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This supplement has two parts. In appendix C, we analyze the Least Median of Squares
(LMS) estimators along the lines of the analysis in the main paper of the Least Trimmed
Squares (LTS) estimator. In appendix D, we provide the detailed derivation of some identities
used in the main paper when proving the asymptotic theory for the LTS estimator.

C Least Median of Squares

The Least Median of Squares (LMS) estimator was suggested along with LTS by Rousseeuw
(1984). Originally, LMS was seen as more important than LTS for computational reasons.
However, LMS is only n1/3-consistent in i.i.d. models and it has a rather complicated asymp-
totic distribution theory (Kim and Pollard, 1990). Here, we give a likelihood theory for LMS
by replacing the normal distribution in the LTS model with a uniform distribution. We
show that, in the location-scale case, the LMS estimator has the same asymptotic theory as
the infeasible Chebychev estimator applied to the set of ‘good’ observations. That is, it is
h-consistent with a standard Laplace limit.

C.1 The LMS estimator

As before, let r2(1)(β) ≤ · · · ≤ r2(n)(β) be the order statistics of r2i (β) = (yi − β′xi)2. The LMS
estimator is

β̂LMS = arg min
β

r2(h)(β). (C.1)

Rousseeuw (1984) was concerned with the case where h is one plus the integer part of n/2, but
other quantiles are routinely used. The LMS estimator is related to the Chebychev estimator,
also referred to as the L∞ estimator or the minimax estimator. LMS divides the observations
into ‘good’ observations and ‘outliers’. The estimated set of ‘good’ observations is

ζ̂LMS = arg min
ζ

max
i∈ζ
|yi − x′iβ̂

ζ
Cheb| where β̂ζCheb = arg min

β
max
i∈ζ
|yi − β′xi|. (C.2)
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Some properties of Chebychev estimators carry over to LMS. Wagner (1959) pointed out that
the Chebychev estimator can be found as a regular linear programming problem with p + 1
relations, where p is the dimension of xi. Harter (1953) and Schechtman and Schechtman
(1986) found that the Chebychev estimator is a non-unique maximum likelihood estimator in
a model with uniform errors with known range. We find, below, that it is maximum likelihood
estimator in a uniform model with unknown range. Knight (2017) studied the asymptotic
theory of the Chebychev regression estimator in the context of i.i.d. errors.

C.2 The LMS regression model and maximum likelihood

Model C.1 (LMS regression model). Consider the regression model yi = β′xi + σεi for data
yi, xi for i = 1, . . . , n. Let h ≤ n be given. Follow the setup of the LTS regression Model 3.1
apart from assuming that the ‘good’ errors εi for i ∈ ζ are uniformly distributed on [−1, 1].

The LMS likelihood mimicks the LTS likelihood in (4.3). The only difference is that the
normal ε-probability ∆εΦ(y) is replace by a uniform ε-probability ∆εU(y) = U(y)− U(y − ε),
where U(y) = (y + 1)/2 for |y| ≤ 1. In the maximization, the difference is that the profile
likelihood (4.4) has the essential part

lim
ε→0

∏
i∈ζ

ε−1∆εU(yβσi ) =
∏
i∈ζ

(2σ)−11(|yi−β′xi|≤σ) = (2σ)−h1(maxi∈ζ |yi−β′xi|≤σ),

which is a uniform likelihood. For given β, ζ, this is maximized by choosing σ as small as
possible, subject to the constraint σ ≥ maxi∈ζ |yi − β′xi|. Minimizing the lower bound for σ
over β for fixed ζ gives the Chebychev estimator. Thus, for given ζ the maximizers are

β̂ζ,LMS = arg min
β

max
i∈ζ
|yi − β′xi| and σ̂ζ,LMS = max

i∈ζ
|yi − β̂′ζ,LMSxi|. (C.3)

The remainder of the LTS maximum likelihood argument stands. We summarize.

Theorem C.1. Consider the LMS regression Model C.1. The ε-likelihood is maximized for
ε→ 0 as follows. For any h-subsample ζ, define the Chebychev estimators β̂ζ,LMS and σ̂ζ,LMS

as in (C.3). Let ζ̂LMS = arg minζ σ̂ζ,LMS, subject to the constraint that ε̂i 6= ε̂` for i ∈ ζ,

1 ≤ ` ≤ n and ` 6= i and ` 6= i and where ε̂i = yi − β̂′ζ,LMSxi. Then, β̂LMS = β̂ζ̂LMS ,LMS and
σ̂LMS = σ̂ζ̂LMS ,LMS.

C.3 Asymptotic theory for the location-scale model

We consider a sequence of LMS location-scale models yi = µ + σεi defined along the lines
of §5.1. The LMS estimator simplifies. Consider sets ζ of the form y(δ+1), . . . , y(δ+h) for
δ = 0, . . . , n−h, where y(1) ≤ · · · ≤ y(n) are the order statistics. Following Rousseeuw (1984),
the LMS estimators reduce to µ̂LMS = µ̂δ̂LMS ,LMS and σ̂LMS = σ̂δ̂LMS ,LMS, and where

µ̂δ,LMS =
1

2
{y(δ+h) + y(δ+1)}, σ̂δ,LMS =

1

2
{y(δ+h) − y(δ+1)}, δ̂LMS = arg min

0≤δ≤n−h
σ̂δ,LMS. (C.4)

We show that with LMS, the set of ‘good’ observations is estimated consistently. Regu-
larity conditions are needed, regardless of the proportion λ of ‘good’ observations, to ensure
that the uniform ‘good’ observations are sufficiently separated from the ‘outliers’.
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Assumption C.1. Let G(x) for x ≥ 0 represent G(x) or G(x). Suppose
(i) ∃ε > 0 so that ∀0 < ψ < 1 then G−1(ψ) ≥ 2ψ% where % = (1− ρ+ ε)(1− λ)/λ;
(ii) ∃ψ0 > 0, τ < 1 so that ∀0 < ψ < ψ0 then G−1(ψ) ≥ ψτ .

In the proof, the first condition is needed to establish that δ̂LMS = δn + oP(hn). It gives a
global bound on the entire distribution function, while allowing bursts of very concentrated
‘outliers’ as long as they are not in the vicinity of the ‘good’ observations. The second
condition is binding for ‘outliers’ in the vicinity of the ‘good’ observations. It is needed to
improve the rate of the remainder term for δ̂LMS.

Theorem C.2. Consider a sequence of LMS location-scale models. Let 1/2 < λ < 1 and
suppose Assumption C.1. Let e, e be independent, standard exponential variables. Then

P(δ̂LMS = δn)→ 1, hn(µ̂LMS − µ)/σ
D→ e− e, hn(σ̂LMS − σ)/σ

D→ −(e+ e),

where e− e and e+ e are dependent Laplace(0, 1) and −Gamma(2, 1) variables.

The result generalizes to the case 0 < λ < 1 allowing more ‘outliers’ than ‘good’ ob-
servations (Berenguer-Rico et al., 2019). It contrasts with the previous, complicated n1/3-
consistent, complicated asymptotic theory for i.i.d. models (Kim and Pollard, 1990). We
expect that the above result would be more complicated for regression models in light of the
recent theory of Knight (2017) for Chebychev regression estimators with i.i.d. errors.

C.4 The OLS estimator in the LMS location-scale model

We show that the OLS estimator is inconsistent but with bounded bias in the LMS model.
This indicates that the least squares estimator is robust in the sense of Hampel (1971) within
a wider class of contamination in the LMS model than in the LTS model.

Theorem C.3. Consider a sequence of LMS location-scale models. Let 0 < λ < 1 and ρ = 0.
Suppose G has finite expectation µG =

∫∞
0
{1− G(x)}dx. The sample average satisfies

(µ̄− µ)/σ
P→ (1− λ)(1 + µG) > 0.

C.5 Proofs of asymptotic theory for the LMS model

We consider the LMS estimator in Model C.1. We suppress the ‘LMS’ index on estimators.

C.5.1 Uniform spacings & sums of exponential variables

We consider uniform spacings and derive some properties of sums of exponential variables.

Lemma C.1. (Pyke, 1965, §4.1) Let u1, . . . , un be i.i.d. standard uniform with order statistics
u(1) < · · · < u(n). The spacings s1, . . . , sn are defined as si = u(i) − u(i−1) for i = 2, . . . , n
while s1 = u(1) and sn+1 = 1−u(n). Further, let e1, . . . , en+1 be standard exponential variables
e1, . . . , en+1. Then (s1, . . . , sn+1) have the same distribution as (e1, . . . , en+1)/(e1+ · · ·+en+1).

Lemma C.2. Let e1, e2, . . . be independent standard exponentially distributed. Define gjn =∑n
i=1 ej+i for n, j + 1 ∈ N. Then

(a) gjn is Γ(n, 1) distributed and E|gjn − n|4 = 3n(n+ 2) ≤ 9n2;
(b) P(|n−1(gjn − n)| ≥ x) ≤ 9x−4n−2;
(c) P(max0<j<n1 |n−10 (gjn0 − n0)| > x) ≤ 9x−4n1n

−2
0 .
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Proof. (a) see (Johnson et al., 1994, §17.6, equation 17.10).
(b) By the Markov inequality, P(|n−1(gjn − n)| ≥ x) ≤ (nx)−4E|gjn − n|4. Apply (a).
(c) Let zj = n−10 (gjn0 − n0) and Pn = P(max0<j<n1 |zj| > x). Boole’s inequality gives

Pn ≤
∑

0<j<n1
P(|zj| > x). Here, P(|zj| > x) ≤ 9x−4n−20 by (b), so that Pn ≤ 9x−4n1n

−2
0 .

C.5.2 Fewer ‘outliers’ than ‘good’ observations

We show that the minimizer δ̂LMS is close to δn =
∑

j∈ζn 1(εj<mini∈ζn εi)
. Due to the argument

(B.1), it suffices to analyze the asymptotic behaviour for deterministic sequences δn.

Lemma C.3. Suppose Assumption C.1 holds. Let λ, ρ < 1. Then, conditional on δn, an
ε > 0 exists, so that min1≤s<hn hn(σ̂δn+s − σ̂δn) ≥ ε+ oP(1).

Proof. Let Ss = (σ̂δn+s − σ̂δn)/σ = {ε(δn+s+hn) − ε(δn+s+1)}/2 − {ε(δn+hn) − ε(δn+1)}/2. Reor-
ganize as Ss = {ε(δn+hn+s) − ε(δn+hn)}/2− {ε(δn+s+1) − ε(δn+1)}/2.

The ‘good’ errors ε(δn+s+1) and ε(δn+1) are order statistics of uniform errors on [−1, 1].
Thus, {ε(δn+1+s) − ε(δn+1)}/2 = u(1+s) − u(1) is a standard uniform spacing. The uniform
spacings Lemma C.1 shows that there exists independent standard exponential variables ek
where 1 ≤ k ≤ hn + 1 so that u(1+s) − u(1) =

∑1+s
k=2 ek/

∑hn+1
k=1 ek.

The ‘outliers’ satisfy ε(δn+hn+s)−ε(δn+hn) = ε(s) where ε(s) is positive and an order statistic

of the distribution function G. By the inverse probability transformation, there exist indepen-

dent standard uniform variables us, so that ε(s) = G
−1{u(s)}. Thus, ε(δn+hn+s) − ε(δn+hn) =

G
−1{u(s)}.

We consider the cases 1 ≤ s < sn and sn ≤ s < hn separately for some sequence sn →∞,
but sn/n→ 0. We choose sn = n(1−τ)/2 for τ < 1 defined in Assumption C.1(ii).

The case sn ≤ s ≤ hn. For the ‘good’ observations bound

{ε(δn+1+s) − ε(δn+1)}/2 =

∑1+s
k=2 ek∑hn+1
k=1 ek

≤
∑s+1

k=2 ek∑hn+1
k=2 ek

= (
s

hn
)

1 + s−1
∑s+1

k=2(ek − 1)

1 + h−1n
∑hn+1

k=2 (ek − 1)
. (C.5)

Let mlarge
n = maxt≥sn |t−1

∑t+1
i=2(ei−1)|. By the Law of Large Numbers xt = t−1

∑t
i=1(ei−1)→

0 a.s. for t→∞. This implies mlarge
n → 0 a.s., since for each outcome we have deterministic

sequence xt → 0, say. But, if xt → 0, then lim supt→∞ |xt| → 0. In particular, for sn →∞ we
get maxt≥sn |xt| → 0. In summary, we get

{ε(δn+1+s) − ε(δn+1)}/2
a.s.

≤ (s/hn){1 + o(1)}. (C.6)

The ‘outliers’. By Assumption C.1(i), we have G
−1

(ψ) ≥ 2ψ%, where % = (1 − ρ +

ε)(1 − λ)/λ. Thus, we get {ε(δn+hn+s) − ε(δn+hn)}/2 = G
−1{u(s)}/2 ≥ %u(s). The uniform

spacings Lemma C.1 shows that there exists independent standard exponential variables ek
for 1 ≤ k ≤ n+ 1 so that u(s) =

∑s
k=1 ek/

∑n+1
k=1 ek. Thus, we can bound

{ε(δn+hn+s) − ε(δn+hn)}/2 ≥ %

∑s
k=1 ek∑n+1
k=1 ek

= %(
s

n+ 1
)

1 + s−1
∑s

k=1(ek − 1)

1 + (n+ 1)−1
∑n+1

k=1(ek − 1)
. (C.7)

Let mlarge
n = maxs≥sn |s−1

∑s
j=1(ej − 1)|. As before, mlarge

n = o(1) a.s. Thus, we get

{ε(δn+hn+s) − ε(δn+hn)}/2
a.s

≥ %(
s

n+ 1
){1 + o(1)}.
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Combine with the bound (C.6) to see that minsn≤s≤hn(n+1)Ss ≥ s{%− (n+1)/hn}{1+o(1)}
a.s. Since (n+ 1)/hn → ρ̃ = (1− ρ)(1− λ)/λ, so that %− ρ̃ = ε(1− λ)λ−1 > 0, while s > sn
we get minsn≤s≤hn(n + 1)Ss ≥ snε(1 − λ)λ−1{1 + o(1)} a.s. which goes to infinity with sn,
while n/hn → ρ̃ > 0.

The case 1 ≤ s < sn = h
(1−τ)/2
n . For the ‘good’ observations bound

{ε(δn+1+s) − ε(δn+1)}/2 =

∑1+s
k=2 ek∑hn+1
k=1 ek

≤
∑1+sn

k=2 ek∑hn+1
k=2 ek

= (
sn
hn

)
1 + s−1n

∑sn+1
k=2 (ek − 1)

1 + h−1n
∑hn+1

k=2 (ek − 1)
.

By the strong Law of Large Numbers we get that the averages in the numerator and denom-
inator vanish, so that {ε(δn+1+s) − ε(δn+1)}/2 ≤ (sn/hn){1 + o(1)} a.s.

For the ‘outliers’, Assumption C.1(ii) is G
−1

(ψ) ≥ ψτ for some τ < 1 and ψ < ψ0.

Thus, we get ε(δn+hn+s) − ε(δn+hn) = G
−1{u(s)} ≥ {u(s)}τ . Further, u(s) ≥ u(1). As before,

u(1) = e1/
∑n+1

k=1 ek. Thus, we can replace (C.7) with

ε(δn+hn+s) − ε(δn+hn) = G
−1{u(s)} ≥ {u(1)}τ = (

e1∑n+1
k=1 ek

)τ
a.s.
= (

e1
n+ 1

)τ{1 + o(1)},

by the Strong Law of Large Numbers. Since e1 is exponential, then for all ε > 0 exists a η > 0
so that P(e1 > 2η) ≥ 1− ε. As before, n/hn → ρ̃ > 0. In combination, we get

min
1≤s≤sn

hnSs ≥ [(hn/2){η/(ρ̃hn)}τ − hn(sn/hn)]{1 + oP(1)}.

Thus, for some constant C > 0, we get min1≤s≤sn hnSs ≥ (Ch1−τn − sn){1 + oP(1)}. This

diverges since sn = h
(1−τ)/2
n = o(h1−τn ) when 1− τ > 0.

Proof of Theorem C.2. We proceed as in the proof of Theorem 5.2, conditioning on sequences
δn satisfying δn/(n − hn) → ρ, and only considering ŝ = δ̂LMS − δn > 0. First, it suffices to
show that n(σ̂2

δn+s
− σ̂2

δn
) > ε + oP(1) for some ε > 0, uniformly in 1 ≤ s < hn. This was

proved in Lemma C.3 using Assumption C.1.
Second, since P(δ̂ = δn)→ 1, we get µ̂LMS = µ̂δn , σ̂LMS = σ̂δn with large probability.
Third, we analyze µ̂δn and σ̂δn . Since εi is uniform on [−1, 1] then ui = (εi+1)/2 is uniform

on [0, 1]. The spacings Lemma C.1 shows that independent standard exponential variables ei
exist, so that u(δn+1) = e1/

∑hn+1
k=1 ek and 1− u(δn+hn) = ehn+1/

∑hn+1
k=1 ek. In particular,

(σ̂δn − σ)/σ = {ε(δn+hn) − ε(δn+1) − 2}/2 = u(δn+hn) − u(δn+1) − 1 = −(e1 + ehn+1)/
∑hn+1

k=1 ek,

(µ̂δn − µ)/σ = {ε(δn+hn) + ε(δn+1)}/2 = u(δn+hn) + u(δn+1) − 1 = (e1 − ehn+1)/
∑hn+1

k=1 ek.

By the Law of Large Numbers, (hn+1)−1
∑hn+1

i=1 ei = 1+oP(1). Let e = e1 and e = ehn+1.

C.5.3 The OLS estimator in the LMS model

Proof of Theorem C.3. Proceed as in the proof of Theorem 5.4, apart from a different analysis
of the order statistic ε(hn). Specifically, for 1 ≤ i ≤ hn then εi is uniform on [−1, 1], so that
ε(hn) = 1 + oP(1). Thus, the two last terms in (B.8) have the same order here.
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D Identities in LTS proofs

The formula (B.3).
We expand Ss = (σ̂2

δn+s
− σ̂2

δn
)/σ2 when 0 < s < hn. By definition

Ss = h−1n

hn∑
i=1

ε2(δn+s+i) − {h
−1
n

hn∑
i=1

ε(δn+s+i)}2 − h−1n
hn∑
i=1

ε2(δn+i) + {h−1n
hn∑
i=1

ε(δn+i)}2.

We have that s < δn < s + hn. We can then divide the hn errors {ε(δn+s+1), . . . , ε(δn+s+hn)}
into

{ε(δn+s+1), . . . , ε(δn+hn)} and {ε(δn+hn+1), . . . , ε(δn+s+hn)}.

The first group are order statistics of ‘good’ errors. The second group consists of ‘outliers’
for which ε(δn+hn+j) = ε(δn+hn) + ε(j) for 1 ≤ j ≤ s. Thus, for the second moment we have

hn∑
i=1

ε2(δn+s+i) =
hn∑

i=s+1

ε2(δn+i) +
s∑
j=1

{ε(δn+hn) + ε(j)}2

=
hn∑

i=s+1

ε2(δn+i) + sε2(δn+hn) + 2ε(δn+hn)

s∑
j=1

ε(j) +
s∑
j=1

ε2(j).

For the squared first moment we have

{
hn∑
i=1

ε(δn+s+i)}2 = [
hn∑

i=s+1

ε(δn+i) +
s∑
j=1

{ε(δn+hn) + ε(j)}]2

= {
hn∑

i=s+1

ε(δn+i)}2 + s2ε2(δn+hn) + {
s∑
j=1

ε(j)}2

+ 2sε(δn+hn)

hn∑
i=s+1

ε(δn+i) + 2sε(δn+hn)

s∑
j=1

ε(j) + 2{
hn∑

i=s+1

ε(δn+i)}{
s∑
j=1

ε(j)}.

Further, we can expand

hn∑
i=1

ε2(δn+i) =
s∑
i=1

ε2(δn+i) +
hn∑

i=s+1

ε2(δn+i),

{
hn∑
i=1

ε(δn+i)}2 = {
s∑
i=1

ε(δn+i)}2 + {
hn∑

i=s+1

ε(δn+i)}2 + 2
s∑
i=1

ε(δn+i)

hn∑
i=s+1

ε(δn+i).
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Inserting the expansions of the moments in the expression for Ss gives

Ss =
1

hn
{

hn∑
i=s+1

ε2(δn+i) + sε2(δn+hn) + 2ε(δn+hn)

s∑
j=1

ε(j) +
s∑
j=1

ε2(j)}

− 1

h2n
[{

hn∑
i=s+1

ε(δn+i)}2 + s2ε2(δn+hn) + {
s∑
j=1

ε(j)}2

+ 2sε(δn+hn)

hn∑
i=s+1

ε(δn+i) + 2sε(δn+hn)

s∑
j=1

ε(j) + 2{
hn∑

i=s+1

ε(δn+i)}{
s∑
j=1

ε(j)}]

− 1

hn
{

s∑
i=1

ε2(δn+i) +
hn∑

i=s+1

ε2(δn+i)}

+
1

h2n
[{

s∑
i=1

ε(δn+i)}2 + {
hn∑

i=s+1

ε(δn+i)}2 + 2
s∑
i=1

ε(δn+i)

hn∑
i=s+1

ε(δn+i)]

This reduces as
Ss =

s

hn
(1− s

hn
)ε2(δn+hn) + An

where

An =
1

hn
{

hn∑
i=s+1

ε2(δn+i) + 2ε(δn+hn)

s∑
j=1

ε(j) +
s∑
j=1

ε2(j)}

− 1

h2n
[{

hn∑
i=s+1

ε(δn+i)}2 + {
s∑
j=1

ε(j)}2

+ 2sε(δn+hn)

hn∑
i=s+1

ε(δn+i) + 2sε(δn+hn)

s∑
j=1

ε(j) + 2{
hn∑

i=s+1

ε(δn+i)}{
s∑
j=1

ε(j)}]

− 1

hn
{

s∑
i=1

ε2(δn+i) +
hn∑

i=s+1

ε2(δn+i)}

+
1

h2n
[{

s∑
i=1

ε(δn+i)}2 + {
hn∑

i=s+1

ε(δn+i)}2 + 2
s∑
i=1

ε(δn+i)

hn∑
i=s+1

ε(δn+i)]

There are two cancellations: term 1 in line 1 with term 2 in line 4 and term 1 in line 2 with
term 2 in line 5. Thus, An reduces to

An = 2ε(δn+hn)
1

hn

s∑
j=1

ε(j) +
1

hn

s∑
j=1

ε2(j) − {
1

hn

s∑
j=1

ε(j)}2

− 2
s

hn
ε(δn+hn)

1

hn

hn∑
i=s+1

ε(δn+i) − 2
s

hn
ε(δn+hn)

1

hn

s∑
j=1

ε(j)

− 2{ 1

hn

hn∑
i=s+1

ε(δn+i)}{
1

hn

s∑
j=1

ε(j)} −
1

hn

s∑
i=1

ε2(δn+i)

+ { 1

hn

s∑
i=1

ε(δn+i)}2 + 2
1

hn

s∑
i=1

ε(δn+i)
1

hn

hn∑
i=s+1

ε(δn+i).
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Rearrange as

An = [
1

hn

s∑
j=1

ε2(j) − {
1

hn

s∑
j=1

ε(j)}2]− [
1

hn

s∑
i=1

ε2(δn+i) − {
1

hn

s∑
i=1

ε(δn+i)}2]

+ 2
1

hn

s∑
j=1

ε(j){(1−
s

hn
)ε(δn+hn) −

1

hn

hn∑
i=s+1

ε(δn+i)}

− 2
1

hn

hn∑
i=s+1

ε(δn+i){
s

hn
ε(δn+hn) −

1

hn

s∑
i=1

ε(δn+i)}.

The terms in second and in third line, respectively, can be simplified to give

An = [
1

hn

s∑
j=1

ε2(j) − {
1

hn

s∑
j=1

ε(j)}2]− [
1

hn

s∑
i=1

ε2(δn+i) − {
1

hn

s∑
i=1

ε(δn+i)}2]

+ 2
1

hn

s∑
j=1

ε(j)
1

hn

hn∑
i=s+1

{ε(δn+hn) − ε(δn+i)}

− 2
1

hn

hn∑
i=s+1

ε(δn+i)
1

hn

s∑
i=1

{ε(δn+hn) − ε(δn+i)}.

which has the desired form An = An1 − An2 + 2An3 − 2An4 �

The formula (B.7).
We have hn − sn ≤ s < hn where sn = (2 log hn)−1/4hn. By definition

σ̂2
δn+s/σ

2 =
1

hn

hn∑
i=1

ε2(δn+s+i) − {
1

hn

hn∑
i=1

ε(δn+s+i)}2.

A residual sums of squares is invariant to subtracting a constant from each observation. Thus,
subtracting ε(δn+hn) from each ε(δn+s+i) gives

σ̂2
δn+s/σ

2 =
1

hn

hn∑
i=1

{ε(δn+s+i) − ε(δn+hn)}2 − [
1

hn

hn∑
i=1

{ε(δn+s+i) − ε(δn+hn)}]2.

Split into ‘good’ and ‘outlier’ errors to get

σ̂2
δn+s/σ

2 =
1

hn

hn∑
i=s+1

{ε(δn+i) − ε(δn+hn)}2 +
1

hn

s∑
j=1

{ε(δn+hn+j) − ε(δn+hn)}2

− [
1

hn

hn∑
i=s+1

{ε(δn+i) − ε(δn+hn)}+
1

hn

s∑
j=1

{ε(δn+hn+j) − ε(δn+hn)}]2.

Note that ε(δn+hn+j) − ε(δn+hn) = ε(j) while ε(δn+i) < ε(δn+hn) so that

σ̂2
δn+s/σ

2 =
1

hn

hn∑
i=s+1

{ε(δn+hn) − ε(δn+i)}2 +
1

hn

s∑
j=1

ε2(j)

− [− 1

hn

hn∑
i=s+1

{ε(δn+hn) − ε(δn+i)}+
1

hn

s∑
j=1

ε(j)]
2.
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Rearrange as

σ̂2
δn+s/σ

2 =
1

hn

hn∑
i=s+1

{ε(δn+hn) − ε(δn+i)}2 − [
1

hn

hn∑
i=s+1

{ε(δn+hn) − ε(δn+i)}]2

+
1

hn

s∑
j=1

ε2(j) − {
1

hn

s∑
j=1

ε(j)}2

+ 2[
1

hn

hn∑
i=s+1

{ε(δn+hn) − ε(δn+i)}]{
1

hn

s∑
j=1

ε(j)}.

The term in the second line satisfies

1

hn

s∑
j=1

ε2(j) − {
1

hn

s∑
j=1

ε(j)}2 =
s

hn
(1− s

hn
)
1

s

s∑
j=1

ε2(j) + (
s

hn
)2[

1

s

s∑
j=1

ε2(j) − {
1

sn

s∑
j=1

ε(j)}2].

Thus, we get
σ̂2
δn+s/σ

2 = An = An1 + An2 + An3 + 2An4,

which is (B.7), where

An1 = h−1n

hn∑
i=s+1

{ε(δn+i) − ε(δn+hn)}2 − [h−1n

hn∑
i=s+1

{ε(δn+i) − ε(δn+hn)}]2,

An2 = (
s

hn
)2[

1

s

s∑
j=1

ε2(j) − {
1

s

s∑
j=1

ε(j)}2],

An3 =
s

hn
(1− s

hn
)
1

s

s∑
j=1

ε2(j)

An4 = [h−1n

hn∑
i=s+1

{ε(δn+hn) − ε(δn+i)}]{h−1n
s∑
j=1

ε(j)}.

This completes the proof of (B.7). �
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