effect of time-invariant elements of Xi on αi is not identified separately from the 

intercepts; letting a time-invariant element of Xi shift αi would be equivalent to letting it shift Xitβ 

by a constant. Given (29), one can test for state dependence and strict exogeneity. 

A CRE model combining (1)-(2) with (30) may be very useful if the Xs are individual 

characteristics, which obviously may be correlated with preferences (see Hyslop (1999) and 

Keane and Sauer (2010) for recent labor applications). But in the consumer demand context, the 

Xs are not usually characteristics of people but rather of products, including marketing variables 

like price and advertising. Here, I think the CRE model is not very compelling. 

In particular, I argued earlier that a standard random effects assumption on αi is plausible 

in the consumer demand context (see equation (25)). The most obvious time-varying attribute of 

a product is price. It is clearly implausible that price would be affected by individual brand 

preferences. But before ruling out correlation between αi and price we should also ask, ―What is 

the source of price variation in prices across consumers and over time?‖ Erdem, Imai and Keane 

(2003) argue that almost all price variation in scanner data is exogenous from the point of view 

of consumers. Pesendorfer (2002) and Hong et al (2002) argue that a type of inter-temporal price 

discrimination strategy on the part of firms, where retailers play mixed strategies, most plausibly 

                                                           
5
 Chamberlain (1985)‘s negative results on non-parametric identification of state dependence do raise 

some interesting methodological questions. I will not attempt to address them here, but it is worth raising 

them: (i) Chamberlain allows for extraordinarily general patterns of heterogeneity. Does Occam‘s razor 

(or just common sense modeling practice) suggest limiting ourselves to much more parsimonious forms 

like (25) or (30)?, (ii) It is not clear how a model where αi is allowed to depend in a very general way on 

time varying X‘s can be used for forecasting. Should we limit ourselves to more parsimonious models in 

the interest of forecasting ability?, (iii) In light of Chamberlain‘s negative results, and our own discussion 

surrounding equation (24), should we conclude that state dependence is not a useful construct in demand 

modeling? Would it be more fruitful to focus directly on modeling the dynamics of how lagged Xs affect 

current and future choices, without the mediating concept of state dependence?, (iv) Alternatively, is the 

state dependence construct useful because it enables us to develop more convenient and parsimonious 

functional forms compared to including many lagged covariates in a model? 
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explains the frequent week-to-week price fluctuations for frequently purchased consumer goods 

that we see in scanner data.
6
 This price variation would appear random to consumers.  

In light of these observations, I would place considerable confidence in results in the 

marketing and IO literatures that find substantial evidence of state dependence in consumer 

choice behaviour (provided the studies in question include adequate controls for consumer 

heterogeneity and serial correlation in tastes). The existence of state dependence is important, as 

it implies that current marketing actions, such as price discounts, affect not only current but also 

future demand. But an even more important question is what mechanism generates state 

dependence. I turn to this question in the next section. 

 
5. Empirical Work and State Dependence and Sources of Dynamics in Demand   

In this section I discuss attempts to identify and quantify sources of state dependence, and 

choice dynamics more generally. The field of marketing has reached rather broad consensus on 

many key issues related to the dynamics of consumer demand over the past 20 years, as I discuss 

below. The potential explanations for state dependence include learning, inventories and/or 

reference prices, habit persistence, variety seeking and switching costs. All of these have been 

examined, but learning and inventories have received the most attention in the literature. I‘ll start 

by discussing some of the more influential work on the functional form of state dependence.   

After Guadagni and Little (1983), the main approach to modeling state dependence in the 

marketing literature was to let current utility depend on an exponentially smoothed weighted 

average of lagged purchase indicators, denoted GLijt. Specifically, replace        in (1) with: 

 

                    )            ){∑        
                     }         (31) 

 
Guadagni and Little famously called GLijt the ―brand loyalty‖ variable. The smoothing parameter 

                                                           
6
 There are sensible arguments for why consumer types may be correlated with brand prices, but I do not 

believe they are empirically relevant. Scanner data is typically collected from all the (large) stores in a 

particular area, like Sioux Falls, SD or Springfield, MO. So regional variation is not a potential source of 

price variation, but cross-store variation potentially is. However, while it is likely that stores differ in their 

average price level (e.g., some stores are more ―up-scale,‖ or are located in wealthier areas, and therefore 

charge higher prices in general), it not clear why relative prices of brands would differ by store. Another 

idea is that consumers may actively seek out stores where their preferred brand is on sale. Or, even if they 

regularly visit only one store, to time visits for when that store is having a sale on their preferred brand. 

Such behavior might be relevant for expensive goods (e.g., meat, wine, diapers), but I doubt that anyone 

would decide when or what store to visit based on the price of Oreo cookies. Some years ago I attempted 

(in joint work with Tulin Erdem) to develop a model of store choice based on prices of various items. But 

we abandoned the project as we could not find any products that predicted store choice.  
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θ   [0,1) determines how quickly the impact of lagged purchases on current utility decays. If θ=0 

then only         matters and we are back to a first order Markov process as in (1). As θ→1 we 

get substantial inertia in brand preferences. For typical panel lengths and reasonable values of θ 

the initial setting of GLij1 is not very important.  

Guadagni and Little (GL) estimated their model using scanner data on coffee purchases 

of 100 households in Kansas City for 32 weeks in 1979. They estimated a MNL model with 8 

alternatives. But they had no controls for heterogeneity or serial correlation in preferences (as 

this was not technically possible in 1983). Their complete model implied that ―brand loyalty,‖ 

along with price and promotional activity, are strong predictors of brand choice.  

Keane (1997) considered the impact of allowing for random effects and AR(1) errors in a 

model with the GL form of state dependence. The data cover 51 weeks of ketchup purchases by 

1,150 consumers in Sioux Falls, SD in 1987-88. The choice set contained 7 alternatives,
7
 and up 

to 30 purchases per household. Thus, the required order of integration for the model with AR(1) 

errors is T(J-1) = 180, and choice probabilities were evaluated using the GHK algorithm. 

Keane assumed that αi ~ N(0,Σ) and it ~ N(0,Ω), giving a multinomial multi-period 

probit model. A major problem is that unrestricted Σ and Ω would contain T(J-1)J/2 – 1= 631 

parameters. To deal with this, he assumed that both Σ and Ω had a one factor structure. Then the 

covariance structure is characterized by (i) the AR(1) parameter ρ, (ii) the 6 factor loadings on 

the common factor that underlies Σ, (iii) the uniquenesses of Σ, which are assumed equal for all 

brands and denoted by κ, and (iv) the same 7 parameters for Ω. This gives only 15 parameters. 

Although this structure is very parsimonious, additional factors were not significant. 

One goal of Keane (1997) was to give a taxonomy of types of heterogeneity. He argued 

that to rationalize the most general models in the literature on needs 7 types: (i) observed and 

unobserved heterogeneity in tastes for observed attributes, (ii) observed heterogeneity in brand 

intercepts, (iii) unobserved heterogeneity in tastes for unobserved common and unique attributes 

for which consumers have fixed tastes, and (iv) the same for attributes where consumers have 

time varying tastes. The basic strategy in Keane (1997) was to add more and more types of 

heterogeneity and see how estimates of state dependence were affected.  

                                                           
7
 These were Hunt's (32 oz), Del Monte (32 oz), and five sizes of Heinz (40, 64, 14, 28, and 32 oz). For 

Heinz the 32 and 14 oz were glass and the other sizes were plastic. The Heinz 40-ounce size was 

introduced during in the sample, creating a nice source of variation in the choice set. Heinz 32 oz is the 

base alternative whose utility is normalized to zero. 



28 
 

Keane‘s ―Model 1‖ is very similar to Guadagni and Little (1983) but with normal errors 

(panel probit). He estimates θ=.813 and λ = 1.985. Note that λ(1-θ) = .37 is the extra utility from 

buying brand j at t if you bought it at t-1. The estimate of the price coefficient is -1.45, so this is 

equivalent to 27 cent price cut. As mean price is roughly $1.20, this is about a 22.5% price cut. 

Keane‘s ―Model 2‖ eliminates state dependence but includes heterogeneity in brand 

intercepts of the form αi ~ N(0,κIJ-1). So we have unique factors but no common factors. The 

unique factors account for 48% of total error variance, imply substantial heterogeneity in tastes.  

Keane‘s ―Model 3‖ includes both the GL form of state dependence and ―κ-heterogeneity‖ 

(i.e., unique factors). When both are include, each becomes less important. The fraction of the 

error variance due to unique factors drops to 31%. We now get θ=.833, λ = 0.889, and a price 

coefficient of -1.66. So the effect of lagged purchase is equivalent to only a 9 cent price cut. 

In the full model (―Model 16‖), which includes all 7 types of heterogeneity, λ = 1.346 

and θ = .909. The price coefficient is heterogeneous, but for a typical family it is about -2.4. So 

lagged purchase has an effect on demand that is similar to roughly a 5-cent price cut (4%). 

The effect of a purchase today on the probability of a purchase tomorrow is known as the 

―purchase carry-over effect‖ in marketing. The bottom line of Keane (1997) is that extensive 

controls for heterogeneity reduce the estimated carry-over effect from being equivalent to a 

22.5% price cut to a 4% price cut – thus reducing it by roughly 80%. So most of the observed 

persistence in brand choice does appear to be due to taste heterogeneity, but there is still a 

significant fraction that is due to state dependence.
8
     

Of course, as we discussed in Section 4, inferences about the relative importance of 

heterogeneity and state dependence are always functional form dependent. Erdem and Keane 

(1996) showed that a Bayesian learning model implies a very different form of state dependence 

from that in GL. In their model, prior to receiving any information, consumers perceive that the 

true quality of brand j, denoted Qj, is distributed normally with mean Qj0 and variance    
 . Over 

time a consumer receives noisy information about a brand through use experience and ad signals. 

Let     be an indicator for whether brand j is bought at time t, and let   
  denote the noise in 

                                                           
8
 Short run vs. long run price elasticities of demand are also of interest. In model 1 a 50% price cut leads 

to 257% sales increase in current period (elasticity of 5.1) but only about a 17% sales increase in 

subsequent periods (elasticity of roughly 0.34). In model 16 a 50% price cut leads to 313% sales increase 

in current period (elasticity of 6.3) but only about a 12% sales increase in subsequent periods (elasticity of 

roughly 0.24). 
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experience signals. Let    
  be an indicator for whether an ad for brand j is seen at time t, and let 

  
  denote the noise in ad signals. Let Nj(t) and   

   ) denote the total number of experience and 

ad signals received up through time t, respectively. Then the Bayesian learning model implies:  
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Here, Qjt is the perceived quality of brand j based on information received up through time t, and 

   
  is the perception error variance. 

Note that the Bayesian learning model implies a very different form of state dependence 

than GL. First, note that more lagged purchases (Nj(t)) reduce perceived uncertainty about the 

quality of a brand (   
 ). If consumers are risk averse with respect to quality variation, this makes 

familiar brands more attractive, generating state dependence. The Bayesian framework in (33) 

implies that only the total number of lagged purchases of a brand, Nj(t), matters for its current 

demand, while the GL framework in (31) implies that more recent experience is more important.  

A more subtle difference between the models is that, in the learning model, heterogeneity 

and state dependence are not neatly separable phenomena. In (32), perceived quality of brand j at 

time t, Qjt, is a function of all quality signals received up through t. This is heterogeneous across 

consumers – some will, by chance, receive better quality signals than others. Thus, heterogeneity 

in brand preferences evolves through time via the same process that generates state dependence. 

Because the Qjt are serially correlated random variables, which depend on lagged signals, 

we must use simulation to approximate the likelihood. What we have is a very complex mixture 

of logits model, with the mixing distribution given by the distribution of the Qjt. The method 

used to simulate the likelihood is a smooth frequency simulator, like that presented in equation 

(21), with the     playing the role of the draws for the Qjt. 

Erdem and Keane (1996) compared a Guadagni and Little (1983) style model with a 

Bayesian learning model where state dependence is governed by (32)-(33).
9
 They used Nielsen 

                                                           
9
 Erdem and Keane estimated two versions of their model where consumers are either myopic or forward-

looking. Here I discuss only the myopic version, which is very similar to GL except for the different form 
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scanner data on liquid detergent purchases of 167 households in Sioux Falls, SD for 51 weeks in 

1987-88. Telemeters were attached to panelists‘ TVs to measure ad exposures. The data include 

7 brands, and a no purchase option. Three brands were introduced during the period, generating 

variability in brand familiarity. EK augment the Guadagni-Little model by including a GL-type 

variable for ad exposures. Thus, both past use experience and ad exposures affect current utility.      

When Erdem and Keane estimated the GL model they obtained θ = .770 and λ = 3.363, 

so λ(1-θ) = .773. The price coefficient was -1.077, implying that the impact of lagged purchase is 

equivalent to roughly a 72 cent price cut. Mean price is roughly $3.50, so this is 21%. This is 

very close to the effect Keane (1997) found for the GL model for ketchup. Surprisingly, the λ for 

advertising was only 0.14 with a standard error of .31 (not significant). Thus, the GL model 

implies the awkward result that advertising has no effect on demand. 

However, Erdem and Keane (1996) found the Bayesian learning model gave a much 

better fit to the data than the Guadagni-Little model. The log likelihood (LL) and Bayes 

Information Criterion (BIC) for the GL model were -7463 and 7531. But for the learning model 

they obtained LL and BIC values of -7312 and 7384. Thus, the BIC improvement is 147 points. 

The key parameters that generate state dependence are    
 =0.053, σε=0.374 and σA=3.418.  

The EK model is too complex to give simple calculations of the impact of lagged choices 

on current demand as we did with the GL and Keane (1997) models. The effects of price changes 

and changes in ad exposure frequency can only be evaluation by simulating the model. 

Unfortunately, EK only report advertising and not price simulations. But they do find clear 

evidence of state dependence in the advertising simulations. As they state, ―although the short 

run effect of advertising is not large, advertising has a strong cumulative effect on choice over 

time as it gradually reduces the perceived riskiness of a brand.‖
10

 

Based on the evidence in Erdem and Keane (1996) and Keane (1997), as well as a large 

body of subsequent work, much of which is very well described by Neslin (2002), there is now a 

broad consensus on three issues: (i) state dependence in demand does exist, (ii) as a result, both 

price promotion and advertising have long run effects, but (iii) consumer taste heterogeneity is a 

                                                                                                                                                                                           
of state dependence. The myopic model can be estimated using methods discussed in Section 3. The 

forward-looking version requires dynamic programming, which is beyond the scope of this paper.  
10

 Unfortunately, their paper contains a major typo in key figure (Figure 1) that shows this result. The 

Figure 1 in the paper just duplicates Figure 3. Fortunately, the basic result can also be seen in Figure 2 

(for the model with forward-looking consumers).  
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much stronger source of the observed persistence in choice behavior than is state dependence. 

In contrast to the consensus on existence of state dependence, there is no clear consensus 

on its source. The Guadagni and Little (1983) and Keane (1997) types of model can be viewed as 

structural models where prior use experience literally increases the utility of current consumption 

of a brand through a habit persistence mechanism. Alternatively, these models can be viewed as 

flexible approximations to a broad (but unspecified) set of models that generate state dependence 

that is well described by the ―brand loyalty‖ variable. The Erdem and Keane (1996) model and 

the large body of subsequent work derived from it (see Ching, Erdem and Keane (2013) for a 

review) definitively takes stand that state dependence derives from the learning mechanism. 

Other work, especially Erdem, Imai and Keane (2003) and Hendel and Nevo (2006), posits that 

inventories are an importance source of dynamics. Erdem, Keane and Sun (2008) show that the 

learning and inventory mechanisms are actually very hard to disentangle empirically, if one 

allows for a priori consumer taste heterogeneity. There is little consensus on the relative 

importance of the different mechanisms that may generate state dependence. 

The third key research objective that I mentioned in the introduction is to understand the 

dynamics of demand. Most important is to understand the sources of the observed increase in 

demand when a brand is on sale. Here, I think the literature has reached a high degree of 

consensus. Consider the demand for frequently purchased consumer goods. There is broad 

consensus that own price elasticities (given temporary price cuts) are about –3 to –4.5. But it is 

also widely accepted by firms and academics just knowing how much demand goes up when you 

cut prices is not very interesting. What really matters is where the increase comes from. 

Erdem, Imai and Keane (2003) and Erdem, Keane and Sun (2008) estimate that roughly 

20-30 percent of the increase in sales due to a temporary price cut is cannibalization of future 

sales. Of the remaining incremental sales, 70-80 percent is due to category expansion and only 

about 20-30 percent is due to brand switching. It is hard to exaggerate the importance of this 3-

way decomposition of the price elasticity of demand, as it determines the profitability of price 

promotion. And a remarkable consensus has emerged on these figures in recent years. Some key 

papers on cannibalization rates are van Heerde, Leeflang and Wittink (2000, 2004) and Ailawadi, 

Gedenk, Lutzky, Neslin (2006). And some important studies of brand switching are Pauwels, 

Hanssens and Siddarth (2002), van Heerde, Gupta and Wittink (2003), Sun, Neslin and 

Srinivasan (2003) and Mace and Neslin (2004).   
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6. Conclusion 

As we have seen, there is broad consensus that state dependence in consumer demand 

exists. There is also clear evidence that dynamic demand models fit the data much better than 

static models (see Ching, Erdem and Keane (2008)). And there is broad agreement that only 

about 20-25% of the incremental sales that accompany a price cut is due to brand switching, with 

the rest due to category expansion and cannibalization of own future sales. On the other hand, 

there is little agreement on the fundamental mechanism that generates dynamics in demand. The 

main competing theories are learning, inventories and habit persistence. Progress in this area is 

severely hindered by the computational difficulty of nesting all this mechanisms in one model. 

Much of demand modeling is done with the ultimate goal of merging the demand side 

with supply side models of industry competition. Such equilibrium models can be used for 

merger analysis, advertising regulation, anti-competitive pricing regulation, etc. But existing 

work in this area has typically used static demand models, due to the computational difficulty of 

solving the problem of oligopolistic firms when demand is dynamic.   

Unfortunately, static demand models greatly exaggerate cross-price elasticities, as they 

attribute too much of incremental sales to switching (see Sun, Neslin and Srinivasan (2003) and 

Erdem, Imai and Keane (2003), Erdem, Keane and Sun (2008)). As cross-price elasticities of demand 

summarize the degree of competition between products, this bias will create serious problems in 

attempting to predict effects of mergers. This example that makes obvious the importance of 

further work on developing dynamic models, particularly ones that are sophisticated enough to 

capture observed dynamics, yet simple enough to merge with supply side models.  

  



33 
 

References 

Ackerberg, D. (2003) Advertising, learning, and consumer choice in experience good markets: A 

structural empirical examination. International Economic Review, 44(3): 1007-1040. 

 

Ailawadi, K., K. Gedenk, C. Lutzky and S. Neslin (2007),"Decomposition of the sales impact of  

promotion-induced stockpiling," Journal of Marketing Research, 44:3, 450-467 

 

Allenby, G. M., & Lenk, P. J. (1994). Modeling household purchase behavior with logistic 

normal regression. Journal of American Statistical Association, 89, 1218-1231. 

 

Andrews, R.L. and A.K. Manrai (1999), ―MDS Maps for Product Attributes and Market 

Response: An Application to Scanner Panel Data,‖ Marketing Science, 18(4), 584-604. 

 

Berkovec, James & Stern, Steven, 1991. "Job Exit Behavior of Older Men," Econometrica, 

Econometric Society, vol. 59(1), pages 189-210, January. 

 

Berry, Steven (1994), ―Estimating Discrete Choice Models of Product Differentiation," RAND 

Journal of Economics, 25, 242-262. 

 

Berry, S., J. Levinsohn, and A. Pakes. (1995). ‗‗Automobile Prices in Market Equilibrium‘‘, 

Econometrica 63, 841–890. 

 

Block, H. andi. Marschak (1960), "Random Orderings and Stochastic Theories of Response," in 

I. Olkin, ed., Contributions to Probability and Statistics, Stanford University Press. 

 

Burda, M., M. Harding and J. Hausman (2008), A Bayesian mixed logit-probit model for 

multinomial choice. Journal of Econometrics 147: 232-246. 

 

Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the 

One-Factor Multinomial Probit Model," Econometrica, 50(3), pages 761-64, May. 

 

Chamberlain, Gary (1984). ―Panel Data,‖ in Handbook of Econometrics, Volume 2, eds. Z. 

Griliches and M. Intriligator, Amsterdam: North-Holland, pp. 1247–1318. 

 

Chamberlain, Gary (1985). ―Heterogeneity, Omitted Variable Bias, and Duration Dependence,‖ 

in Longitudinal Analysis of Labor Market Data, eds. J. Heckman and B. Singer, Cambridge: 

Cambridge University Press, pp. 3–38. 

 

Ching, A.T. (2010) Consumer learning and heterogeneity: dynamics of demand for prescription 

drugs after patent expiration. International Journal of Industrial Organization, 28(6): 619-638. 

 

Ching, A., T. Erdem and M. Keane (2009). The Price Consideration Model of Brand Choice, 

Journal of Applied Econometrics, 24:3, 393-420. 

 

Ching, A., T. Erdem and M. Keane (2013). Learning Models: An Assessment of Progress, 

Challenges and New Developments." Marketing Science, forthcoming. 

http://ideas.repec.org/s/ecm/emetrp.html
http://ideas.repec.org/s/ecm/emetrp.html


34 
 

Crawford, G. and M. Shum (2005). Uncertainty and learning in pharmaceutical demand. 

Econometrica, 73(4): 1137–1173. 

 

Jean-Pierre Dubé & Günter J. Hitsch & Peter E. Rossi, 2010. "State dependence and alternative 

explanations for consumer inertia," RAND Journal of Economics, vol. 41(3), pages 417-445. 

 

Elrod, Terry. (1988). ‗‗Choice Map: Inferring a Product Map from Observed Choice Behavior‘‘, 

Marketing Science 7 (Winter), 21–40. 

 

Elrod, T. and M. Keane. (1995). ‗‗A Factor-Analytic Probit Model for Representing the Market 

Structure in Panel Data‘‘, Journal of Marketing Research, 32, 1–16. 

 

Erdem, T. and M. Keane (1996). ―Decision Making under Uncertainty: Capturing Dynamic  

Brand Choice Processes in Turbulent Consumer Goods Markets,‖ Marketing Science, 15:1, 1-20. 

 

Erdem, T., S. Imai and M. Keane (2003). ―Brand and Quantity Choice Dynamics under Price  

Uncertainty,‖ Quantitative Marketing and Economics, 1:1, 5-64. 

 

Erdem, T., M. Keane and B. Sun (2008). ―A Dynamic Model of Brand Choice when Price and  

Advertising Signal Product Quality,‖ Marketing Science, 27:6, 1111-25. 

Geweke, J. and M. Keane (1999), Mixture of Normals Probit Models. in Analysis of Panels and 

Limited Dependent Variable Models, Hsiao, Lahiri, Lee and Pesaran (eds.), Cambridge 

University Press, 49-78. 

Geweke, J. and M. Keane (2001), Computationally Intensive Methods for Integration in 

Econometrics. In Handbook of Econometrics: Vol. 5, J.J. Heckman and E.E. Leamer (eds.), 

Elsevier Science B.V., 3463-3568. 

 

Geweke, J., Keane, M. and D. Runkle (1994).  Alternative Computational Approaches to 

Statistical Inference in the Multinomial Probit Model.  Review of Economics and Statistics, 76:4, 

609-32. 

 

Geweke, J., Keane, M. and D. Runkle (1997).  Statistical Inference in the Multinomial 

Multiperiod Probit Model.  Journal of Econometrics, 80, 125-65. 

 

Guadagni, Peter M. and John D.C. Little. (1983). ‗‗ALogit Model of Brand Choice Calibrated on 

Scanner Data‘‘, Marketing Science 2 (Summer), 203–238. 

 

Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate 

normal rectangle probabilities and their derivatives theoretical and computational results," 

Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134. 

 

Harris, K. and M. Keane (1999), ―A Model of Health Plan Choice: Inferring Preferences and 

Perceptions from a Combination of Revealed Preference and Attitudinal Data,‖ Journal of 

Econometrics, 89: 131-157. 

 

http://ideas.repec.org/s/bla/randje.html


35 
 

Heckman, J.J. (1981) Heterogeneity and State Dependence. In S. Rosen (ed.), Studies in Labor 

Markets: 91-140. 

 

Hendel, I. and A. Nevo (2006) Measuring the Implications of Sales and Consumer Inventory 

Behavior.  Econometrica, 74(6): 1637-73. 

 

Hong, Pilky, R. Preston McAfee and Ashish Nayyar. (2002). ‗‗Equilibrium Price Dispersion 

with Consumer Inventories,‘‘ Journal of Economic Theory 105, 503–517. 

 

Dean R. Hyslop, 1999. "State Dependence, Serial Correlation and Heterogeneity in Intertemporal 

Labor Force Participation of Married Women," Econometrica, 67(6), pages 1255-1294. 

 

Kamakura, Wagner and Gary Russell (1989), ―A Probabilistic Choice Model for Market 

Segmentation and Elasticity Structure,‖ Journal of Marketing Research, 26, 379-390.  

 

Keane, M. (1992).   A Note on Identification in the Multinomial Probit Model. Journal of 

Business and Economic Statistics, 10:2, 193-200. 

 

Keane, Michael P. (1993). ‗‗Simulation Estimation for Panel Data Models with Limited 

Dependent Variables‘‘. In G.S. Maddala, C.R. Rao, and H.D. Vinod (eds.), Handbook of 

Statistics II: Econometrics. Amsterdam: Elsevier Science Publishers. 

 

Keane, Michael P. (1994). ‗‗A Computationally Practical Simulation Estimator for Panel Data‘‘, 

Econometrica 62(1), 95–116. 

 

Keane, Michael P. (1997). ‗‗Modeling Heterogeneity and State Dependence in Consumer Choice 

Behavior‘‘, Journal of Business and Economic Statistics 15(3), 310–327. 

 

Keane, M. (2010a)  Structural vs. Atheoretic approaches to econometrics.  Journal of 

Econometrics, 156(1): 3-20. 

 

Keane, M. (2010b)  A Structural Perspective on the Experimentalist School. Journal of 

Economic Perspectives, 24(2): 47-58. 

 

Keane, M.P. and N. Wasi (2013), ―Comparing Alternative Models of Heterogeneity in Consumer 

Choice Behavior,‖ Journal of Applied Econometrics, forthcoming. 

 

Keane, M. and R. Sauer (2010). A Computationally Practical Simulation Estimation Algorithm 

for Dynamic Panel Data Models with Unobserved Endogenous State Variables, International 

Economic Review, 51:4 (November), 925-958. 

 

Keane, M. and K. Wolpin (2001).  The Effect of Parental Transfers and Borrowing Constraints 

on Educational Attainment.  International Economic Review, 42:4, 1051-1103. 

 

Keller, Kevin (2002). ―Branding and Brand Equity,‖ in B. Weitz and R. Wensley (eds.),  

Handbook of Marketing, Sage Publications, London, p. 151-178 

http://ideas.repec.org/s/ecm/emetrp.html


36 
 

Koopmans, T.C., H. Rubin and R.B. Leipnik (1950). Measuring the Equation Systems of 

Dynamic Economics. Cowles Commission Monograph No. 10: Statistical Inference in Dynamic 

Economic Models, T.C. Koopmans (ed.), John Wiley & Sons, New York. 

 

Lancaster, Kelvin J. (1966), "A New Approach to Consumer Theory," Journal of Political 

Economy, 74, 132-157. 

Lerman, S. and C. Manski, C. (1981), ‗On the use of simulated frequencies to approximate 

choice probabilities‘, in C. Manski and D. McFadden, eds., Structural Analysis of Discrete Data 

with Econometric Applications, MIT Press, Cambridge, MA, 305–319. 

 

Mace, S. and S. Neslin (2004), ―The Determinants of Pre- and Postpromotion Dips in Sales of  

Frequently Purchased Goods,‖ Journal of Marketing Research, 41:3, 339-350. 

 

McFadden, D. (1974), Conditional Logit Analysis of Qualitative Choice Behavior, in Frontiers 

in Econometrics, in P. Zarembka (ed.), New York: Academic Press, 105-42. 

 

McFadden, D., ―A Method of Simulated Moments for the Estimation of Discrete Response 

Models without Numerical Integration,‖ Econometrica, 57:5 (1989), 995-1026. 

McFadden, D. and K. Train (2000), ―Mixed MNL models for discrete response,‖ Journal of 

Applied Econometrics, 15, 447-470. 

Neslin, Scott. (2002). Sales Promotion. Cambridge: Marketing Science Institute, Relevant 

Knowledge Series. 

 

Neslin, Scott A. (2002), "Sales Promotion," in Handbook of Marketing, edited by Barton A. 

Weitz and Robin Wensley, London: Sage Publications 

 

Richard Paap & Philip Hans Franses, 2000. "A dynamic multinomial probit model for brand 

choice with different long-run and short-run effects of marketing-mix variables," Journal of 

Applied Econometrics, 15(6), pages 717-744. 

 

Pauwels, K., D. Hanssens and S. Siddarth (2002), ―The Long-Term Effects of Price Promotions  

on Category Incidence, Brand Choice, and Purchase Quantity,‖ Journal of Marketing Research, 

39:4, 421-39. 

 

Pesendorfer, Martin. (2002). ‗‗Retail Sales: A Study of Pricing Behavior in Supermarkets‘‘, 

Journal of Business 75(1), 33–66. 

 

Rossi, P., Allenby, G. and R. McCulloch (2005), Bayesian Statistics and Marketing, John Wiley 

and Sons, Hoboken, N.J.. 

 

Smith, Martin D., 2005. "State dependence and heterogeneity in fishing location choice," 

Journal of Environmental Economics and Management, 50(2), pages 319-340, September. 

 

http://ideas.repec.org/s/jae/japmet.html
http://ideas.repec.org/s/jae/japmet.html
http://ideas.repec.org/s/eee/jeeman.html


37 
 

Srinivasan, T.C. and Russell S. Winer. (1994). ‗‗Using Neoclassical Consumer-Choice Theory to 

Produce a Market Map From Purchase Data‘‘, Journal of Business and Economic Statistics 12 

(January), 1–9. 

 

Stern, Steven, 1992. "A Method for Smoothing Simulated Moments of Discrete Probabilities in 

Multinomial Probit Models," Econometrica, Econometric Society, vol. 60(4), pages 943-52, July. 

 

Stigler, George J., 1984. "Economics—The Imperial Science?" Scandinavian Journal of 

Economics, 86(3), pp. 301-313. 

 

Sun, B., S. Neslin and K. Srinivasan (2003), ―Measuring the impact of promotions on brand  

switching under rational consumer behavior,‖ Journal of Marketing Research, 40:4, 389- 

405. 

 

Train, K. (2003), Discrete Choice Methods with Simulation, Cambridge University Press. 

 

Van Heerde,  S. Gupta and D. Wittink (2003). ―Is 75% of the sales promotion bump due to brand  

switching? No, only 33% is,‖ Journal of Marketing Research, 40:4, 481-491. 

 

Van Heerde, H., P. Leeflang and D. Wittink (2000), ―The Estimation of Pre- and Postpromotion 

Dips with Store-Level Scanner Data,‖ Journal of Marketing Research, 383-95. 

 

Van Heerde, H., P. Leeflang and D. Wittink (2004), ―Decomposing the sales promotion bump  

with store data,‖ Marketing Science, 23:3, 317-334. 

 

Winer, Russell S. (1986). ‗‗A Reference Price Model of Brand Choice for Frequently Purchased 

Products‘‘, Journal of Consumer Research 13(September), 250–256. 

 

Wooldridge J. 2003a. Econometric Analysis of Cross Section and Panel Data. MIT Press: 

Cambridge, MA. 

Wooldridge J. 2003b. Simple Solutions to the Initial Conditions Problem is Dynamic, Nonlinear 

Panel Data Models with Unobserved Heterogeneity. Working Paper, Michigan State University. 
 

http://ideas.repec.org/s/ecm/emetrp.html

