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This supplement has two parts. In appendix C, we analyze the Least Median of Squares
(LMS) estimators along the lines of the analysis in the main paper of the Least Trimmed
Squares (LTS) estimator. In appendix D, we provide the detailed derivation of some identities
used in the main paper when proving the asymptotic theory for the LTS estimator.

C Least Median of Squares

The Least Median of Squares (LMS) estimator was suggested along with LTS by Rousseeuw
(1984). Originally, LMS was seen as more important than LTS for computational reasons.
However, LMS is only n'/3-consistent in i.i.d. models and it has a rather complicated asymp-
totic distribution theory (Kim and Pollard, 1990). Here, we give a likelihood theory for LMS
by replacing the normal distribution in the LTS model with a uniform distribution. We
show that, in the location-scale case, the LMS estimator has the same asymptotic theory as
the infeasible Chebychev estimator applied to the set of ‘good’ observations. That is, it is
h-consistent with a standard Laplace limit.

C.1 The LMS estimator

As before, let 17, (8) < -+ <72 () be the order statistics of 77(8) = (y; — #'v;)*. The LMS
estimator is

Brus = argﬁmin i (B)- (C.1)

Rousseeuw (1984) was concerned with the case where h is one plus the integer part of n/2, but
other quantiles are routinely used. The LMS estimator is related to the Chebychev estimator,
also referred to as the L., estimator or the minimax estimator. LMS divides the observations
into ‘good’ observations and ‘outliers’. The estimated set of ‘good’ observations is

LMS = arggnin max lyi — 2338, where (S, , = arggnin max ly; — B4l (C.2)
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Some properties of Chebychev estimators carry over to LMS. Wagner (1959) pointed out that
the Chebychev estimator can be found as a regular linear programming problem with p + 1
relations, where p is the dimension of x;. Harter (1953) and Schechtman and Schechtman
(1986) found that the Chebychev estimator is a non-unique maximum likelihood estimator in
a model with uniform errors with known range. We find, below, that it is maximum likelihood
estimator in a uniform model with unknown range. Knight (2017) studied the asymptotic
theory of the Chebychev regression estimator in the context of i.i.d. errors.

C.2 The LMS regression model and maximum likelihood

Model C.1 (LMS regression model). Consider the regression model y; = ['x; + oe; for data
Yi,T; fori=1,...,n. Let h < n be given. Follow the setup of the LTS regression Model 3.1
apart from assuming that the ‘good’ errors e; for i € ¢ are uniformly distributed on [—1,1].

The LMS likelihood mimicks the LTS likelihood in (4.3). The only difference is that the
normal e-probability A°®(y) is replace by a uniform e-probability AU(y) = U(y) — U(y — ¢),
where U(y) = (y + 1)/2 for |y| < 1. In the maximization, the difference is that the profile
likelihood (4.4) has the essential part
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which is a uniform likelihood. For given 3, (, this is maximized by choosing ¢ as small as
possible, subject to the constraint ¢ > max;ec |y; — f'2;|. Minimizing the lower bound for o
over 3 for fixed ( gives the Chebychev estimator. Thus, for given ( the maximizers are

BC,LMS = arggnin n;leaCX ly; — B’ and O¢c,LMS = I?eacx |y; — Bé,LMSxi|' (C.3)

The remainder of the LTS maximum likelihood argument stands. We summarize.

Theorem C.1. Consider the LMS regression Model C.1. The e-likelthood is mazimized for
€ — 0 as follows. For any h-subsample ¢, define the Chebychev estimators BC,LMS and 0¢,rms
as in (C.3). Let Covs = arg min ¢ pars, subject to the constraint that & # & for i € (,
1<l<mnandl#iandl #i and where ¢; = y; — Bé,LMSxi' Then, BLMS = BéLMg,LMS and

OLMS = O¢p5,LMS-

C.3 Asymptotic theory for the location-scale model

We consider a sequence of LMS location-scale models y; = pu + o¢; defined along the lines
of §5.1. The LMS estimator simplifies. Consider sets ¢ of the form y(511),...,y@4n) for
§d=0,...,n—h, where yqy < -+ <y, are the order statistics. Following Rousseeuw (1984),
the LMS estimators reduce to jipys = ﬂSLMs,LMS and 605 = &&MS’LMS, and where

. 1 . 1 2 o
Hs,LMS = —{3/(6+h) + Z/(6+1)}7 05, LMS = —{3/(6+h) - y(6+1)}7 dpms = argmin O§,LMS- (C-4)
2 2 0<5<n—h
We show that with LMS, the set of ‘good’ observations is estimated consistently. Regu-
larity conditions are needed, regardless of the proportion A of ‘good’ observations, to ensure
that the uniform ‘good’ observations are sufficiently separated from the ‘outliers’.



Assumption C.1. Let G(x) for x > 0 represent G(x) or G(z). Suppose
(1) Je > 0 so that YO < ¥ < 1 then G=(¢)) > 2t where o= (1 — p+€)(1 — \)/X;
(1) o > 0,7 < 1 so that VO < b < by then G1(¢p) > 9.

In the proof, the first condition is needed to establish that ) Lms = On +0p(hy). Tt gives a
global bound on the entire distribution function, while allowing bursts of very concentrated
‘outliers’ as long as they are not in the vicinity of the ‘good’ observations. The second
condition is binding for ‘outliers’ in the vicinity of the ‘good’ observations. It is needed to
improve the rate of the remainder term for 5 LMS-

Theorem C.2. Consider a sequence of LMS location-scale models. Let 1/2 < A\ < 1 and
suppose Assumption C.1. Let €, e be independent, standard exponential variables. Then

P(drars = 0a) = 1, haljiars — )]0 = e — e, ha(6rars — 0)/0 2 —(e + @),
where e — € and e + € are dependent Laplace(0,1) and —Gamma(2,1) variables.

The result generalizes to the case 0 < A < 1 allowing more ‘outliers’ than ‘good’ ob-
servations (Berenguer-Rico et al., 2019). It contrasts with the previous, complicated n'/3-
consistent, complicated asymptotic theory for ii.d. models (Kim and Pollard, 1990). We
expect that the above result would be more complicated for regression models in light of the
recent theory of Knight (2017) for Chebychev regression estimators with i.i.d. errors.

C.4 The OLS estimator in the LMS location-scale model

We show that the OLS estimator is inconsistent but with bounded bias in the LMS model.
This indicates that the least squares estimator is robust in the sense of Hampel (1971) within
a wider class of contamination in the LMS model than in the LTS model.

Theorem C.3. Consider a sequence of LMS location-scale models. Let 0 <A <1 and p = 0.
Suppose G has finite expectation jg = fooo{l — G(x)}dx. The sample average satisfies

(i —p)/o = (1= N1+ pg) > 0,

C.5 Proofs of asymptotic theory for the LMS model
We consider the LMS estimator in Model C.1. We suppress the ‘LMS’ index on estimators.

C.5.1 Uniform spacings & sums of exponential variables
We consider uniform spacings and derive some properties of sums of exponential variables.

Lemma C.1. (Pyke, 1965, §4.1) Let uy, . .., u, be i.i.d. standard uniform with order statistics

uqy < -+ < Ugy. The spacings sy,...,s, are defined as s; = uy) — ug—y) fori = 2,...,n
while s1 = u(y and sy = 1 — ). Further, let e, ..., e, be standard exponential variables
€1y ntr1. Then (s1,...,Spy1) have the same distribution as (ey, ..., eny1)/(e1 4+ €nt1).

Lemma C.2. Let ey, es,... be independent standard exponentially distributed. Define gj, =
S ejri forn,j+1¢€N. Then

(a) gjn s T'(n,1) distributed and E|gj, — n|* = 3n(n + 2) < 9n?;

() P(In Y (gjn — n)| > x) < 9x~*n"%;

(¢) P(maxocjcn, (1" (gjne — n0)| > @) < 92~ ning”.
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Proof. (a) see (Johnson et al., 1994, §17.6, equation 17.10).

(b) By the Markov inequality, P(|n"!(g;n — n)| > z) < (nz)"*E|g;» — n|*. Apply (a).

(¢) Let 2; = ny'(gjn, — 10) and P, = P(maxojn, |2j| > z). Boole’s inequality gives
P < Yocjem, Pzl > 2). Here, P(|z;] > ) < 927*ng® by (b), so that P, < 927 *nyng®. O

C.5.2 Fewer ‘outliers’ than ‘good’ observations

We show that the minimizer & s is close to 0, = > e L(e;<mineq, &) Due to the argument
(B.1), it suffices to analyze the asymptotic behaviour for deterministic sequences d,,.

Lemma C.3. Suppose Assumption C.1 holds. Let \,p < 1. Then, conditional on 9,, an
€ > 0 exists, so that miny<s<p, hn(G5,4+5 — 05,) > €+ 0p(1).

Proof. Let Sy = (65,15 — 05,)/0 = {€@+s4hn) = EGnts+1)}/2 = {EGu+hn) — Ea+1)}/2. Reor-

ganize as Sy = {&(, th+s) = E@utha) /2 = {E@utst1) = EGatn) }/2
The ‘good’ errors £(s,1s+1) and €(5,11) are order statistics of uniform errors on [—1,1].

Thus, {€@,+14+s) — €6,+1)}/2 = U@4s) — vy is a standard uniform spacing. The uniform
spacings Lemma C.1 shows that there exists independent standard exponential variables ey
where 1 <k < hy, + 1 so that w4, — Zk 5€r/ ZZ”J{I €

The ‘outliers’ satisty €(s,+h,+s) — 5(6n+hn) = E(s) Where £y is positive and an order statistic
of the distribution function G. By the inverse probability transformation, there exist indepen-

. . _ _ =1

dent standard uniform variables 1, so that g, = G {u(s)}. Thus, €5,+hp+s) = E@Gnthn) =
——1,_
G {U(S)}.

We consider the cases 1 < s < s, and s,, < s < h,, separately for some sequence s, — o0,
but s, /n — 0. We choose s,, = n!=7/2 for 7 < 1 defined in Assumption C.1(43).

The case s, < s < h,. For the ‘good’ observations bound

1+s s+1 —1 s+l
1+
{5(6n+1+s) . 5(6n+1)}/2 _ hk +216k hk +216k _ S Z}f _E1<€k ) .
. D oklo €k hn1+h12” (ex — 1)

(C.5)

Let m2° = max;s,, [t Y172 (e;—1)|. By the Law of Large Numbers z, = ¢~ 3>¢_ (e;—1) —

0 a.s. for t — oo. This implies mljrge — 0 a.s., since for each outcome we have deterministic
sequence x; — 0, say. But, if z; — 0, then liIn SUp;_, |2¢| — 0. In particular, for s,, — oo we
get max;>g, |z:] — 0. In summary, we get

(eur1es) — E6in}/2 < (s/ha){1+0(1)}. (C.6)

The ‘outliers’. By Assumption C.1(i), we have G_l(@/z) > 2ipp, where o = (1 — p +
€)(1 — X)/A. Thus, we get {€(s,+hnts) — EGnthn)}/2 = Gfl{ﬂ(s)}/2 > 0l(s). The uniform
spacings Lemma C.1 shows that there exists independent standard exponential variables €
for 1 <k <7m+1sothat Uy =7 €/ Zzg €. Thus, we can bound

ZZ 1ék — Q( S 1 +8_1 Zi 1(61‘C 1) (C?)
Sl m+ 14 @41ty (e — 1)

{e@uthnts) = EGurn)}/22 0
Let M8 = max,s,, [s7! > ;=1(& = 1)|. As before, miaree = o(1) a.s. Thus, we get

{e EGn+hn+s) — E(6n+hn) }/2 > Q( ){1 +o(1)}.



Combine with the bound (C.6) to see that min,, <s<p, (R+1)Ss > s{o— (m+1)/h,}{1+0(1)}
a.s. Since (m+1)/h, = p=(1—p)(1 — A\)/A, so that g — p=¢(1 — N)A~! > 0, while s > s,
we get ming, <s<p, (M + 1)Ss > s,6(1 — M)A 7H{1 4+ o(1)} a.s. which goes to infinity with s,,
while 71/hy — p > 0.

The case 1 < s < s, = h%lfT)/z. For the ‘good’ observations bound
i e o e Say 1 st 3 (er — 1)

)

Ziﬁl (% o Zl;l Ck B (hn 1 + h;l ZZ:;(% — 1)

{@ut14s) — €@t }/2 =

By the strong Law of Large Numbers we get that the averages in the numerator and denom-
inator vanish, so that {e(5,114s) — €6.41)}/2 < (Sn/hn){1 +0(1)} a.s.

For the ‘outliers’, Assumption C.1(i7) is 6_1(2/1) > 97 for some 7 < 1 and ¢ < .
Thus, we get €(s,+hnts) = E@nthn) = G_l{ﬂ(s)} > {@s}7. Further, %) > 4. As before,
Uny = €1/ S 7t 1@ Thus, we can replace (C.7) with

=1 _ T € T a.s. €1 \r
E(bnthnts) — E@athn) = G {U)} > {un} = (Tlé) = (ﬁJr D)L +o(L)}
k=1 ©k

by the Strong Law of Large Numbers. Since €; is exponential, then for all € > 0 exists an > 0
so that P(e; > 2n) > 1 — €. As before, m/h,, — p > 0. In combination, we get

122 hnSs > [(ha/2){n/(phn)}" — hn(sn/ha)]{1 + 0p(1)}.
Thus, for some constant C' > 0, we get minj<,<s, hp,Ss > (ChL™™ — 5,){1 + op(1)}. This
diverges since s, = h'y /* = o(h1=") when 1 — 7 > 0. O

Proof of Theorem C.2. We proceed as in the proof of Theorem 5.2, conditioning on sequences
o satisfying 6,,/(n — h,) — p, and only considering § = Stars — 0, > 0. First, it suffices to
show that n(65 ., — &35 ) > €+ op(1) for some € > 0, uniformly in 1 < s < h,. This was
proved in Lemma C.3 using Assumption C.1.
Second, since P(6 = 6,) — 1, we get fipars = fis,, Grus = 05, with large probability.
Third, we analyze fi5, and d5,. Since ¢; is uniform on [—1, 1] then u; = (£;41)/2 is uniform
on [0, 1]. The spacings Lemma C.1 shows that independent standard exponential variables e;

exist, so that u(s,11) = €1/ Zzgl er and 1 — w(s,+h,) = €ho+1/ 22211 ex. In particular,

(65, — 0)/0 = {EGnthn) = EGnt1) — 2H/2 = Uothn) — Ussr) — L = —(e1 + €npi1)/Spmt en,

(15, — 1)/ 0 = {€(snthn) + EGui1) }/2 = UGpihn) + Usar1) — 1 = (1 — enpi1)/Sopmt e

By the Law of Large Numbers, (h, +1)~* E;ﬁfl e; =1+o0p(l). Lete=e;ande=ep,,1. O

C.5.3 The OLS estimator in the LMS model

Proof of Theorem C.3. Proceed as in the proof of Theorem 5.4, apart from a different analysis
of the order statistic e(,). Specifically, for 1 < ¢ < h,, then &; is uniform on [—1, 1], so that
E(hn) = 1 4+ op(1). Thus, the two last terms in (B.8) have the same order here. O



D Identities in LTS proofs

The formula (B.3).
We expand S, = (63 ,, — 63 )/0® when 0 < s < hy,. By definition

hn

hn hn
Se=h"Y el arn — {hn 26(5 B e I W e =Py
=1 =1 =1

We have that s < §, < s+ h,. We can then divide the h,, errors {e(s, 1s41)s - - - s E@ntsthn) }
into
{5(6n+s+1)a R 75(5n+hn)} and {5(5n+hn+1)7 e 75(5n+s+hn)}'

)

The first group are order statistics of ‘good’ errors. The second group consists of ‘outliers
for which €5, 4h,+j) = €6,+hn) T E(j) for 1 < j < s. Thus, for the second moment we have

hn
Zg%‘;”““) B Z (6,0 +Z{55 th) FEG
i=1 i=s+1
2255+z+855+h +25(5+h Ze Z
i=s+1 ‘=

For the squared first moment we have

{Zé Sutsti) ) = Z E(Gn+i) T Z{g (6uthn) T E)

i=s+1
—{Z Eatiy )+ S €5+hn —i—{Za
i=s+1
+ 28€(5,+hn) Z E(nti) T 2585, +hn) 28 +2{ Z et HD En )
=541 i=s+1 j=1

Further, we can expand

hn
ZE%&LM 25(5n+z + Z 5 (8n+i)

i=s+1

{255“} —{25 Soti) +{Z5(5+z} +2256+z) Zﬁaﬂ

i=s+1 i=s+1



Inserting the expansions of the moments in the expression for S gives

:_{ZgéJrz +5€5+h +25(5n+hn)zg +Z€J)}

7’L

1=s+1
——{Z €t} + €5t +{Ze
” i=s+1
hn
+ 25 (5, 4+hn) Z EGnti) T 25€(5,+hn) Z e +2{ Z € 6n+z)}{zg(a
i=s+1 7j=1 1=s+1
__{Zg (Gnti) T Z 56+z
i=s+1
{Zé? sutiy )+ { Z EGuti) )+ 226 (8n+i) Z E0u+1)]
i=s+1 i=s+1
This reduces as 5 5
Ss = h—n(l - h—n)5%5n+hn) + An
where
An :_{256+z>+256+hnz Z%
n i=s+1 7j=1 =
——Q{Z EGnti)} +{Z&5
n i=s+1
hn
+ 286 (5, +hn) Z E(bnti) T 25€(5,+hn) Z ) +2{ Z €6 +z)}{25(3 1]
i=s+1 7j=1 i=s+1
- _{25 sti) T Z & (Guti) )
i=s+1
{256 —i—z} +{Z g( n—i—z} +225(5 +1) Z €5, —H)
1=s+1 i=s+1

There are two cancellations: term 1 in line 1 with term 2 in line 4 and term 1 in line 2 with
term 2 in line 5. Thus, A, reduces to

Lo sl L b
An =265, m) 7 D F0) + 7 DB — {5 D_Ew)

h s
1 «— s 1 _
2 h 5"+h") hn Z 6(5n+z zh_ng((sn""hn) h_n Z E(])
=541 7j=1
1 hn 1 s 1 s
- Q{h— Z 5(6n+z‘)}{h— Zg(j)} i Zg%mﬂ)
™ i=s+1 =1 =1
+ {_ Z 8(5n+2 } + 2 Z 8(6n+1 h Z € 67L+7/)

n

1=s+1



Rearrange as

1 <~ J 1 &
A, = [h_ ) — {5 > Ep)] - 5 D et ZE bti) )]
j=1 " =1 " =1
)1 s 1 o
— Z%{(l = e (thn) = 7 D Euti)}
h h,, P
7=1 i=s+1
hn 1 s
- 2— Z E(6n +z){ E(n+hn) h—zg(énﬂ‘)}-
hn i=s+1 " oi=1

The terms in second and in third line, respectively, can be simplified to give
1 & 1 < o 1 <, I )
An = [h_ Z%) - {h_n Z%‘)} J— [h_n 25(5n+¢) - {h_ Z€(6n+i)} ]
L — =1 i=1 =1
+ 2— Z g( Z {e@nrhn) — E@ati}

i=s+1
- 2— Z CGnti) 7, 2{5 bnthn) ~ E(Gn+i) -
n 1=s+1
which has the desired form A, = A1 — A2 + 24,3 — 24,4 O

The formula (B.7).
We have h,, — s, < s < h,, where 5,, = (2log h,,)""/*h,,. By definition

h h

R 1 <« 1 &

U§n+s/02 - ho Z 5%6n+s+i) - {h_ Z 5(6n+s+z‘)}
" =1 noi=1

A residual sums of squares is invariant to subtracting a constant from each observation. Thus,
subtracting €(s,1n,) from each ¢, 1414 gives

U§n+s = 7 Z{€(6n+5+1 — € 5n+hn } - Z{g 5n+3+z §n+hn)}]2

Split into ‘good’ and ‘outlier’ errors to get

O3 4s/0° = Z {e6nti) = EGnthm) ) + o Z{E Suthntd) ~ E(Fnthn)

nz s+1 n

Z {eGuti) = E6atnn} + 5 2{5(5n+hn+y) — S tha) 1

nz s+1

Note that €, 1h,+j) = €@nt+hn) = E(j) While €(5,145) < €(5,+n,) SO that

0-5 +S/O- - 7 Z {8 6n+hn n+7/ 28(]

n i=s+1
1 & 1S
. > {eGutha) = Eari } + ™ > )’

n i=s+1



Rearrange as

h h
n 1 n
345/ = = Z {EGuthn) = EGari ) — [h_ > {eGutha) — EGar I
n i=s+1 ™ i=s+1

1 S
o Zen -2 EnY
hn 1
- Z {eGnthn) — 8(5n+z’)}]{h— Zg(j)}

n i=s+1

The term in the second line satisfies

S

1 2 S 1 92 2 1 —2 1 — 2
" (j 26])} 1_h_)§ E(j)+(h ) [g 5(])—{5— g5}
"=l "= T =t "=t
Thus, we get

05 +S/U = A = Anl + An2 + An?) + 2An4a
which is (B.7), where

hn
A = Z {euti) = E@ntnn = [ D {e@utn) — E@urnn s

i=s+1 i=s+1
s ol e, 1 _
Apy = (h_n) [EZ%) {g ' EG ) )
j=1 7j=1
s s 1<
Aps = h_n(l - h—n)g -~ £0G)

hn s
= [h" Y {eninn — conri " D _E)}
j=1

1=s+1

This completes the proof of (B.7).
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