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Abstract: We consider cointegration tests in the situation where the cointegration
rank is deficient. This situation is of interest in finite sample analysis and in relation
to recent work on identification robust cointegration inference. We derive asymptotic
theory for tests for cointegration rank and for hypotheses on the cointegrating vectors.
The limiting distributions are tabulated. An application to US treasury yields series is
given.
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1 Introduction

Determination of the cointegration rank is an important part of analyzing the coin-
tegrated vector autoregressive model. We consider the rank deficient case where the
cointegration rank of the data generating process is smaller than the rank used in the
statistical analysis. In that case, the data generating process has more unit roots than
the number of unit roots imposed in the statistical analysis and the usual asymptotic
theory fails. We provide asymptotic theory for cointegration rank tests and tests on
cointegration vectors along with simulated tables of the asymptotic distributions.

The analysis of the rank deficient case has bearing on two discussions in the litera-
ture. First, the results inform finite sample distribution theory for cointegration tests.
Different asymptotic distributions arise in the standard case and when the rank is de-
ficient. The asymptotic distribution tends to give a very good approximation to the
finite sample distribution when the rank is deficient or it is far from being deficient, see
for instance Nielsen (1997). When the parameters are in the vicinity of rank deficiency
the finite sample distribution tends to be a combination of the two asymptotic distri-
butions. When the parameters are not too close to the rank deficient case a Bartlett
correction using a fixed parameter second-order asymptotic expansion works very well,
see Johansen (2000, 2002). When the parameters are closer to rank deficient a local-to-
unity asymptotic expansion gives an improvement, see Nielsen (2004). A starting point
for the finite sample analysis is knowledge of the fixed-parameter first-order asymptotic
theory across the parameter space, including rank deficient cases.

Secondly, the results inform the current discussion of inference in cases of weakly
identified parameters. Recently, Khalaf and Urga (2014) discussed tests for a known
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cointegrating vector in the nearly rank deficient situation. They investigate various
methods to adjust the asymptotic distribution in the weak identification case. This
includes a bounds-based critical value suggested by Dufour (1997). This method requires
knowledge of the asymptotic theory for the rank deficient case.

We discuss the asymptotic theory for models without and with deterministic terms
in §2 and §3, respectively. The implications for finite sample analysis and the weakly
identified case are discussed in §4 along with an application to US treasury zero coupon
yields. §5 concludes. Proofs are given in an appendix.

2 The model without deterministic terms

We consider the Gaussian cointegrated vector autoregressive model in the case with no
deterministic terms. The asymptotic theory for tests for reduced cointegration rank and
for a known cointegrating vector is derived when the rank is deficient.

2.1 Model and hypotheses

Consider a p-dimensional time series Xt for t = 1 − k, . . . , 0, 1, . . . T . The unrestricted
vector autoregressive model is written in equilibrium correction form as

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + εt for t = 1, . . . , T, (2.1)

where the innovations εt are independent normal Np(0,Ω)-distributed. The parameters
Π, Γi, Ω are freely varying p-dimensional square matrices so that Ω is symmetric, positive
definite.

The hypothesis of reduced cointegration rank is formulated as

Hz(r) : rank Π ≤ r, (2.2)

for some 0 ≤ r ≤ p. The interpretation of the hypotheses follows from the Granger-
Johansen representation presented in §2.2 below. The subscript z indicates that the
model has a zero deterministic component. The rank hypotheses are nested so that

Hz(0) ⊂ · · · ⊂ Hz(r) ⊂ · · · ⊂ Hz(p). (2.3)

The rank deficiency problem arises when testing the hypothesis Hz(r) when in fact the
sub-hypothesis Hz(r − 1) is satisfied. The rank is determined to be r if the hypothesis
Hz(r) cannot be rejected while the sub-hypothesis Hz(r−1) is rejected. As a short-hand
we write H◦z(r) = Hz(r)\Hz(r− 1) for this situation. The rank can be determined along
the procedure outlined in Johansen (1995, §12.1). In practice, these decisions are often
marginal, hence the need to study the asymptotic theory of test statistics in the rank
deficient case.

The rank hypothesis can equivalently be written as

Hz(r) : Π = αβ′, (2.4)
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where α and β are p × r matrices. The advantage of this formulation is that α and β
vary in vector spaces. The formulation does, however, allow rank deficiency where the
rank of Π is smaller than r.

The hypothesis of known cointegration vectors is

Hz,β(r) : Π = αb′, (2.5)

for some unknown matrix α and a known matrix b, both of dimension p × r, so that b
has full column rank. The standard analysis is concerned with the situation where α
has full column rank, but in the rank deficient case, it has reduced column rank, so that
the hypothesis Hz(r − 1) is satisfied.

2.2 Granger-Johansen representation

The Granger-Johansen representation provides an interpretation of the cointegration
model that is useful in the asymptotic analysis. We work with the result stated by
Johansen (1995, Theorem 4.2). The theorem requires the following assumption.

I(1) condition. Suppose rank Π = s where s ≤ p such that Π = αβ′ where α, β
are p × s-matrices with full column rank. Consider the characteristic roots satisfying
0 = det{A(z)} where A(z) = (1− z)Ip−Πz−

∑k−1
i=1 Γiz

i(1− z). Suppose there are p− s
unit roots, and that the remaining roots are stationary roots, so satifying |z| > 0.

The Granger-Johansen theorem states that a process satisfying the model (2.1) so
that rank Π = r and the I(1) condition holds with s = r has the representation

Xt = C
t∑
i=1

εi + St + τ, (2.6)

where the impact matrix C for the random walk has rank p − r and satisfies β′C = 0
and Cα = 0, the process St can be given a zero mean stationary initial distribution and
τ depends on the initial observations in such a way that β′τ = 0. In other words, the
process Xt behaves like a random walk with cointegrating relations β′Xt that can be
given a stationary initial distribution.

2.3 Test statistics

The likelihood ratio test statistic for the reduced rank hypothesis Hz(r) against the
unrestricted model Hz(p) is found by reduced rank regression, see Johansen (1995, §6).
It is a two-step procedure. First, the differences ∆Xt and the lagged levels Xt−1 are
regressed on the lagged differences ∆Xt−i, i = 1, . . . , k − 1 giving residuals R0,t, R1,t.

Secondly the squared sample correlations, 1 ≥ λ̂1 ≥ · · · ≥ λ̂p ≥ 0 say, of R0,t and

R1,t are found, by computing product moments Sij = T−1
∑T

t=1 Ri,tR
′
j,t and solving the

eigenvalue problem 0 = det(λS11−S10S
−1
00 S01). The log likelihood ratio test statistic for

the rank hypothesis is then

LR{Hz(r) | Hz(p)} = −T
p∑

j=r+1

log(1− λ̂j). (2.7)
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Under the hypothesis of known cointegration vectors the likelihood is maximised by
least squares regression. The log likelihood ratio test statistic against the unrestricted
model Hz(p) is therefore given by

LR{Hz,β(r) | Hz(p)} = −T log
det{S00 − S01S

−1
11 S10}

det{S00 − S01b(b′S11b)−1b′S10}
. (2.8)

The log likelihood ratio statistic for the hypothesis of known cointegrating vector against
the rank hypothesis is found by combining the statistics in (2.7), (2.8), that is

LR{Hz,β(r) | Hz(r)} = LR{Hz,β(r) | Hz(p)} − LR{Hz(r) | Hz(p)}. (2.9)

2.4 Asymptotic theory for the rank test

In the asymptotic analysis it is possible to relax the assumption to the innovations.
While the likelihood is derived under the assumption of independent, identically Gaus-
sian distributed innovations less is needed for the asymptotic theory. Johansen (1995)
assumes the innovations are independent, identically distributed with mean zero and
finite variance and uses linear process results from Phillips and Solo (1992). This could
be relaxed further to, for instance, a martingale difference assumption. However, for
expositional simplicity we follow Johansen’s argument and assumptions.

Theorem 2.1. Consider the rank hypothesis Hz(r) : rank Π ≤ r. Suppose H◦z(s) =
Hz(s)\Hz(s − 1) holds for some s ≤ r and that the I(1) condition holds for that s. Let
Fu = Bu be a p−s-dimensional standard Brownian motion on [0, 1]. Let 1 ≥ ρ1 ≥ · · · ≥
ρp−s ≥ 0 be the eigenvalues of the eigenvalue problem

0 = det

{
ρ

∫ 1

0

FuF
′
udu−

∫ 1

0

Fu(dBu)
′
∫ 1

0

(dBu)F
′
u

}
(2.10)

Then, for T →∞,

LR{Hz(r) | Hz(p)} = −T
p∑

j=r+1

log(1− λ̂j)
D→ T

p−s∑
j=r−s+1

ρj. (2.11)

In the standard non-deficient situation where r = s the result reduces to the result of
Johansen (1995, Theorem 6.1). The rank deficient case was also discussed by Johansen
(1995, p. 158) and Nielsen (2004, Theorem 6.1).

Table 2.1 reports the asymptotic distribution of the rank test reported in Theorem
2.1. The simulation were done using Ox, see Doornik (2007). The simulation design
follows that of Johansen (1995, §15). That is, the stochastic integrals in (2.10) were
descretized with T = 1, 000 and zero initial observations with one million repetitions.
The table reports simulated quantiles and moments for r−s = 0, 1, 2 and p−r = 1, 2, 3, 4.
However, the case of p− r = 1 and r = s are analytic values from Nielsen (1997) using
the result of Abadir (1995). Bernstein (2014) reports values for higher dimensions.

The first panel of Table 2.1 reports the distribution for the standard case where
s = r. This corresponds to Table 15.1 of Johansen (1995). The second and third panel
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r − s p− r 50% 80% 85% 90% 95% 97.5% 99% Mean Var
0 1 0.60 1.88 2.98 4.13 5.32 6.94 1.14 2.22

2 5.48 8.48 9.31 10.44 12.30 14.07 16.34 6.09 10.61
3 14.39 18.94 20.13 21.70 24.22 26.54 29.37 15.02 25.13
4 27.29 33.35 34.88 36.91 40.04 42.93 46.45 27.93 45.66

1 1 0.36 1.13 1.38 1.74 2.35 2.98 3.81 0.67 0.70
2 4.27 6.25 6.78 7.50 8.65 9.76 11.14 4.61 4.66
3 11.92 15.20 16.04 17.14 18.88 20.50 22.48 12.31 13.22
4 23.47 28.09 29.25 30.76 33.10 35.21 37.83 23.89 26.96

2 1 0.30 0.97 1.18 1.48 1.98 2.47 3.11 0.56 0.48
2 3.93 5.57 6.01 6.59 7.51 8.38 9.46 4.18 3.24
3 11.04 13.82 14.53 15.46 16.91 18.24 19.87 11.34 9.63
4 21.84 25.83 26.82 28.11 30.09 31.91 34.13 22.18 20.21

Table 2.1: Quantiles, mean and variance of LR{Hz(r)|Hz(p)} where the data generating
process has rank s = rank Π ≤ r.

of Table 2.1 report the distribution for the rank deficient case where s = r − 1 and
s = r− 2. The first entry for s = r− 1, r = 1 corresponds to Table 6 of Nielsen (2004).
It is seen that as the rank becomes more deficient the distribution shifts to the left. It
should be noted that if the rank is non deficient, but the I(1) condition is not satisfied
then the distribution would tend to shift to the right, see Nielsen (2004) for a discussion.
Presumably the distribution would be inbetween these extremes if the rank is deficient
and the I(1) condition fails.

2.5 Asymptotic theory for the test on the cointegrating vectors

In the analysis of the test for known cointegrating vectors we focus on the situation
where the data generating process has rank s = 0. In this situation the asymptotic
distribution is relatively simple to describe, because it does not depend on the value
of the hypothesized cointegrating vectors b. This also suffices to discuss the situation
considered in Khalaf and Urga (2014). If the rank is non-zero but deficient so 0 < s < r
then the data generating process will have cointegrating vectors β0 of dimension p × s
and the asymptotic theory will depend on β0 and b. In practice, it is rare to test for
simple hypotheses when there is more than one hypothesized cointegrating vector, so
we do not pursue this complication.

The analysis of the test for known cointegrating vectors is somewhat different from
the analysis in Johansen (1995). His analysis is aimed at the situation where different
restrictions are imposed on the cointegrating vectors. The argument then involves an
intriguing consistency proof for the estimated cointegrating vectors. However, when
testing the hypothesis of known cointegrating vectors the likelihood is maximized by
the least squares method and the consistency argument is not needed. The asymptotic
theory can then be described by the following result.
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Theorem 2.2. Consider the hypothesis Hz,β(r) : Π = αb′ for unknown α and a known,
full column rank b of dimensions p× r are satisfied. Suppose Hz(0) is satisfied, so that
α = 0 and s = 0, and that the I(1) condition is satisfied. Let Bu be a p-dimensional
standard Brownian motion on [0, 1] with components B1,u and B2,u of dimension r and
p− r, respectively. Then, for T →∞,

LR{Hz,β(r) | Hz(p)}
D→ tr{

∫ 1

0

dBuB
′
u(

∫ 1

0

BuB
′
udu)−1

∫ 1

0

Bu(dBu)
′

−
∫ 1

0

dBuB
′
1,u(

∫ 1

0

B1,uB
′
1,udu)−1

∫ 1

0

B1,u(dBu)
′}. (2.12)

The convergence of the test statistic LR{Hz,β(r) | Hz(p)} holds jointly with the conver-
gence for the rank test statistic LR{Hz(r) | Hz(p)}, for s = 0, in Theorem 2.1. Thus,
when s = 0 the formula (2.9) implies that the limit distribution of the test statistic for
known β within the model with rank of at most r can be found as the difference of the
two limiting variables.

p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var
2 1 1 0.45 1.64 2.07 2.71 3.84 5.02 6.63 1 2

0 2.62 5.44 6.22 7.30 9.05 10.75 12.96 3.31 8.71
3 2 2 1.39 3.22 3.79 4.61 5.99 7.38 9.21 2 4

0 5.80 9.42 10.40 11.71 13.82 15.77 18.27 6.42 15.53
3 1 1 1.39 3.22 3.79 4.61 5.99 7.38 9.21 2 4

0 6.79 10.58 11.57 12.89 15.02 17.00 19.49 7.33 17.52

Table 2.2: Quantiles, mean and variance of LR{Hz,β(r)|Hz(r)} where the data generating
process has rank s = rank Π ≤ r.

Table 2.2 reports the asymptotic distribution of the test for known cointegrating
vector in the model where the rank is at most r. When r = s the asymptotic distribution
is χ2 with r(p−r) degrees of freedom, see Johansen (1995, Theorem 7.2.1). When s = 0
the asymptotic distribution reported in Theorem 2.2 applies. The simulation design is
as before. It is seen that in the rank deficient case the distribution is shifted to the right.
This matches the finite sample simulations reported by Johansen (2000, Table 2).

Table 2.3 reports the simulated asymptotic distribution of the test for known cointe-
grating vector in the model where the rank is unrestricted. The distribution is shifted to
the right in the rank deficient case. Note, that the table reports the distribution of the
convolution of the statistics simulated in Table 2.1 and Table 2.2, see (2.9). Thus, up to
a simulation error the expectations reported in Tables 2.1, 2.2 add up to the expectation
reported in Table 2.3. In the full rank case r = s the statistics in Tables 2.1, 2.2 are
independent, as proved below, so also the variances are additive.

Theorem 2.3. Consider the hypothesis H◦z,β(r). Suppose H◦z(r) = H◦z(r)/H
◦
z(r − 1) is

satisfied and that the I(1) condition holds with s = r. Then the rank test statistic
LR{H◦z(r)|H◦z(p)} and the statistic LR{H◦z,β(r)|H◦z(r)} for testing a simple hypothesis on
the cointegrating vector are asymptotically independent.
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p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var
2 1 1 1.54 3.43 4.01 4.83 6.22 7.62 9.47 2.15 4.23

0 3.35 6.11 6.89 7.95 9.70 11.38 13.57 3.98 8.82
3 2 2 2.52 4.85 5.53 6.48 8.07 9.60 11.62 3.15 6.26

0 6.36 9.96 10.92 12.22 14.32 16.29 18.79 6.98 15.35
3 1 1 7.50 11.03 11.98 13.27 15.34 17.30 19.81 8.13 14.73

0 11.33 15.73 16.88 18.41 20.83 23.09 25.91 11.96 23.31

Table 2.3: Quantiles, mean and variance of LR{Hz,β(r)|Hz(p)} where the data generating
process has rank s = rank Π ≤ r.

3 The model with a constant

We now consider the model augmented with a constant. In the cointegrated model
the constant is restricted to the cointegrating space. Thus, the cointegrating vectors
consist of vectors relating the dynamic variable extended by a further coordinate for
the constant. There are now two rank conditions; one related to the dynamic part of
these extended cointegrating vectors and one relating to the deterministic part of the
cointegrating vectors. The condition to the cointegration rank in the standard theory
can therefore fail in two ways.

3.1 Model and hypotheses

The unrestricted vector autoregressive model is

∆Xt = ΠXt−1 + µ+
k−1∑
i=1

Γi∆Xt−i + εt for t = 1, . . . , T, (3.1)

where the innovations εt are independent normal Np(0,Ω)-distributed. The parameters
are the p-dimensional square matrices Π, Γi, Ω and the p-vector µ. They vary freely so
that Ω is symmetric, positive definite.

For the model with a constant there are two types of cointegration rank hypotheses:

Hc`(r) : rank Π ≤ r, (3.2)

Hc(r) : rank (Π, µ) ≤ r. (3.3)

Their interpretations follow from the Granger-Johansen representation which is reviewed
in §3.2 below. In short, if there are no rank deficiencies the first hypothesis Hc` gives
cointegrating relations with a constant level and common trends with a linear trend.
The second hypothesis Hc has a constant level both for the cointegrating relations and
the common trends. The hypotheses are nested so that

Hc(0) ⊂ Hc`(0) ⊂ · · · ⊂ Hc`(r − 1) ⊂ Hc(r) ⊂ Hc`(r) ⊂ · · · ⊂ Hc(p) = Hc`(p). (3.4)

This nesting structure is considerably more complicated than the structure (2.3) for the
model without deterministic terms. A practical investigation may start in three different
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ways. First, the model (3.1) is taken as the starting point. Both types of hypotheses
come into play and the rank is determined as outlined in Johansen (1995, §12). Secondly,
if visual inspection of the data indicates that linear trends are not present the hypotheses
Hc` may be ignored. Thirdly, if visual inspection of the data indicates that a linear trend
could be present, the model (3.1) should be augmented with a linear trend term and we
move outside the present framework. Nielsen and Rahbek (2000) discuss the latter two
possibilities. Here, we are concerned with the first two possibilities.

The rank hypotheses can equivalently be formulated as

Hc`(r) : Π = αβ′, (3.5)

Hc(r) : (Π, µ) = α(β′, β′c). (3.6)

The hypotheses of known cointegrating vectors are therefore

Hc`,β(r) : Π = αb′, (3.7)

Hc,β(r) : (Π, µ) = α(b′, b′c). (3.8)

for a known (p×r)-matrix b with full column rank and, in the second case, also a known
(1× r)-matrix bc so that b∗ = (b′, b′c)

′ has full column rank.

3.2 Granger-Johansen representation

There is a Granger-Johansen representation for each of the two reduced rank hypotheses.
Both results follow from Theorem 4.2 and Exercise 4.5 of Johansen (1995).

First, consider the hypothesis Hc`(r). Suppose that the sub-hypothesis Hc(r) does
not hold and that the I(1) condition holds with s = r. Thus, the (p × r)-matrices α, β
have full column rank but α′⊥µ 6= 0, so that the matrix Π∗ = (Π, µ) has rank r + 1.
Then, the Granger-Johansen representation is

Xt = C
t∑
i=1

εi + St + τc + τ`t, (3.9)

where the impact matrix C has rank p − r and satisfies β′C = 0 and Cα = 0 while
τ` = Cµ 6= 0. As a consequence, the process has a linear trend, but the cointegrating
relations β′Xt do not have a linear trend, since β′C = 0.

Secondly, consider the hypothesis Hc(r). Suppose that the sub-hypothesis Hc`(r− 1)
does not hold and that the I(1) condition holds with s = r. Thus, the (p× r)-matrices
α, β have full column rank, and the {(p + 1) × r}-matrix β∗ = (β, β′c)

′ has full column
rank. Then, the Granger-Johansen representation (3.9) holds with τ` = 0, while τc has
the property that β′τc = −β′c. In other words, the process Xt behaves like a random
walk where β′Xt has an invariant distribution with a non-zero mean, while β′Xt + β′c
has a zero mean invariant distribution.

3.3 Test statistics

The test statistics are variations of those for the model without determistic terms. The
differences relate to the formation of the residuals R0,t and R1,t
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First, consider the reduced rank hypothesis Hc`(r) and the corresponding hypoth-
esis Hc`,β(r) of known cointegrating vectors. The residuals R0,t and R1,t are formed
by regressing the differences ∆Xt and the lagged levels Xt−1 on an intercept and the
lagged differences ∆Xt−i, i = 1, . . . , k − 1. In the second step, compute the canon-
ical correlations 1 ≥ λ̂1 ≥ · · · ≥ λ̂p ≥ 0 of R0,t and R1,t. The rank test statistic
LR{Hc`(r)|Hc`(p)} then has the form (2.7). The test statistic for known cointegrating
vectors LR{Hc`,β(r)|Hc`(p)} has the form (2.8), using the same residuals R0,t and R1,t,
and the hypothesized cointegrating vectors b.

Secondly, consider the reduced rank hypothesis Hc(r) and the corresponding hypoth-
esis Hc,β(r) of known cointegrating vectors. The residuals R0,t and R1,t are formed by
regressing the differences ∆Xt and the vector formed by stacking the lagged levels and
an intercept X∗t−1 = (X ′t−1, 1)′ on the lagged differences ∆Xt−i, i = 1, . . . , k − 1. In the
second step, compute the canonical correlation of these R0,t and R1,t. The rank test
statistic LR{Hc(r)|Hc(p)} then has the form (2.7). The test statistic for known cointe-
grating vectors LR{Hc,β(r)|Hc(p)} has the form (2.8), using the same residuals R0,t and
R1,t, and the hypothesized cointegrating vectors b∗ = (b′, b′c)

′.

3.4 Asymptotic theory for the rank tests

There are now four situations to consider. Indeed, the nesting structure in (3.4) shows
that each of the two rank hypotheses Hc`(r) and Hc(r) can be rank deficient in two
ways when either of H◦c`(s) = Hc`(s)/Hc(s) or H◦c(s) = Hc(s)/Hc`(s − 1) holds. In three
cases the limiting distribution is of the same form as in Theorem 2.1, albeit with a
different limiting random function Fu. In the fourth case the limiting distribution has
nuisance parameters. The nuisance parameter case arises when testing Hc(r) with a
data generating process satisfying H◦c`(s) = Hc`(s)/Hc(s). This is the case that can often
be ruled out through visual inspection of the data as mentioned in §3.1.

We start with the test for the hypothesis Hc`(r) in the rank deficient case where
H◦c`(s) = Hc`(s)/Hc(s) holds for s < r. Johansen (1995) discusses the possibility H◦c(r).
The asymptotic theory is as follows.

Theorem 3.1. Consider the rank hypothesis Hc`(r) : rank Π ≤ r. Suppose H◦c`(s) =
Hc`(s)\Hc(s) holds for some s ≤ r, so that rank Π = s and rank (Π, µ) = s + 1 and
that the I(1) condition is satisfied for that s. Let Bu be a p − s-dimensional standard
Brownian motion on [0, 1]. Define a (p− s)-dimensional vector Fu with coordinates

Fi,u =

{
Bi,u −Bi for i = 1, . . . , p− s− 1
u− 1/2 for i = p− s

Then LR{Hc`(r) | Hc`(p)} converges as in (2.11) using the present F .

Table 3.1 reports the simulated asymptotic distribution of the rank test reported in
Theorem 3.1. The first panel gives the standard case where s = r and corresponds to
Table 15.3 of Johansen (1995). For p − r = 1 the asymptotic distribution is actually
χ2 and the numbers are the standard numerically calculated ones rather than simulated
ones. The second and the third panel report the distribution for the rank deficient case
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r − s p− r 50% 80% 85% 90% 95% 97.5% 99% Mean Var
0 1 0.45 1.64 2.07 2.71 3.84 5.02 6.63 1 2

2 7.61 11.09 12.04 13.30 15.35 17.27 19.74 8.24 14.29
3 18.66 23.72 25.03 26.76 29.47 31.95 34.99 19.29 31.38
4 33.52 40.07 41.71 43.86 47.22 50.21 53.94 34.15 53.86

1 1 0.38 1.33 1.66 2.13 2.93 3.72 4.74 0.79 1.08
2 6.01 8.34 8.96 9.78 11.10 12.34 13.87 6.37 6.53
3 15.49 19.14 20.08 21.30 23.21 24.99 27.14 15.88 16.73
4 28.82 33.82 35.07 36.70 39.20 41.50 44.27 29.24 31.96

2 1 0.34 1.19 1.47 1.87 2.55 3.19 4.00 0.69 0.79
2 5.43 7.34 7.84 8.51 9.57 10.56 11.81 5.70 4.46
3 14.17 17.26 18.04 19.05 20.64 22.09 23.86 14.48 12.00
4 26.62 30.92 31.98 33.38 35.52 37.46 39.79 26.95 23.82

Table 3.1: Quantiles, mean and variance of LR{Hc`(r)|Hc`(p)} where the data generating
process satisfies H◦c`(s) = Hc`(s)\Hc(s) with s ≤ r.

H◦c`(s) where Hc`(s) holds, but Hc(s) fails. The distribution is shifted to the left when
r − s > 0 as in Table 2.1.

The second case is the test for the same hypothesis Hc`(r) in the rank deficient case
where H◦c(s) = Hc(s)/Hc`(s− 1) holds for s ≤ r.

Theorem 3.2. Consider the rank hypothesis Hc`(r) : rank Π ≤ r. Suppose H◦c(s) =
Hc(s)\Hc`(s − 1) holds for some s ≤ r, so that rank Π = rank Π∗ = s and that the I(1)
condition is satisfied for that s. Let Bu be a p−s-dimensional standard Brownian motion
on [0, 1]. Define a (p− s)-dimensional vector Fu as the de-meaned Brownian motion

Fu = Bu −B = Bu −
∫ 1

0

Bvdv.

Then LR{Hc`(r) | Hc`(p)} converges as in (2.11) using the present F .

Table 3.2 reports the simulated asymptotic distribution of the rank test reported in
Theorem 3.2. The first panel where s = r and corresponds to Table A.2 of Johansen
and Juselius (1990). It is shifted to the right when compared to the first panel of Table
3.1. The second and the third panel of Table 3.2 report the distribution for the rank
deficient case H◦c(s) for s < r. In those case the distribution is shifted to the left relative
to the first panel as in Tables 2.1, 3.1.

In the third case we consider the test for the hypothesis Hc(r) in the rank deficient
case where H◦c(s) = Hc(s)/Hc`(s− 1) holds for s < r.

Theorem 3.3. Consider the rank hypothesis Hc(r) : rank Π ≤ r. Suppose H◦c(s) =
Hc(s)\Hc`(s − 1) holds for some s ≤ r so that rank Π = rank (Π, µ) = s and that the
I(1) condition is satisfied for that s. Let Bu be a p− s-dimensional standard Brownian
motion on [0, 1]. Define a (p− s+ 1)-dimensional vector Fu given as

Fu =

(
Bu

1

)
. (3.10)
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r − s p− r 50% 80% 85% 90% 95% 97.5% 99% Mean Var
0 1 2.45 4.90 5.60 6.56 8.15 9.72 11.71 3.04 6.95

2 9.39 13.36 14.41 15.80 18.03 20.14 22.80 10.03 18.66
3 20.30 25.70 27.09 28.89 31.75 34.37 37.61 20.95 35.73
4 35.19 42.01 43.71 45.94 49.38 52.52 56.31 35.84 58.26

1 1 1.51 3.12 3.55 4.12 5.04 5.92 7.03 1.87 2.72
2 7.21 9.95 10.66 11.61 13.09 14.47 16.21 7.60 8.95
3 16.78 20.75 21.75 23.08 25.13 26.98 29.32 17.20 19.57
4 30.25 35.49 36.81 38.51 41.15 43.56 46.46 30.69 35.22

2 1 1.16 2.54 2.89 3.36 4.09 4.76 5.62 1.48 1.81
2 6.38 8.66 9.25 10.03 11.26 12.40 13.80 6.69 6.23
3 15.27 18.64 19.49 20.61 22.35 23.94 25.88 15.61 14.27
4 28.00 32.45 33.58 35.05 37.32 39.37 41.85 28.26 26.55

Table 3.2: Quantiles, mean and variance of LR{Hc`(r)|Hc`(p)} where the data generating
process satisfies H◦c(s) = Hc(s)\Hc`(s− 1) with s ≤ r.

Then LR{Hc(r) | Hc(p)} converges as in (2.11) using the present F .

r − s p− r 50% 80% 85% 90% 95% 97.5% 99% Mean Var
0 1 3.44 5.86 6.56 7.52 9.13 10.69 12.74 4.04 6.89

2 11.40 15.43 16.49 17.91 20.18 22.33 25.03 12.02 19.50
3 23.31 28.86 30.28 32.15 35.06 37.74 41.04 23.95 38.13
4 39.20 46.23 47.99 50.28 53.82 57.05 61.01 39.84 62.48

1 1 2.74 4.27 4.70 5.27 6.21 7.10 8.25 3.05 2.75
2 9.47 12.30 13.04 14.01 15.54 16.96 18.74 9.84 9.81
3 20.04 24.19 25.25 26.63 28.76 30.71 33.13 20.45 21.78
4 34.51 40.03 41.40 43.17 45.93 48.43 51.41 34.95 39.09

2 1 2.62 3.89 4.22 4.68 5.41 6.10 6.96 2.84 1.87
2 8.86 11.26 11.87 12.67 13.93 15.10 16.54 9.14 7.06
3 18.77 22.37 23.27 24.43 26.23 27.88 29.91 19.09 16.34
4 32.40 37.23 38.43 39.98 42.35 44.52 47.08 32.76 30.09

Table 3.3: Quantiles, mean and variance of LR{Hc(r)|Hc(p)} where the data generating
process satisfies H◦c(s) = Hc(s)\Hc`(s− 1) with s ≤ r.

Table 3.3 reports the simulated asymptotic distribution of the rank test reported in
Theorem 3.3. The first panel gives the standard case where s = r and corresponds to
Table 15.2 of Johansen (1995). The second and the third panel report the distribution
for the rank deficient case H◦c(s) for s < r. Once again, the distribution shifts to the left
in the rank deficient case.

The final case is the test for the hypothesis Hc(r) in the rank deficient case where
H◦c`(s) = Hc`(s − 1)/Hc(s − 1) for s < r. In this case the limiting distribution has
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nuisance parameters. We do not give the result here, since it is complicated to state
and it does not seem particularly useful in practice. Indeed in practical work, this
type of data generating process can often be ruled through visual data inspection as
discussed in §3.1. Futhermore, it would be hard to deal with the nuissance parameters
in applications.

It is worth noting that the proof in this final case would be somewhat different from
the proof of Theorems 2.1, 3.1, 3.2, 3.3. They are all proved by modifying the argument
of Johansen (1995, §10, 11). However, in the final case, a cointegration vector with
random coefficients arise. Therefore, the analysis is best carried out in terms of the dual
eigenvalue problem 0 = det(λS00 − S01S

−1
11 S10) as opposed to the standard eigenvalue

problem 0 = det(λS11 − S10S
−1
00 S01).

3.5 Asymptotic theory for the test on the cointegrating vectors

We now consider the tests on the cointegrating vectors in the rank deficient case when
a constant is present in the model. There is now a wide range of possible limit distri-
butions. Only a few of these will be discussed.

The unrestricted model is Hc(r) where the constant is restricted to the cointegrating
space. Thus, in the full rank case the Granger-Johansen representation (3.9) has a zero
linear slope τ` = 0 and level satisfying β′τc = −βc.

Consider now the hypothesis of a known cointegrating vector, (3.8). It is now im-
portant whether the hypothesized level for the cointegrating vector, bc is zero or not.
If bc 6= 0 then a nuisance parameter depending on b, bc would appear in the limit dis-
tributions in the rank deficient case. If bc = 0 then the limit distributions are simpler.
Fortunately, the zero level case is the most natural hypothesis in most applications. The
asymptotic theory for the test statistic is described in the following theorems.

Theorem 3.4. Consider the hypothesis Hc,β(r) : (Π, µ) = αb∗′ where b∗ = (b′, b′c)
′ for

an unknown α and a known, full column rank b, both of dimension p × r, along with a
known r-vector b′c. Suppose Hz(0) is satisfied so that Π = 0, µ = 0 and s = 0 and that
the I(1) condition is satisfied. Let B be a p-dimensional standard Brownian motion on
[0, 1], where the first r components are denoted B1. Define the (p− s + 1)-dimensional
process Fu = (B′u, 1) as in (3.10). Then it holds, for T →∞, that

LR{Hz,β(r) | Hz(p)}
D→ tr{

∫ 1

0

dBuF
′
u(

∫ 1

0

FuF
′
udu)−1

∫ 1

0

Fu(dBu)
′

−
∫ 1

0

dBuB
′
1,u(

∫ 1

0

B1,uB
′
1,udu)−1

∫ 1

0

B1,u(dBu)
′}. (3.11)

The convergence of the test statistic LR{Hc,β(r) | Hc(p)} holds jointly with the conver-
gence for the rank test statistic LR{Hc(r) | Hc(p)}, for s = 0, in Theorem 3.3. Thus,
when s = 0 a formula of the type (2.9) implies that the limit distribution of the test
statistic for known β within the model with rank of at most r satisfies can be found as
the difference of the two limiting variables.

Table 3.4 reports the asymptotic distribution of the test for known cointegrating
vector in the model where the rank is at most r. When r = s the asymptotic distribution
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p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var
2 1 1 1.39 3.22 3.79 4.61 5.99 7.38 9.21 2 4

0 6.34 9.84 10.78 12.02 14.05 15.96 18.41 6.87 15.09
3 2 2 3.36 5.99 6.75 7.78 9.49 11.14 13.28 4 8

0 12.45 17.48 18.79 20.53 23.26 25.76 28.91 13.12 30.71
3 1 1 2.37 4.64 5.32 6.25 7.82 9.35 11.35 3 6

0 10.60 14.82 15.92 17.36 19.66 21.79 24.48 11.07 22.93

Table 3.4: Quantiles, mean and variance of LR{Hc,β(r)|Hc(r)} where the data generating
process satisfies H◦c,β(s).

p r s 50% 80% 85% 90% 95% 97.5% 99% Mean Var
2 1 1 5.44 8.50 9.34 10.50 12.38 14.17 16.50 6.07 10.98

0 9.32 13.37 14.44 15.88 18.18 20.31 22.98 9.94 19.72
3 2 2 7.44 11.02 11.99 13.29 15.37 17.37 19.88 8.09 15.09

0 15.37 20.48 21.80 23.54 26.26 28.78 31.88 15.99 32.22
3 1 1 14.46 19.08 20.28 21.88 24.39 26.74 29.64 15.10 25.77

0 20.35 25.89 27.31 29.15 32.04 34.72 38.02 20.96 38.07

Table 3.5: Quantiles, mean and variance of LR{Hc,β(r)|Hc(p)} where the data generating
process satisfies H◦c,β(s).

is χ2 with r(p+ 1− r) degrees of freedom, see Johansen and Juselius (1990, p. 193–194),
Johansen, Mosconi and Nielsen (2000, Lemma A.5). When s = 0 the distribution is
simulated according to Theorem 3.4. It is shifted to the right relative to the case r = s.

Table 3.5 reports the simulated asymptotic distribution of the test for known cointe-
grating vector in the model where the rank is unrestricted. The distribution is shifted to
the right in the rank deficient case. As in the zero level case, the expectations reported
in Tables 3.3, 3.4 add up to the expectation reported in Table 3.5. In the full rank
case r = s the statistics in Tables 3.3, 3.4 are independent, as proved below, so also the
variances are additive.

Theorem 3.5. Consider the hypothesis H◦c,β(r). Suppose H◦c(r) = H◦c(r)/H
◦
c`(r − 1) is

satisfied and that the I(1) condition holds with s = r. Then the rank test statistic
LR{H◦c(r)|H◦c(p)} and the statistic LR{H◦c,β(r)|H◦c(r)} for testing a simple hypothesis on
the cointegrating vector are asymptotically independent.

4 Applications of results

We discuss how the result apply to the finite sample theory and to identification robust
inference. An application to US treasury yields is given.
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4.1 Finite sample theory

Johansen (2000) derives a Bartlett-type correction for the tests on the cointegrating
relations. In Table 2 he considers the finite sample properties of a test comparing
the test statistic LR{Hz,β(1)|LR{Hz(p)} with the asymptotic χ2-approximation. Null
rejection frequencies are simulated for dimensions p = 2, 5, a variety of parameter values,
and a finite sample size T . In all the reported simulations the data generating process
has rank of unity. The table shows that null rejection frequency can be very much larger
for a nominal 5% test when the rank is nearly deficient.

Theorem 2.2 sheds some light on the behaviour of the test as the rank approaches
deficiency. The Theorem shows that the test statistic converges for all deficient ranks.
Table 2.2 indicates that the distribution shifts to the right in the rank deficient case.
Thus, we should expect that null rejection frequency increases as the rank approaces
deficiency, but it should be bounded away from unity.

4.2 Identification robust inference

Khalaf and Urga (2014) were concerned with tests on cointegation vectors in situations
where the cointegration rank is nearly deficient. Their results can be developed a little
further using the present results.

The notation in Khalaf and Urga (2014) differs slightly from the present notation.
The hypothesis of known cointegration vectors is stated as β0 = (Ir,b

′
0)′ for some known

b0, corresponding to the present hypotheses Hz,β(r) and Hc`,β(r). The test statistics are

LR(b0) = LR{Hm,β(r)|Hm(p)}, (4.1)

LRC(b0) = LR{Hm,β(r)|Hm(r)}, (4.2)

for m = z, c`. Moreover they consider the hypothesis Hm,Π(r), say, of a known impact
matrix Π of rank r. This is tested through the statistic

LR∗ = LR{Hm,Π(r)|Hm(p)}. (4.3)

When the rank is not deficient the test statistic LRC(b0) is asymptotically χ2
r(p−r),

see Johansen (1995, §7). The test statistic LR(b0) has a Dickey-Fuller type distribution
as derived in Theorem 2.2 for the case without deterministic terms. Table 2.2 indicates
that this distribution is close to, but different from, a χ2

p(p−r)-distribution when p = 2, 3

and p− r = 1. When p = 3 and r = 1 the limiting distribution is further from a χ2
p(p−r)-

distribution. Likewise, the statistic LR∗ converges to a Dickey-Fuller-type distribution.
This can be proved through a modification of the proof of Theorem 2.2.

Khalaf and Urga’s Theorem 1 is concerned with bounding the distribution of the
statistic LR(b0) when the rank is nearly deficient. Suppose the rank is nearly deficient in
the sense that Π ≈ T−1M for some matrixM . Then, intuitively, the limiting distribution
will be a combination of those arising when the true rank is 0 and when it is 1. The
asymptotic theory developed here gives the relevant bounds. In the case of the zero
level model the Theorems 2.1, 2.2 imply the following pointwise result.
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Theorem 4.1. Let θ denote the parameters of the model (2.1). Consider the parameter
space Θz where the hypothesis Hz,β(1) : Π = αb′ holds for unknown α and a known, full
column rank b, both of dimension p× 1 so that the data generating process satisfies the
I(1) condition with s = 0 or s = 1. Let qz,s be the (1−ψ) quantile of LR{Hz,β(1)|Hz(1)}
when the data generating process satisfies H◦z,β(s) for s = 0, 1. Let qz,∗ = maxs=0,1 qz,s.
Then it holds for all θ ∈ Θz that

P[LR{Hz,β(1)|Hz(1)} ≥ qz,∗] ≤ ψ. (4.4)

The local-to-unity motiviation for Theorem 4.1 suggests that a stronger uniform
result is true. That is, for all ε > 0 there exists a T0 so that for all T > T0 then

sup
θ∈Θz

P{LR{Hz,β(1)|Hz(1)} ≥ qz,∗} ≤ α + ε. (4.5)

It is, however, beyond the scope of the present paper to prove such a result.
The simulated values in Table 2.2 show that for ψ = 5% then

qz,∗ = max(qz,0, qz,1) =

{
max(9.05, 3.84) = 9.05 for p = 2,
max(13.82, 5.99) = 13.82 for p = 3.

(4.6)

The interpretation is as follows. Suppose the hypothesis Hz(1) has not been rejected,
but it is unclear whether the rank could be nearly deficient. Then the hypothesis of a
known β0 is rejected if the statistic LR{Hz,β(1)|Hz(1)} is larger than qz,∗.

The bound for qz,∗ seems very extreme. Khalaf and Urga therefore suggest to use the
alternative statistic LR{Hz,β(1)|Hz(p)}. Theorem 4.1 could be modified to cover this
statistic. The simulations in Table 2.3 indicate that we would then use bounds

q̃z,∗ = max(q̃z,0, q̃z,1) =

{
max(9.70, 6.22) = 9.70 for p = 2,
max(20.83, 15.34) = 20.83 for p = 3.

(4.7)

We can establish a similar result for the constant level model using Theorems 3.3,
3.4. However, it is necessary to exclude the possibility of a linear trends in the rank
deficient model as this would give a very complicated result.

Theorem 4.2. Let θ denote the parameters of the model (3.1). Consider the parameter
space Θc where the hypothesis Hc,β(1) : (Π, µ) = α(b′, b′c) holds for unknown α and a
known, full column rank b, both of dimension p × 1, along with a known scalar bc so
that the data generating process satisfies the I(1) condition with s = 0 or s = 1. Let qc,s
be the (1− ψ) quantile of LR{Hc,β(1)|Hc(1)} when the data generating process satisfies
H◦c,β(s) for s = 0, 1. Let qc,∗ = maxs=0,1 qc,s. Then it holds for all θ ∈ Θ1 that

P[LR{Hc,β(1)|Hc(1)} ≥ qc,∗] ≤ ψ. (4.8)

The simulated values in Table 3.4 show that for ψ = 5% then

qc,∗ = max(qz,0, qz,1) =

{
max(14.05, 5.99) = 14.05 for p = 2,
max(19.66, 7.82) = 19.66 for p = 3.

(4.9)
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If the alternative is taken as Hc(p) instead of Hc(1) the bounds are modified as

q̃c,∗ = max(q̃c,0, q̃c,1) =

{
max(18.18, 12.38) = 18.18 for p = 2,
max(32.04, 24.39) = 32.04 for p = 3.

(4.10)

The bounds (4.9), (4.10) for the constant level model appear futher appart than the
corresponding bounds (4.6), (4.7) for the zero level model. So in the constant level case
there is perhaps less reason to use the test against the unrestricted model.

4.3 Empirical illustration

The identification robust inference can be illustrated using a series of monthly US trea-
sury zero-coupon yields over the period 1987:8 to 2000:12. The data are taken from
Giese (2008) and runs from the start of Alan Greenspan’s chairmanship of the Fed and
finishes before the burst of the dotcom bubble. Giese considers 5 maturities (1, 3, 18,
48, 120 months), but here we only consider 2 maturities (12, 24 months). The empirical
analysis uses OxMetrics, see Doornik and Hendry (2013).
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Figure 4.1: Zero coupon yields in (a) levels, (b) differences and (c) spread.

Figure 4.1 shows the data in levels and differences along with the spread. The spread
does not appear to have much of a mean reverting behaviour. It is not crossing the long-
run average for periods of up to 4 years. This point towards a random walk behaviour
which contradicts the expectations hypothesis in line with Giese’s analysis. She finds
2 common trends among 5 maturities. The 2 common trends can be interpreted as
short-run and long-run forces driving the yield curve. The cointegrating relations match
an extended expections hypothesis where spreads are not cointegrated but two spreads
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cointegrate. This is sometimes called butterfly spreads and gives a more flexible match
to the yield curve. This is in line with earlier empirical work. Hall, Anderson and
Granger (1992) among others found only one common trend when looking at short-term
maturities, while Shea (1992), Zhang (1993) and Carstensen (2003) found more than
one common trend when including longer maturities.

A vector autoregression of the form (3.1) with an intercept, k = 4 lags as well as a
dummy variable for 1987:10 was fitted to the data. Table 4.1 reports specification test
statistics with p-values in square brackets. The tests do not provide evidence against the
initial model. They are the autocorrelation test of Godfrey (1978) the cumulant based
normality test, see Doornik and Hansen (2008), and the ARCH test of Engle (1982). For
the validity of applying the autoreregressive and normality tests in for non-stationarity
autoregressions see Engler and Nielsen (2009), Kilian and Demiroglu (2000), and Nielsen
(2006).

Test b12,t b24,t Test system
χ2
normality (2) 3.8

[0.15]
4.1

[0.13]
χ2
normality (4) 4.3

[0.36]

Far,1−7 (7, 144) 1.7
[0.11]

1.0
[0.45]

Far,1−7 (28, 272) 1.2
[0.24]

Farch,1−7 (7, 147) 1.8
[0.09]

1.0
[0.41]

Table 4.1: Specification tests for the unrestricted vector autoregression.

The dummy variable matches the policy intervention after the stock market crash on
19 Oct 1987. Empirically, the dummy variable can be justified in two ways. First, the
plot of yield differences in Figure 4.1(b) indicate a sharp drop in yields at that point. Sec-
ondly, the robustified least squares algorithm analyzed in Johansen and Nielsen (2014)
could be employed for each of the two equations in the model. The algorithm uses a
cut-off for outliers in the residuals that is controlled in terms of the gauge, which is the
frequency of falsely detected outliers that can be tolerated. The gauge is chosen small
in line with recommendations of Hendry and Doornik (2014, §7.6). Thus we choose a
cut-off of 3.02 corresponding to a gauge of 0.25%. When running the autoregression
distributed lag models without outliers only 1987:10 has an absolute residual exceeding
the cut-off. Next, when re-running the model including a dummy for 1987:10 no further
residuals exceed the cut-off. This is a fixed point for the algorithm.

Table 4.2 reports cointegration rank tests. The fifth column shows conventional p-
values based on Table 3.1, 3.3 for s = r corresponding to Johansen (1995, Tables 15.2,
15.3). The sixth column shows p-values based on Table 3.2, 3.3 assuming data have
been generating by a model satisfying Hc(0) = Hz(0). In both cases the p-values are
approximated by fitting a Gamma distribution to the reported mean and variance, see
Nielsen (1997), Doornik (1998) for details. As expected, the latter p-values are higher
than the former. Overall this provide overwhelming evidence in favour of a pure random
walk model in line with Giese (2008).

If we have a strong belief in the expectation hypothesis we would, perhapse, ignore
the rank tests and seek to test the expectations hypothesis directly. If we maintain
the model Hc(1), we could have to contemplate that the cointegration vectors could be
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Hypothesis r Likelihood LR p-value
r = s Hc(0)

Hc`(2) = Hc(2) 2 134.63
Hc`(1) 1 133.71 1.8 0.18 0.39
Hc(1) 1 133.71 1.8 0.80 0.75
Hc`(0) 0 129.70 9.8 0.30 0.46
Hc(0) 0 129.21 10.8 0.57 0.57

Table 4.2: Cointegration rank tests.

nearly unidentified. A mild form of the expectation hypothesis is that the spread is
zero mean stationary. Thus, we test the restriction b∗ = (1,−1, 0). The likelihood ratio
statistic is 4.0. Assuming the data generating process satisfies either H◦c(0) or H◦c(1),
but not by H◦c`(0) we can apply the Khalaf-Urga (2014)-type bound test established in
Theorem 4.2. The 95% bound in (4.9) is 14.05 so the hypothesis cannot be rejected
based on this statistic. This contrasts with the above rank tests which gave strong
evidence against the expectations hypothesis. The results reconcile if the bounds test
does not have much power in the weakly identified case. Indeed, this seems to be the
case when looking at Table 3, ρ = 0.99-panels in Khalaf and Urga (2014).

5 Conclusion

We have derived asymptotic theory for cointegration rank tests and tests on cointegrat-
ing vectors in the rank deficient case. The asymptotic distributions have been simulated
and tabulated. The results shed some light on the finite sample theory for cointegration
analysis. They can be used to improve the theory on identification robust inference
developed by Khalaf and Urga (2014). This was applied to two US treasury yield series.
However, our impression is that the identification robust tests have modest power to
reject incorrect restrictions.

A Proofs

Processes are considered on the space of right continuous processes with left limits,
D[0, 1]. A discrete time process Xt for t = 1, . . . , T is embedded in D[0, 1] through
Xinteger(Tu) for 0 ≤ u ≤ 1. For processes Yt, Zt for t = 1, . . . , T the residuals from

regressing Yt on Zt are denoted (Yt | Zt) = Yt −
∑T

s=1 YsZ
′
s(
∑T

s=1 ZsZ
′
s)
−1Zt.

Proof of Theorem 2.1. This follows the outline of the proof in Johansen (1995, §10,
11). Let Π = α0β

′
0 for p×s-matrices α0, β0 with full column rank. Let Γ = Ip−

∑k−1
i=1 Γi.

Under the I(1) condition the Granger-Johansen representation (2.6) holds with rank s
and Johansen’s Lemma 10.1 stands with r replaced by s. His Lemmas 10.2, 10.3 hold
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with BT = β0⊥(β′0⊥β0⊥)−1 so that, on D[0, 1],

T−1/2B′TXinteger(Tu) = B′TCT
−1/2

integer(Tu)∑
t=1

εt + oP(1). (A.1)

For later use we will note that the Brownian motion B can be chosen as follows.
For any orthogonal square matrix M̃ so M̃ ′M̃ = Ip−s choose the (p − s)-dimensional
standard Brownian motion B so that

T−1/2M̃ ′(α′0⊥Ωα0⊥)−1/2α′0⊥Γβ0⊥(β′0⊥β0⊥)−1β′0⊥X[Tu]
D→ Bu (A.2)

on D[0, 1].

Proof of Theorem 2.2. Introduce the notation Ω̂U = S00 − S01S
−1
11 S10 for the unre-

stricted variance estimator and Ω̂R = S00−S01b(b
′S11b)

−1b′S10 for the restricted variance
estimator. Then the likelihood ratio test statistic satisfies

LR{Hz,β(r) | Hz(p)} = −T log
det(Ω̂U)

det(Ω̂R)
= T log det{Ip + Ω̂−1

U (Ω̂R − Ω̂U)}.

If it is shown that Ω̂U is consistent and T (Ω̂R − Ω̂U) converges in distribution then

LR{Hz,β(r) | Hz(p)} = tr{Ω−1T (Ω̂R − Ω̂U)}+ oP(1), (A.3)

following Johansen (1995, p. 224). The consistency of the unrestricted variance estimator

Ω̂U follows from Lemma 10.3 of Johansen (1995) used with r = s = 0 and BT = Ip.

Consider T (Ω̂R− Ω̂U). Note first that the data generating process has cointegration
rank s = 0. Thus α0, β0 are empty matrices so that their complements can be chosen as
the identity matrix. The I(1) condition then implies that Γ = Ip−

∑k−1
i=1 Γi is invertible.

The asymptotic convergence in (A.2) then reduces to

T−1/2M̃ ′Ω−1/2ΓXinteger(Tu) = T−1/2M̃ ′Ω−1/2

integer(Tu)∑
t=1

εt + oP(1)
D→ Bu, (A.4)

where B is a standard Brownian motion of dimension p and for any orthonormal M̃ so
that M̃ ′M̃ = Ip. In particular, we will choose M̃ so

M̃ =

[
{b′Γ−1Ω(Γ′)−1b}−1/2b′Γ−1Ω1/2

(b′⊥Γ′Ω−1Γb⊥)−1/2b′⊥Γ′Ω−1/2

]
. (A.5)

The variance estimators are Ω̂R = Sεε−Sε1b(b′S11b)
−1b′S1ε and Ω̂U = Sεε−Sε1S−1

11 S1ε.
In particular, the difference of the variance estimators is

T (Ω̂R − Ω̂U) = T{Sε1M(M ′S11M)−1M ′S1ε − Sε1b(b′S11b)
−1b′S1ε}, (A.6)

for any invertible matrix M and in particular for M ′ = M̃ ′Ω−1/2Γ. In light of the
identity M̃ ′M̃ = Ip, the random walk convergence in (A.4) and the rules for the trace
write

tr{Ω−1T (Ω̂R − Ω̂U)} = tr{M̃ ′Ω−1/2T (Ω̂R − Ω̂U)Ω−1/2M̃}
= tr [M̃ ′Ω−1/2T{Sε1M(M ′S11M)−1M ′S1ε − Sε1v(v′S11v)−1v′S1ε}Ω−1/2M̃ ].
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Let B1,u, B2,u be the first r and the last p− r coordinates of Bu, respectively. Then the
product moment convergence results in Johansen (1995, Lemma 10.3) imply

tr{Ω−1T (Ω̂R − Ω̂U)} D→ tr{
∫ 1

0

dBuB
′
u(

∫ 1

0

BuB
′
udu)−1

∫ 1

0

Bu(dBu)
′

−
∫ 1

0

dBuB
′
1,u(

∫ 1

0

B1,uB
′
1,udu)−1

∫ 1

0

B1,u(dBu)
′}.

This is also the limit of the likelihood ratio test statistic due to (A.3). The conver-
gence holds jointly with the convergence of the likelihood ratio test statistic for rank in
Theorem 2.1 since the orthogonal matrix M̃ in (A.2) can be chosen freely.

Proof of Theorem 2.3. We need a number of results from Johansen (1995). Let B, V
be independent standard Brownian motions. His Theorem 11.1 shows

LR{Hz(r)|Hz(p)}
D→ tr {

∫ 1

0

dBuB
′
u(

∫ 1

0

BuB
′
udu)−1

∫ 1

0

BudB
′
u}, (A.7)

while his Lemma 13.8 shows

LR{Hz,β(r)|Hz(r)}
D→ tr {

∫ 1

0

dVuB
′
u(

∫ 1

0

BuB
′
udu)−1

∫ 1

0

BudV
′
u}. (A.8)

Johansen does not explicitly argue that the convergence results hold jointly. This can
be done by going into the proofs of the results, find the asymptotic expansions of the
test statistic, and express them in terms of random walks that converge to the processes
B, V when normalized by T 1/2. The asymptotic distribution in (A.8) is mixed Gaussian
since B, V are independent. Thus, by conditioning on B we see that LR{Hz,β(r)|Hz(r)}
is asymptotically χ2 and hence independent of B. In turn the two test statistics are
asymptotically independent.

Proof of Theorem 3.1. Similar to the proof of Theorem 2.1. The relevant Granger-
Johansen representation is (3.9) with rank s. Use Johansen’s Lemmas 10.2, 10.3 with
BT = {γ(γ′γ)−1, T−1/2τ`(τ

′
`τ`)

−1}, where τ` = Cµ, while γ ∈ span(β0⊥) so that γ′τ` = 0
and the expansion (A.1) is replaced by

T−1/2B′TXinteger(Tu) =

{
(γ′γ)−1γ′CT−1/2

∑integer(Tu)
t=1 εt

u

}
+ oP(1) (A.9)

on D[0, 1]. Thus, ∆Xt has a non-zero level, but this is eliminated by regression on the
intercept.

Proof of Theorem 3.2. Similar to the proof of Theorem 2.1. Use the Granger-
Johansen representation (3.9) with rank s and τ` = Cµ = 0, and Johansen’s Lemmas
10.2, 10.3 with BT = β0⊥(β′0⊥β0⊥)−1 so that T−1/2B′TXinteger(Tu) has expansion (A.1).

Proof of Theorem 3.3. Similar to the proof of Theorem 2.1. Use the Granger-
Johansen representation (3.9) with rank s, and τ`. Use Johansen’s Lemmas 10.2, 10.3
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with Xt, BT and the expansion (A.1) replaced by, respectively, X∗t = (X ′t, 1)′, the block
diagonal matrix B∗T = diag (BT , T

1/2) where BT = β0⊥(β′0⊥β0⊥)−1, and

T−1/2B∗′TX
∗
integer(Tu) =

(
B′TCT

−1/2
∑integer(Tu)

t=1 εt
1

)
+ oP(1) (A.10)

on D[0, 1].

Proof of Theorem 3.4. The proof of Theorem 2.2 is modified noting that R1,t is the
(p + 1)-vector (Xt−1, 1)′ corrected for lagged differences instead of Xt−1 corrected for
lagged differences. Choose M̃ as in (A.5). Replace (A.4) by(

T−1/2M̃ ′Ω−1/2Γ 0
0 1

)(
Xinteger(Tu)

1

)
D→ Fu. (A.11)

The difference of variance estimators in (A.6) is now

T (Ω̂R − Ω̂U) = T{Sε1M(M ′S11M)−1M ′S1ε − Sε1b∗(b∗′S11b
∗)−1b∗′S1ε}, (A.12)

where the invertible (p+ 1)-dimensional matrix M now is chosen as

M =


b′Γ−1Ω(Γ′)−1b 0 0

0 b′⊥Γ′Ω−1Γb⊥ 0
0 0 1


−1/2 b′ b′c

b′⊥Γ′Ω−1Γ 0
0 1

 (A.13)

Viewed as a (3× 2)-block matrix, the two upper left equals the previous M . Since the
random walk dominates a constant it holds that(

T−1/2Ip 0
0 1

)
M

(
Xinteger(Tu)

1

)
D→ Fu. (A.14)

Moreover, the first r coordinates of MR1,t are proportional to b∗′R1,t. Thus the argument
can be completed as in the proof of Theorem 2.2.

Proof of Theorem 3.5. The proof of Theorem 2.3 has to be modified to allow for a
constant term in the cointegrating vector. The arguments leading to asymptotic results
for the test statistics are sketched in Johansen and Juselius (1990) and, with more
details, in Johansen, Mosconi and Nielsen (2000, Theorem 3.1, Lemma A.5).
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