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Abstract

When applying the cointegrated autoregressive distributed lag model it is com-
mon to include indicator variables for outliers. This is often done in a somewhat
ad hoc way. Least Trimmed Squares estimation provides a more systematic ap-
proach. This estimator is robust to a large number of outliers of many types.
We analyze the estimator in a model that allows a range of contamination and
show that it has the same asymptotic properties as the infeasible Ordinary Least
Squares estimator applied to a model generated by the good errors.

1 Introduction

When applying a cointegrated Autoregressive Distributed Lag (ADL) regression, it is
common to include indicator variables for outlying errors. This is done out of a concern
that inference may be distorted if there are unmodelled outliers and an intuition that
standard inference may be valid when outliers are modelled. We investigate this intuition
through an asymptotic analysis of the Least Trimmed Squares (LTS) estimator.

A simple approach to outlier detection is to apply Ordinary Least Squares (OLS)
to the full sample, remove or dummy out observations with outlying residuals and rees-
timate the model by OLS. This approach has long been used in econometric analysis
of time series. Early examples include indicators and level shifts in the UK economic
models of Ball and Burns (1968), Ball et al. (1975). For instance, the latter includes a
consumption function with dummies relating to the 1968 introduction of purchase tax.
These dummies were later adopted by Davidson et al. (1978) in their consumption func-
tion analysis using an ADL model in equilibrium correction form. This simple approach
relies on consistency of the initial OLS estimator. As outliers can bias the initial OLS
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estimator, this procedure is not robust in general and it has to be used with care (Welsh
and Ronchetti, 2002).

The robustness concern has lead to various algorithms that search for outliers but do
not start from full sample OLS estimators. This includes the Forward Search (Atkinson
and Riani, 2000) with an implementation to structural time series in Riani (2004), and
Impulse Indicator Saturation (Hendry et al., 2008) which is aimed at ADL models and
implemented in OxMetrics (Doornik, 2009), as Gets in R (Pretis et al., 2018) and in
the Eviews software. Asymptotic analysis of these methods has focused on the situation
without outliers (Johansen and Nielsen, 2009, 2016a,b) and with little emphasis on coin-
tegration. In time series, it is common to distinguish between additive and innovative
outliers (Fox, 1972), both of which can be relevant in cointegrated models (H. B. Nielsen,
2004). Methods based on extreme value theory can detect a finite number of additive
outliers in a first order autoregression (Burridge and Taylor, 2006). Here, the aim is to
cover fairly general contamination including a diverging number of additive or innova-
tive outliers. In order to make progress with the theory, we consider the LTS estimator
as vehicle for analysis in models with contamination. LTS has not been used much
in time series econometrics, although some simulation evidence for a stationary vector
autoregression (VAR) is available (Croux and Joossens, 2008).

The least trimmed squares (LTS) estimator (Rousseeuw, 1984) is defined as follows.
The investigator specifies that there are h ‘good’ observations and T − h ‘outliers’ in a
sample of T observations. The set of good observations is estimated by the h-subsample
with the smallest residual sum of squares. OLS is then applied to the estimated set
of good observations. Recently, LTS has been found to be maximum likelihood in a
regression model where h good observations have normal errors and T − h outliers
have errors that are more extreme than the realized good observations (Berenguer-
Rico et al., 2023). Under regularity conditions, it can be shown that the estimator is
asymptotically bounded in probability with the oracle property that it has the same
asymptotic distribution as the OLS estimator applied infeasibly to the actual good
observations (Berenguer-Rico and Nielsen, 2024).

In this paper we check the LTS regularity conditions for an ADL regression for data
generated by a vector autoregression with cointegration. We recall that, two variables
are cointegrated if they have random walk trends, but a linear combination does not
(Granger, 1986; Engle and Granger, 1987).

The general LTS theory balances two types of regularity conditions for the regressors.
First, to show boundedness of the LTS estimator, it is assumed that the regressors are
not too concentrated. Second, to derive an asymptotic expansion of the LTS estimator,
it is assumed that the regressors are not too spread out. These LTS conditions have
not been fully analyzed in the context of cointegrated processes. We do so here using a
cointegrated ADL model. The proofs require a modification of the classic cointegration
representations (Engle and Granger, 1987; Johansen, 1988, 1995) to permit outliers and
in format that retains the autoregressive structure.

We find that if the proportion of outliers vanishes, but their number possibly diverges,
then the LTS estimator has the oracle property in a cointegrated ADL model. Due to the
autoregressive structure, the amount of outliers that the LTS estimator can cope with
in the cointegrated ADL case is lower than in cross-sectional models. Notwithstanding,
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the oracle property holds with a diverging number of outliers.
The practical consequence of the results is that the asymptotic theory known for OLS

estimation of ADL models without outliers transfers to LTS estimation of ADL models
with outliers. In particular, under weak exogeneity (Engle et al., 1983; Johansen, 1992),
the hypothesis of no cointegration can be tested using Dickey-Fuller type distributions
with a t-statistic (Banerjee et al., 1998) or a likelihood ratio statistic (Harbo et al.,
1998); tests on coefficients in the cointegrating vector have standard normal inference
(Phillips, 1988; Johansen, 1992); and tests for lag length (Nielsen, 2006).

In the analysis of LTS, the number of good observations, h, will be taken as given.
Estimation of h will be discussed in the empirical application and in the conclusion.

Outline: Section 2 describes the ADL equation and the LTS estimator. Section
3 presents a vector autoregression describing the system of variables along with the
Granger-Johansen representation. Section 4 describes the data generating process in-
cluding the outliers. Section 5 presents the asymptotic theory for LTS applied to coin-
tegrated ADLs. Section 6 has simulations illustrating the theory. Section 7 gives an
empirical illustration using consumption data. Section 8 concludes. An appendix has
the technical derivations.

2 Regression equation and estimation method

We describe the ADL equation and the LTS estimator.

2.1 Autoregressive distributed lag equation

We consider an ADL regression in equilibrium correction form for a scalar yt given a
(p− 1)-dimensional vector zt. Let xt = (yt, z

′
t)

′. The regression equation is

∆yt = ω′∆zt + α
(
yt−1 − κ′zt−1 − νc

)
+

k−1∑
j=1

γ′j∆xt−j + σεt for t = 1, . . . , T. (2.1)

The joint distribution of the contemporaneous regressor zt and the errors εt is described
in subsequent Sections. In vector notation, the ADL equation is equivalent to

∆yt = x′tβ + σεt for t = 1, . . . , T, (2.2)

where, yt is as before, the regressor vector is xt = (∆z′t, yt−1, z
′
t−1,∆x

′
t−1, . . . ,∆x

′
t−k+1, 1)

′

and the regression parameter is β = (ω′, α,−ακ′, γ′1, . . . , γ′k−1,−ανc)′.
We also consider a model with a linear trend, for which we have

∆yt = ω′∆zt + α
(
yt−1 − κ′zt−1 − νℓt

)
+

k−1∑
j=1

γ′j∆xt−j + µc + σεt, (2.3)

the regressor vector xt = (∆z′t, yt−1, z
′
t−1,∆x

′
t−1, . . . ,∆x

′
t−k+1, 1, t)

′ and the regression
parameter is β = (ω′, α,−ακ′, γ′1, . . . , γ′k−1, µc,−ανℓ)′.
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2.2 Least Trimmed Squares estimation

LTS estimation was suggested by Rousseeuw (1984). The esimator divides the data
in two groups. There is a given number of h good errors with indices in an unknown
h-subset ζ of 1, . . . , T . The indices in ζ need not be consecutive. The remaining T − h
indices in ζc are the outliers. The LTS estimator finds the h-subsample with the smallest
residual sum of squares (Rousseeuw and van Driessen, 2000). Thus, the LTS estimator
is defined as follows. Given a h-index set ζ, the OLS estimators are

β̂ζ =
(∑

t∈ζ

xtx
′
t

)−1∑
t∈ζ

xt∆yt and σ̂2
ζ = h−1

∑
t∈ζ

(
∆yt − x′tβ̂ζ

)2
, (2.4)

where
∑

t∈ζ xtx
′
t is assumed invertible for any choice of ζ. In passing, we note that this

follows from the assumptions below, see Appendix A. The LTS estimators are then

ζ̂ = arg min
ζ

σ̂2
ζ , β̂ = β̂ζ̂ , σ̂2 = σ̂2

ζ̂
. (2.5)

As the number of h-sets is finite, we need not be concerned about measurability issues.
LTS estimation requires evaluation of all h-subsets of the n observations. The com-

putational order is huge. This computational problem can be approximated by the fast
LTS algorithm (Rousseeuw and van Driessen, 2000, 2006).

3 The vector autoregression

For inference, we set up a joint vector autoregressive model for the variables. We find
the Granger-Johansen representation.

3.1 Definition of the model

The vector autoregression . The ADL equations involve a p-vector of observations
xt = (yt, z

′
t)

′. We describe the distribution of xt by an unobserved components formu-
lation with either a constant level or a linear trend as in (2.1) or (2.3). Thus, let

xt = x
∗
t + τc or xt = x

∗
t + τc + τℓt, (3.1)

where the vector x∗
t satisfies a vector autoregression (VAR)

∆x∗
t = αβ

′x∗
t−1 +

k−1∑
j=1

Γj∆x
∗
t−j +Aεt for t = 1, . . . , T. (3.2)

We describe the distribution of the errors in Section 5. The Granger-Johansen represen-
tation manipulates the equation 3.2, but does not rely on the distribution of the errors.
That distribution will involve outliers. Despite the outliers, we apply the vocubulary of
Johansen (1995) and refer to e.g. β′x∗

t−1 as the cointegrating relation. The parameters
satisfy α,β ∈ Rp×r and Γj,Ω ∈ Rp×p, such that Ω is positive definite and

Ω = AA′ =

(
Ωyy Ωyz

Ωzy Ωzz

)
.
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Relation between ADL and VAR parameters and errors . When linking the
ADL to the VAR we rely on partial system analysis (Johansen, 1992) and the notion of
weak exogeneity (Engle et al., 1983). For this purpose, we assume a unit cointegrating
rank, a unit coefficient for the first element of the cointegrating vector and a weak
exogeneity assumption restricting the adjustment to the cointegrating vector, that is

r = 1, β′ =
(
1 , −κ′

)
, α =

(
α
0

)
. (3.3)

For the derivation of the ADL equation, define the population regression coefficient

ω′ = ΩyzΩ
−1
zz .

The ADL equation is obtained by pre-multiplying xt by (1,−ω), exploiting the equations
(3.1), (3.2) and solving for ∆yt. This leads to the ADL equations (2.1), (2.3) with

γj =
(
1,−ω

)
Γj, σ2 =

(
1 , −ω′)Ω(

1
−ω

)
= Ωyy − ΩyzΩ

−1
zz Ωzy.

The ADL errors are defined through

σεt =
(
1 , −ω′)Aεt. (3.4)

For the deterministic quantities, we define Ψ = Ip −
∑k−1

j=1 Γj and get either

νc = β
′τc or νℓ = β

′τℓ, µc = (1,−ω′)Ψτℓ − αβ′τc.

The implied triangular system . The VAR equation (3.2) also implies an equa-
tion for the regressor zt. Consider the case with a constant level, so that ∆xt = ∆x∗

t .
Pre-multiplying equation (3.2) by (0, Ip−1) and using the restriction to α in (3.3) shows
that ∆zt = (0, Ip−1)∆xt satisfies

∆zt =
k−1∑
j=1

(
0 , Ip−1

)
Γj∆xt−j +

(
0 , Ip−1

)
Aεt. (3.5)

Taken together with the ADL equation (2.1), we get a triangular system where zt feeds
into the ADL equation for yt given zt. When εt is normal, we find that the errors in the
ADL equation (2.1), (3.4) are independent of those in the equation (3.2) for zt.

The situation where there is an outlier in the equation (3.2) for zt at a particular t,
but not in the ADL equation (3.4) is of special interest. The ADL equation may then
have a structural interpretation. This relates to the ideas of super-exogeneity (Engle
et al., 1983; Hendry and Santos, 2010) and causal transmission (Bazinas and Nielsen,
2022). We will allow for this situation.

3.2 A new Granger-Johansen representation

We need a Granger-Johansen representation for each of the ‘good’ episodes. We extend
the Johansen (1995, Theorem 4.2) representation to assess the exact autoregressive
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structures of the common trends and for the stationary components and how these
depend on the initial observations. This generalizes univariate ideas in Nielsen (2001).

Recall the unobserved components formulation xt = x∗
t + τc from (3.1), where the

dynamic part x∗
t satisfies the VAR in (3.2). Define the companion vectors

y∗
t−1 =


β′x∗

t−1

∆x∗
t−1
...

∆x∗
t−k+1

 , ỹ∗
t−1 =

(
∆x∗

t

y∗
t−1

)
, y∗

t−1 =

(
∆z∗t
y∗
t−1

)
=

(
0, Idimy

)
ỹ∗
t−1, (3.6)

where dimy∗
t = dim ỹ∗

t − 1 = r + kp− 1. The model equation (3.2) implies

y∗
t = Y y∗

t−1 + ey∗Aεt, (3.7)

where

Y =


Ir + β

′α β′Γ1 · · · β′Γk−2 β′Γk−1

α Γ1 · · · Γk−2 Γk−1

0 Ip 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 Ip 0

 , ey∗ =


β′

Ip
0
...
0

 .

We assume that Y has eigenvalues with absolute values less than unity. This implies
that (3.7) has a stationary solution when the errors are independent normal.

Assumption 3.1. Stationarity. |eigen (Y )| < 1.

The stationary condition implies, in particular, that the eigenvalues of Y differ from
unity. This, in turn, is equivalent to the socalled I(1) condition by (Johansen, 1995,
Theorem 4.2), see Nielsen (2009) for a proof. To express the I(1) condition, suppose
α,β ∈ Rp×r have orthogonal complements α⊥,β⊥ ∈ Rp×p−r such that, for instance,
(β,β⊥) is invertible and β′β⊥ = 0. Let Ψ = Ip −

∑k−1
j=1 Γj. The I(1) condition is that

α′
⊥Ψβ⊥ is invertible.
Further, define the common trend impact matrix and a parameter that will be used

to describe how the I(1) part of the process x∗
t depends on the I(0) components:

C = β⊥(α
′
⊥Ψβ⊥)

−1α′
⊥, ψ′ = −β′

⊥C
(
Ψβ,Γ1, . . . ,

k−1∑
j=1

Γj

)
. (3.8)

The extended series ỹt satisfies a VAR with moving average errors (VARMA):

ỹ∗
t = Ỹ ỹ∗

t−1 + ε̃
∗
t , (3.9)

with

Ỹ =

(
0 ω′

0 Y

)
, ε̃∗t =

(
Aεt

ey∗Aεt−1

)
(3.10)

and where ω is defined by writing the homogeneous model equation (3.2) as ∆x∗
t =

ω′y∗
t−1 +Aεt. When Y has absolute eigenvalues less than unity, so does Ỹ .
We have the following Granger-Johansen representation.
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Theorem 3.1. Granger-Johansen representation. Consider the model equation
(3.2) for t < t and suppose Assumption 3.1.
(a) I(1) component. Define C,ν as in (3.8). Then

β′
⊥x

∗
t = β

′
⊥CA

t∑
s=t+1

εs +ψ
′y∗

t + β
′
⊥x

∗
t −ψ′y∗

t for t < t. (3.11)

(b) I(0) component. Suppose εt are independent Np(0, Ip) for t < t ≤ t ≤ ∞. Then
(i) y∗

t and ỹ∗
t can be given stationary initial distributions.

(ii) mint+k<t≤t min eigenVar(ỹ∗
t | ỹ∗

s , t− k < s ≤ t− k) > 0.

Theorem 3.1 extends the representation of Johansen (1995, Theorem 4.2). The
identity for the I(1) component uses no distributional assumptions to the VAR errors εt.
The explicit expressions for the I(0) parts and for the initial observations are consistent
with Johansen’s implicitely defined expressions.

4 The data generating process

In this section, we describe the assumptions on the ADL errors, the regressors which
are generated by a VAR, and the permitted sequences of data generating processes.

We allow for outliers in both the ADL and the VAR. It will be possible that ADL
errors are good while VAR errors are outlying, corresponding to super exogeneity or
causal transmission.

4.1 The ADL errors

Set of good ADL errors . Let ζT be a h set of indices for good observations. Suppose
h/T → λ where 1/2 < λ ≤ 1.

The good ADL errors are assumed independent standard normal

εt
D
= IIN(0, 1) for t ∈ ζT . (4.1)

The outlier ADL errors must be extreme relative to the standard normal ADL
good errors. Extreme value theory shows that maxt∈ζ εt/

√
2 log h → 1 almost surely

(DasGupta, 2008, Example 8.13). We assume

|εt| ≥
√
2 log h for t ̸∈ ζT . (4.2)

Further, we require independence of

εt and ∆zt−s,xt−s−1 for t ∈ ζT and s ∈ N0, (4.3)

to get a martingale difference structure for the good observations. In Section 4.2, we
constrain the magnitude of the outlying VAR errors, which indirectly constrains the
ADL errors. There will be no other assumptions to the outlying ADL errors in terms
of marginal distribution, dependence structure and relation with the past, current and
future observations. The assumptions permit additive and innovative outliers in the
sense of Fox (1972).
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4.2 The VAR generating the ADL regressors

The assumptions to the ADL errors indirectly give a one-dimensional linear constraint
to the p-dimensional VAR errors through (3.4). Next, we introduce conditions to the
good and outlying VAR errors. The parameters α, β, Γ1, . . . , Γk−1, A, and either τc
or µc, τℓ do not depend on T .

Set of good VAR errors. Let ζV AR,T be a hV AR set of indices of good VAR
errors, so that ζV AR,T ⊂ ζT and hV AR ≤ h ≤ T . If hV AR < h super exogeneity or causal
transmission may be present. The set ζV AR,T is further divided into G episodes of length
hg = tg − tg. We require that hg is non-decreasing in T while G does not depend on
T . This condition limits the complexity of the proof, but could potentially be relaxed.
Simulations reported in the supplement indicate that this could be the case.

The good and outlying VAR periods are interspersed such that the good episode g
starts at tg + 1 and ends at tg, the next outlier episode runs from tg + 1 to tg+1, and
timings satisfy

0 = t0 ≤ t1 < t1 < · · · < tg < tg < · · · < tG < tG ≤ tG+1 = T for g = 1, . . . , G. (4.4)

The good VAR errors are assumed independent normal:

εt
D
= IINp(0, Ip) for t ∈ ζV AR,T .

We note that this implies (4.1), through (3.4), as well as

max
t∈ζV AR,T

|εt|2/
(
2 log hV AR

) a.s.
= 1. (4.5)

4.3 Conditions for boundedness

The outlier errors must be of polynomial order

max
t̸∈ζV AR,T

|εt|2 = OP(T
c) for some c <∞. (4.6)

Due to the bound (4.5) to the good, normal errors, all errors satisfy

max
t≤T

|εt|2 = OP(T
c). (4.7)

The initial observations |x−ℓ|2 for 0 ≤ ℓ < k must satisfy the same bound.
Further, the number of good observations is bounded from below as

hV AR > 2T/3. (4.8)

This assumption will be sufficient to prove boundedness of the LTS estimator β̂ for the
ADL regression that selects h observations, where h ≥ hV AR. It shows that the LTS
estimator remains bounded if up to 1/3 of the observations are outliers. This contrasts
with i.i.d. models with continuous regressors where up to 1/2 of the observations can be
outliers. The issue is that LTS looses its robustness if too many regressors are outlying
as noted by Rousseeuw (1994). In autoregressions, past outlier errors propagate into
the regressors, see Remark B.1 in the Appendix for an example.
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4.4 Conditions for consistent selection and expansions

We must strengthen the assumptions, so that the regressors are of the same logarithmic
order as the good errors. Since the outlier errors propagate autoregressively into the
regressors, we now require

max
t̸∈ζV AR,T

|εt|2 = OP(2 log h). (4.9)

Thus, in light of (4.5) all errors satisfy

max
t≤T

|εt|2 = OP(2 log h). (4.10)

The initial observations |x−ℓ|2 for 0 ≤ ℓ < k are assumed OP(log T ).
We will also need to bound the intermediate quantiles of the regressors such that

regressors do not concentrate too much. Let the vector of ỹ∗
t and β′

⊥x
∗
t/
√
T have

increasing order statistics q1 ≤ · · · ≤ qT satisfying

∀0 < δ < 1, ∃0 < r < 1 : qT−⌊T r⌋/qT ≤ δ
{
1 + oP(1)

}
. (4.11)

The maximum of a normal I(1) series is of the same order as the series itself, whereas
the maximum of a stationary, normal VAR diverges, but satisfies the condition (4.11)
(Watts et al., 1982). Therefore, the condition pertains to the behaviour of the process
during outliers episodes.

Finally, we strengthen the lower bound to the number of good observations to

hV AR = T − o
(√

T/ log T
)
. (4.12)

At first glance, the assumptions (4.9)–(4.12) may appear restrictive, yet they do
cover many situations seen in practice. The bound (4.9) allows outlier errors that are a
multiple of the largest good errors. The condition (4.12) permits infinitely many outliers
as long as the proportion of outliers shrinks at the indicated rate. The simulation study
indicates that this may not be too restrictive in finite samples. The condition (4.12)
does however rule out unmodelled level shifts interpreted as a proportion of outliers.

5 Asymptotic results for LTS applied to an ADL

We now consider the asymptotic theory for LTS applied to an ADL. This rests on
the general LTS theory from Berenguer-Rico and Nielsen (2024), which is summarized
in Appendix A. First, we provide a boundedness result. Second, we study consistent
selection and asymptotic expansions. Third, we discuss asymptotic distributions for
some inferential procedures of interest.

5.1 Boundedness

We now show boundedness of the LTS estimator β̂ for the ADL equation (2.2). As the
LTS estimator may not be unique, we let MT denote the set of minimizers ζ of σ̂2

ζ .
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Theorem 5.1. Boundedness. Consider the setup in Sections 4.1, 4.2, 4.3. Then, the
LTS estimator β̂ for the ADL model (2.2) is bounded: maxζ∈MT

|β̂ζ − β̂ζT | = OP(1).

With Theorem 5.1 we avoid compactness assumptions for the parameter space. The
asymptotic boundedness requires that the proportion of outliers is less than 1/3, see
(4.8). This is an asymptotic parallel to the finite sample breakdown point introduced by
Donoho and Huber (1983) and analyzed for LTS by Rousseeuw and Leroy (1987, §3.4).
For further discussion in the context of M-estimators, see Klooster and Nielsen (2025).

5.2 Consistent selection and expansions

We give further asymptotic properties for the LTS estimators ζ̂, β̂, σ̂.

Theorem 5.2. Consistent selection and expansions. Consider the setup in Sec-
tions 4.1, 4.2, 4.3 4.4. Let ξT = ζT or ξT = ζV AR,T . Then, the LTS estimators ζ̂, β̂, σ̂
for the ADL model (2.2) satisfy:
(a) Consistent selection by ζ̂. ∀0 < η < 1: maxζ∈MT

#(ζ ∩ ξcT )/h = OP(h
η−1).

(b) Expansion for σ̂2. maxζ∈MT
h1/2|σ̂2

ζ − σ̂2
ξT
| = oP(1).

(c) Expansion for β̂. Then

max
ζ∈MT

∣∣∣(∑
i∈ζ

xtx
′
t

)1/2(
β̂ζ − β

)
−
(∑

i∈ξT

xtx
′
t

)1/2(
β̂ξT − β

)∣∣∣ = oP(1).

The square root matrices are defined through joint diagonalization, see Remark B.2
in the Appendix.

Theorem 5.2 gives the oracle property that the LTS estimators β̂, σ̂ have the same
asymptotic expansions as the infeasible OLS estimators on the actual set ζT of good
errors. For an asymptotic distribution theory, we will need to clarify how the propagation
of past outlier errors into the regressors matters. This is addressed below.

We note that the polynomial order of the outlier errors required in (4.6) for the
boundedness result is here replaced with the logarithmic order in (4.9). This may not
be necessary if the number of outliers is restricted further. A case with cointegration
and a single outlier of order

√
T is discussed by Doornik et al. (1998).

5.3 Asymptotic distributions

Theorem 5.2 shows that the LTS estimators β̂, σ̂ have the same asymptotic distribution
as the OLS estimators applied infeasibly to the actual set of good observations. However,
as the outliers propagate into the good observations, removing the outliers does not
remove their effect fully. Nonetheless, asymptotic inference for the LTS estimators can
be applied as if the outliers were completely absent from the data generating process.

The argument for the inferential results is as follows. Lemma B.7 shows that the
propagation effect of outliers is asymptotically negligible. In turn, Lemma B.8 shows
that limit distributions can be expressed in terms of normal distributions for the I(0)
parts and Dickey Fuller type distributions for the I(1) parts matching those from stan-
dard models where outliers are absent.
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To illustrate the different inferences one may want to draw from ADL analysis, we
restate the constant level model (2.1).

∆yt = ω′∆zt + α(yt−1 − κ′zt−1 − νc) +
k−1∑
j=1

γ′j∆xt−j + σεt for t = 1, . . . , T. (2.1)

The inference results include:

1. The hypothesis of no cointegration, α = 0, can be tested using Dickey-Fuller type
distributions with a t-statistic as in Banerjee et al. (1998) or a LR-statistic as in
Harbo et al. (1998) on the good observations selected by LTS.

2. Hypotheses on the cointegration parameter κ can be tested using standard normal
inference as in Johansen (1992) on the good observations selected by LTS.

It should be noted that those results require weak exogeneity. An autoregression arises
when removing zt. This gives the model equation

∆yt = α(yt−1 − νc) +
k−1∑
j=1

γ′j∆yt−j + σεt for t = 1, . . . , T. (5.1)

The unit root hypothesis α = 0 can be investigated by

3. The augmented Dickey-Fuller t or F test, see Dickey and Fuller (1979, 1981) on
the good observations selected by LTS.

Further, one can test

4. A restriction on lag length, such as γk−1 = 0 in either (2.1) or (5.1) can be
tested using normal inference, see Nielsen (2006) for a derivation, on the good
observations selected by LTS.

5.4 Remarks on stationary regressions

The above asymptotic theory extends to regressions with stationary regressors. Suppose,
we apply the LTS estimator to the regression

yt = β′xt + σεt, (5.2)

where xt may include a constant and/or a linear trend, while its remaining components
are generated by a stationary VAR. The theory developed in Appendix B applies in this
situation. The proofs do not require a particular cointegration rank and we can simply
ignore parts pertaining to the I(1) components. In more detail, the theory can be applied
as follows. First, the Granger-Johansen representation in Theorem 3.1 applies with an
empty I(1) component. Second, the boundedness result in Theorem 5.1 applies. For this,
it is required in (4.8) that the number of good observations satisfies h ≥ hV AR > 2T/3.
Third, the asymptotic expansion in Theorem 5.2 applies with the additional condition
(4.12) that the proportion of outliers vanishes.
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6 Simulations

Assumption (4.12) requires that the number of outliers grows to infinity at a modest
rate. We use simulations to investigate how binding this assumption is in finite samples.
We find that for some simulation designs more outliers can be tolerated, whereas for
other simulation designs it appears to be binding. Here, we focus on the t-test for the
cointegrating coefficient. Tests on other parameters and variations of the simulation
design are reported in the supplementary material. The code was written in Matlab
with LTS estimation done using the mlts.m code (Agullo et al., 2008)

We consider the data generating process

∆yt = ω∆zt + α(yt−1 − κzt−1 − ν) + σεεt, (6.1)

∆zt = σηηt, (6.2)

where ε1, . . . , εT , η1, . . . , ηT are independent. We set ω = 0.5, κ = 1, ν = 1, σε = ση = 1,
z0 = 0 and y0 = νc. The adjustment coefficient is either α = −1 or α = −0.2.

We study the performance of two-sided, 5% level t-tests for the cointegration coeffi-
cient κ when computed using OLS and LTS. For this, let ψ = −ακ and µ = −αν and
rewrite model (6.1) as

∆yt = ω∆zt + αyt−1 + ψzt−1 + µ+ σεεt. (6.3)

We estimate θ = (ω, α, ψ, µ) by regressing ∆yt on xt = (∆zt, yt−1, zt−1, 1) giving θ̂s =
(ω̂s, α̂s, ψ̂s, µ̂s)

′ for s ∈ {OLS,LTS}. The estimates s2s for σ2
ε are degrees of freedom

corrected. We test the hypothesis H0 : κ = 1 indirectly using tκ,s = (κ̂s − 1)/s.e.(κ̂s)

where the standard errors s.e.(κ̂s) = s.e.(ψ̂s/α̂s) vary with s and are obtained using
the δ-method. To that end, let D = ∂κ/∂θ be the 4-vector of partial derivatives of
κ = −ψ/α with respect to θ = (ω, α, ψ, µ). Define D̂s as the vectors D evaluated
at the estimator s. Let MOLS =

∑n
i=1 xtx

′
t and MLTS =

∑
i∈ζ̂ xtx

′
t. Then, we get

s.e.(κ̂s) = (s2sD̂
′
sM

−1
s D̂s)

1/2.
We vary the sample size and the magnitude of the outliers as follows. Let ζT indicate

the good observations while ζcT indicates the outliers. For t ∈ ζT , let ηt, εt ∼ i.i.d.N(0, 1).
For s ̸∈ ζT , let ηs =

√
2 log h + ξηs while εs =

√
2 log h + ξεs + 10 where ξηs and ξεs are

i.i.d. standard uniform.
The number of outliers, T − h, varies as

√
T/2,

√
T and 2

√
T . This is more than

o(
√
T/ log T ) in (4.12), so that we can explore the boundaries for validity of standard

inference. For the same reason, we investigate both small and rather large samples. The
number of repetitions is 104 giving a Monte Carlo standard deviation of 0.002.

Figure 1 shows examples of data generating processes with T = 100 observations.
Variables y, z are shown in rows 1 and 3, while y − z are shown in rows 2 and 4. The
adjustment parameter α is −1 in the upper two rows and −0.2 in the lower two rows.
Outliers are generated the same way in each column. Column 1 has

√
T/2 = 5 outliers

in 5 episodes, such that observations 20, 40, 60, 80, 100 are outliers. Column 2 has
2
√
T = 20 outliers in 5 episodes, such that observations 17-20, 37-40, 57-60, 77-80,

97-100 are outliers. Column 3 has
√
T/2 = 5 outliers in a central episode, such that

observations 49-53 are outliers. Column 4 has 2
√
T = 20 outliers in a central episode,

such that observations 41-60 are outliers.
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Figure 1: Examples of data generating processes.

Table 1: Outliers distributed in 5 episodes.

T − h
√
T/2

√
T 2

√
T

√
T/2

√
T 2

√
T

method T α = −1 α = −0.2
OLS 25 0.056 0.047 0.488 0.312

100 0.023 0.011 0.009 0.088 0.050 0.030
400 0.002 0.000 0.000 0.004 0.000 0.000
1600 0.005 0.000 0.000 0.001 0.000 0.000
6400 0.055 0.039 0.010 0.002 0.000 0.000

LTS 25 0.070 0.347 0.108 0.365
100 0.059 0.058 0.045 0.067 0.063 0.056
400 0.051 0.052 0.055 0.054 0.053 0.054
1600 0.053 0.049 0.051 0.055 0.049 0.052
6400 0.047 0.049 0.049 0.048 0.049 0.049

In Table 1, the T −h outliers occur in G = 5 episodes and in both εt and ηt. In each
episode there are ⌊(T − h)/G⌋ outliers. Outlier episodes are equally spaced by ⌊h/G⌋
good observations. Specifically, the system starts with ⌊h/G⌋ good observations, after
which there is an episode with ⌊(T − h)/G⌋ outliers. This is followed by another ⌊h/G⌋
good observations, after which another episode with ⌊(T − h)/G⌋ outliers follows. This
repeats for G = 5 episodes in the sample. We find that OLS inference is misleading.
LTS performs quite well except for T = 25 with 2

√
T = 10 > T/3 outliers, so that the

boundedness condition (4.8) fails.
In Table 2, the outliers are located in the middle of the sample so that

ζch = {⌈h/2⌉+ 1, ⌈h/2⌉+ 2, . . . , ⌈h/2⌉+ (T − h)},
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Table 2: Outliers in one central episode

T − h
√
T/2

√
T 2

√
T

√
T/2

√
T 2

√
T

method T α = −1 α = −0.2
OLS 25 0.034 0.034 0.055 0.052 0.015 0.005

100 0.013 0.005 0.006 0.013 0.060 0.313
400 0.003 0.000 0.000 0.013 0.028 0.113
1600 0.006 0.000 0.000 0.000 0.003 0.378
6400 0.027 0.001 0.000 0.000 0.004 0.049

LTS 25 0.071 0.076 0.362 0.089 0.082 0.665
100 0.057 0.053 0.076 0.063 0.057 0.364
400 0.056 0.054 0.055 0.058 0.057 0.132
1600 0.049 0.053 0.049 0.052 0.050 0.029
6400 0.045 0.052 0.051 0.047 0.000 0.047

where ⌈·⌉ denotes the ceiling function. For zt, the cumulated effect of these outliers is a
level shift of magnitude (T − h)

√
2 log h.

Again, OLS performs poorly. LTS is not quite as good as before. The performance is
good with less persistence, α = −1, apart from when T − h = 2

√
T with T = 25. With

more persistence, α = −0.2, LTS works well for T − h =
√
T/2 and for small values of√

T but breaks down otherwise.
Overall, the simulations support the validity of the asymptotic theory when the

number of outliers is o(
√
T/ log T ) as required in (4.12). The conclusions from the

asymptotic theory also appear to be valid when the number of outliers is
√
T/2, but

not necessarily with a larger number of outliers and in particular not if the outliers are
very concentrated.

7 Empirical Illustration

We illustrate the theory through a consumption function analysis. For simplicity we only
consider consumption and income, although it has been argued that changing housing
collateral and credit constraints should be taken into account (Aron et al., 2012). We
use the R (R Core Team, 2024) package robustbase for LTS estimation and PcGive
(Doornik and Hendry, 2022) for other calculations.

Figure 2 shows annual series of individual consumption (Ct) and income (Yt) for the
United Kingdom.1 Panel (a) shows Yt and Ct in levels. Panel (b) shows the series in
logs (yt and ct). The trending, non-stationary behavour of the series is evident with
large drops in consumption in the 2009 financial crisis and in the 2020 pandemic. Panel
(c) shows the growth rates, which could be I(0). Panel (d) shows the log consumption
ratio log(Ct/Yt) = ct − yt. This is a candidate cointegrating relation.

1Household data released from www.ons.gov.uk in quarterly accounts for Q3 2024, 2nd release in
December 2024. ONS codes CRXX: Real disposable Income per head, current prices. CRYJ: Final
consumption expenditure per head, current prices.
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Figure 2: UK individual income and consumption expenditure.

Full sample OLS estimation. We start by fitting a full sample ADL model with
two lags and linear trend using OLS. This gives

∆ĉt
(s.e.)

= −0.402
(0.113)

ct−1 + 0.460
(0.142)

yt−1 − 0.00014
(0.00130)

t (7.1)

− 0.492
(0.510)

+ 0.796
(0.158)

∆yt + 0.223
(0.132)

∆ct−1 − 0.179
(0.182)

∆yt−1,

σ̂ = 0.0241, ℓ̂ = 158.021, T = 67,

Far1−2(2, 58) = 2.46 [p = 0.09], χ2
normal(2) = 39.7 [p = 0.00],

Farch1(1, 65) = 0.22 [p = 0.64], Fhetero(12, 54) = 1.15 [p = 0.34].

The OLS estimates are somewhat surprising. The consumption to income ratio is
0.460/0.402 = 1.14. This is quite a bit larger than unity, perhaps driven by the data
during the pandemic. Compensating for this, the slope coefficient is negative. As usual,
it is a good idea to check the validity of the model before drawing any inferences.

We check for mis-specification tests using standard output from PcGive. The test
statistics are Far1−2 for residual second order autocorrelation (Godfrey, 1978), Farch1

for first order autocorrelated conditional heteroskedasticity (Engle, 1982), χ2
normal for

non-normality using the Doornik and Hansen (2008) version of the cumulant based test
developed in 1880 by Thiele, and Fhetero for heteroskedasticity (White, 1980). These
papers do not cover the cointegration setting. Cointegration is considered by Nielsen
(2006) for Far1−2 and Kilian and Demiroglu (2000) for χ2

normal. The normality test
statistic is very extreme, but the other statistics do not reject the model.

Figure 3 gives mis-specification graphics from PcGive. Data and fit are shown in
panel (a), scaled residuals in (b), correlograms for residuals in (c), QQ-plot of the
quantiles of the residuals versus the quantiles of the fitted normal distribution in (d),
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Figure 3: Mis-specification graphics for model estimated by OLS.

three versions of the Chow (1960) test in (e,f,g) and recursive residual sum of squares
(RSS) in (h). The error bands are pointwise with level of 5% for (d) and 1% for (e,f,g,h).
Theory for the cointegration setting is available for the QQ plot (Engler and Nielsen,
2009), the 1-step Chow test (Nielsen and Whitby, 2015) and for the RSS plot (Nielsen
and Sohkanen, 2011). We see evidence of big outliers around the pandemic and all
recursive tests reject the model strongly.

LTS estimation. We now fit an ADL model using LTS. We set the number of
outliers to be T − h = 4 and provide evidence in favour of this choice below. LTS finds
outliers for 2009, 2020, 2021, 2023 matching the financial crisis and the pandemic. The
sample covers many years with many crises. These include the two oilcrises in 1973-74
and 1979 and the 1991 recession. These crises appear to be small relative to the 2009
financial crisis and the pandemic and are not selected by LTS.

The model is now estimated by full sample OLS using 4 impulse indicators, that is,

∆ĉt
(s.e.)

= −0.198
(0.063)

ct−1 + 0.178
(0.078)

yt−1 + 0.00054
(0.00079)

t (7.2)

+ 0.177
(0.291)

+ 0.577
(0.086)

∆yt + 0.491
(0.107)

∆ct−1 − 0.317
(0.112)

∆yt−1

− 0.043
(0.014)

I2009 − 0.148
(0.014)

I2020 + 0.089
(0.022)

I2021 − 0.063
(0.016)

I2023,

σ̂ = 0.0127, ℓ̂ = 203.342, T = 67,

Far1−2(2, 54) = 0.40 [p = 0.67], χ2
normal(2) = 0.72 [p = 0.70],

Farch1(1, 65) = 0.00 [p = 0.96], Fhetero(12, 50) = 2.03 [p = 0.04].

We apply the same mis-specification tests as before. The previously mentioned
papers do not cover the outlier detection. The lag length test is discussed in §5.3.
Outlier selection is considered by Berenguer-Rico and Nielsen (2023) for χ2

normal and
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Berenguer-Rico and Wilms (2021) for Fhetero. The theory suggests that it is plausible
that all tests are valid with LTS estimation using the assumptions in §4. None of the
mis-specification test reject the model.

Figure 4 gives mis-specification graphics, which support the model.
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Figure 4: Mis-specification graphics for model estimated by LTS.

The theory presented in Section 5.3 shows that the t-statistics formed by dividing
coefficients in (7.2) by their standard errors have the same asymptotic distributions as
in models without outliers and outlier selection.

The hypothesis of no cointegration is tested by the coefficient on ct−1 giving t-statistic
−0.198/0.063 = −3.14. This is close to the 10% critical value of −3.39 (Banerjee et al.,
1998) thus rejecting the hypothesis of no cointegration. Alternatively, a likelihood ratio
test could be used (Harbo et al., 1998).

The equilibrium correction form of the model is

∆ĉt
(s.e.)

= −0.198
(0.063)

{
ct−1 − 0.897

(0.180)
yt−1 − 0.0027

(0.0042)
t
}
+ · · · . (7.3)

The t-statistic for homogeneity in the consumption function is (1−0.897)/0.180 = 0.57,
which is not significant when comparing with a standard normal distribution.

Testing weak exogeneity. The above inferences assume weak exogeneity of the
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income variable. Thus, we consider the following model for income:

∆ŷt
(s.e.)

= 0.259
(0.089)

(ct−1 − yt−1)− 0.00028
(0.00014)

t+ 0.030
(0.007)

+ 0.073
(0.160)

∆yt−1 + 0.177
(0.160)

∆ct−1

− 0.004
(0.021)

I2009 − 0.012
(0.020)

I2020 + 0.062
(0.033)

I2021 − 0.004
(0.024)

I2023,

σ̂ = 0.0196, ℓ̂ = 173.097, T = 67,

Far1−2(2, 56) = 0.65 [0.52], χ2
normal(2) = 4.13 [0.25],

Farch1(1, 65) = 1.37 [0.25], Fhetero(8, 54) = 1.29 [0.28].

Here, estimation is by OLS as the indicator dummies are taken as given and are
not necessarily significant. The t-statistic for the cointegrating relation ct−1 − yt−1

is 0.259/0.089 = 2.92 which is large relative to a normal distribution. This is evidence
against weak exogeneity and gives some doubt about the validity of the inferences in
the single equation ADL. Thus, a system VAR analysis may be better. This is not
unexpected given the usual difficulties in modelling consumption functions.

Estimating the number of good observations. Next, we consider two formal
methods for estimating h, which give support to the chosen h = 4 above. It should
be pointed out, though, that both methods have incomplete theory and it has not
been established yet whether the LTS estimator based on the estimated h has oracle
properties. Nonetheless, both methods guided the choice of 4 outliers above.

The first method follows Berenguer-Rico et al. (2023), who suggest to estimate the
model by LTS for different values of h, compute the normality test statistic and then
minimize over h. For boundedness, we can have no more than T/3 outliers, see (4.8),
so that we should search over h ≥ 2T/3 = 2 ∗ 67/3 ≈ 45. For inference, the theory
requires that there are no more than

√
T/ log T outliers, see (4.12), while the simulation

study shows good performance with as many as
√
T/2 outliers. Hence, we search over

h ≥ T −
√
T/2 = 67−

√
67/2 ≈ 63.

Table 3 reports normality test statistics for a wide range of values of h. Searching
over h ≥ 63 delivers a minimizer of 2.9 at h = 63 corresponding to 4 outliers, which
supports the above analysis. Due to different implementations this local minimum value
is different from the value in (7.2). Starting at h = 45 gives a minimizer of 0.6 at h = 59.
The local minimum at h = 59 could perhaps be understood in the context of the scaled
residuals and the QQ plot shown in Figure 4(b,d), where we see a slight left-skewness
in the larger residuals. A global minimum of 0.1 is obtained at h = 41 but this value is
outside the boundedness region for LTS. Thus, to achieve reliable inference, we search
over h ≥ T −

√
T/2 ≈ 63, which delivers the 4 outliers considered in the above analysis.

The second method uses Impulse Indicator Saturation in PcGive (Doornik, 2009).
The non-indicator variables in (7.2) were not selected over. Choosing a user defined
gauge (0.5%) gave four outliers 2009, 2020, 2021, 2023 matching the LTS estimation
with 4 outliers. To appreciate the sentitivity on the choice of gauge, we also used some
of the default values: a tiny gauge (0.1%) gave three outliers in 2020, 2021, 2023 while
a small gauge (1%) gave six outlier in 2009, 2010, 2016, 2020, 2021, 2023, where 2016 is
the year of the Brexit referendum.

18



h 40 41 42 43 44 45 46 47 48 49
χ2

normal,h 169.5 0.1 6.0 67.7 55.8 14.0 8.9 54.3 7.7 0.9

h 50 51 52 53 54 55 56 57 58 59
χ2

normal,h 15.4 15.4 23.6 4.8 787.5 8.8 292.3 5.1 1.8 0.6

h 60 61 62 63 64 65 66 67
χ2

normal,h 117.0 21.1 20.0 3.0 8.8 20.5 12.6 116.6

Table 3: Normality test statistics for different values of h

8 Discussion

We have derived conditions for oracle properties of LTS inference in a cointegrated
autoregressive distributed lag (ADL) model. The key assumptions are that outlier errors
are more extreme than good errors and that the proportion of outliers, (T − h)/h, is
asymptotically vanishing. With these assumptions the LTS estimator has the same
asymptotic properties as an OLS estimator applied to a model generated from the good
errors with absence of any outliers.

The analysis assumes that the number of good observations h is known. In practice,
one would want to estimate this number. A number of algorithms are available for
this purpose: the index plot method (Rousseeuw and Leroy, 1987), a method based
on the normal cumulants (Berenguer-Rico et al., 2023) and a bootstrap method (Heng
and Lange, 2025). Related algorithms include the Forward Search (Atkinson and Riani,
2000) and the Impulse Indicator Saturation implemented as Autometrics in PcGive
(Doornik, 2009), as Gets in R (Pretis et al., 2018) and in the Eviews software. Some
asymptotic theory is available for data generating processes with normal errors and
no outliers (Hendry et al., 2008; Johansen and Nielsen, 2009, 2016a,b). It would be
desirable to develop a theory for selection of h in the presence of outliers.

ADL inference rests on weak exogeneity. This can be a questionable assumption in
practice as seen in the empirical illustration. The standard advice is then to use the VAR
methods developed by Johansen (1988, 1995). We would then need a systems version of
Least Trimmed Squares. One approach is to use the Minimum Covariance Determinant
approach (Rousseeuw, 1985). Extensions are available to a VAR (Croux and Joossens,
2008) and to a VAR with different outliers in different equations (Raymaekers and
Rousseeuw, 2024). Theory for these methods would be desirable.

A General asymptotic theory for LTS

Consider scalar observations yt and normalized regressors vectors xtT satisfying

yt = x′tTβ + σεt for t = 1, . . . , T. (A.1)

The β appearing here and the resulting LTS estimator β̂ are normalized versions of those
appearing in model equation (2.2) and in Section 2.2. We use the same notation as the
distinction only matters in the end of the proof of Theorem 5.2 in the of this appendix.
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The sequence of data generating processes has common β, σ. For each T there are
h = ⌊λT ⌋ good observations for a common 1/2 < λ ≤ 1 and a h index set ζT of good
observations. The regularity conditions are as follows.

Assumption A.1. Suppose
(i) Frequency of ‘good’ observations: h/T → λ where λ > 1/2.
(ii) ‘Good’ errors εt are independent N(0, 1) for t ∈ ζT .
(iii) ‘Outlier’ errors: mint̸∈ζT ε

2
t ≥ (2 log h){1 + oP(1)}.

(iv) Frequency of regressors near hyperplanes: Define

FTh(a) = max
ζ:#ζ=h

sup
δ:|δ|=1

h−1
∑
t∈ζ

1(|x′
tT δ|≤a). (A.2)

Let ξ satisfy 0 < ξ < 2− λ−1 and suppose

lim
(a,T )→(0,∞)

P{FTh(a) > ξ} = 0, (A.3)

that is ∀ϵ > 0, ∃(a0, n0) > 0: ∀a ≤ a0, T ≥ T0 then P{FTh(a) > ξ} < ϵ.
(v) Regressors: ∥

∑n
i=1 xtTx

′
tT∥ = OP(T ).

(vi) Regressors: Let |xtT | have order statistics x(1) ≤ · · · ≤ x(T ) satisfying either
(a) x(T ) = OP(1); or
(b) x2(T ) = OP(log T ) and ∀0 < δ < 1, ∃0 < r < 1: x2(T−⌊T r⌋)/x

2
(T ) ≤ δ{1 + oP(1)}.

(vii) Infeasible OLS estimator: (β̂ζT − β)′(
∑

t∈ζT xtTx
′
tT )(β̂ζT − β) = OP(1).

We comment on the assumptions. In (ii), the good errors are normal. This can
be relaxed for known h (Berenguer-Rico and Nielsen, 2024), but a distributional as-
sumption seems necessary for estimating h (Berenguer-Rico et al., 2023). In (iii)
the outlier errors are more extreme than the good errors noting that under normal-
ity maxt∈ζT ε

2
t/(2 log h) → 1 a.s. In (iv) the concentration of the regressors is bounded.

This implies that
∑

t∈ζ xtTx
′
tT is invertible for any h-set ζ (Johansen and Nielsen, 2019).

Condition (v) has a trade-off with (v), (vi) which limit the magnitude of the regressors.
We quote the general LTS asymptotic theory (Berenguer-Rico and Nielsen, 2024).

As before, let MT denote the set of minimizers ζ of σ̂2
ζ .

Theorem A.1. Boundedness. Suppose Assumption A.1(i, ii, iv). Then the LTS es-
timator β̂ for (A.1) is bounded: maxζ∈MT

|β̂ζ − β̂ζn| = OP(1).

Theorem A.2. Consistent selection and expansions. Suppose Assumption A.1.
Then the LTS estimators ζ̂, β̂, σ̂ for (A.1) satisfy:
(a) Consistent selection by ζ̂. ∀0 < β < 1: maxζ∈MT

#(ζ ∩ ζcT )/h = OP(h
β−1).

(b) Expansion for σ̂2. maxζ∈MT
h1/2|σ̂2

ζ − σ̂2
ζn
| = oP(1).

(c) Expansion for β̂.

max
ζ∈MT

∣∣∣(∑
i∈ζ

xtTx
′
tT

)1/2(
β̂ζ − β

)
−
(∑

i∈ζT

xtTx
′
tT

)1/2(
β̂ζT − β

)∣∣∣ = oP(1).

The square root matrices are defined through joint diagonalization, see Remark B.2.

The conditions (v), (vi) are sufficient for consistent selection and expansions, but not
necessary. Berenguer-Rico and Nielsen (2024) provide a set of alternative conditions.
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B Proofs

B.1 Proof of representation

Proof of Theorem 3.1. Part (a). Start from the homogeneous model equation (3.1).
Subtract

∑k−1
j=1 Γj∆x

∗
t on both sides and use that Ψ = Ip −

∑k−1
j=1 Γj to get

Ψ∆x∗
t = αβ

′x∗
t−1 +

k−1∑
j=1

Γj

(
∆x∗

t−j −∆x∗
t

)
+Aεt.

Insert ∆x∗
t−j −∆x∗

t = −
∑j−1

s=0∆
2x∗

i−s and interchange the two sums to get

Ψ∆x∗
t = αβ

′x∗
t−1 −

k−2∑
s=0

( k−1∑
j=s+1

Γj

)
∆2x∗

t−j +Aεt.

On the left, pre-multiply x∗
t by the identity Ip = β⊥β

′
⊥ + ββ′ and move the β′x∗

t term
to the right. Also, pre-multiply both sides by α′

⊥. This gives

α′
⊥Ψβ⊥β

′
⊥∆x

∗
t = −α′

⊥Ψββ
′∆x∗

t −α′
⊥

k−2∑
s=0

( k−1∑
j=s+1

Γj

)
∆2x∗

t−j +α
′
⊥Aεt.

Pre-multiply by the inverse of α′
⊥Ψβ⊥, which exists by Assumption 3.1. Then pre-

multiply by β′
⊥β⊥. Use the definition C = β⊥(α

′
⊥Ψβ⊥)

−1α′
⊥. This gives

β′
⊥∆x

∗
t = −β′

⊥CΨββ′∆x∗
t − β′

⊥C
k−2∑
s=0

( k−1∑
j=s+1

Γj

)
∆2x∗

t−j + β
′
⊥CAεt.

Using the definition of ν, we can write this in compact form as

β′
⊥∆x

∗
t = ν∆y

∗
t + β

′
⊥CAεt.

Sum over t to get the desired expression.
Part (b, i). The normality assumption and assumption 3.1 ensure that y∗

t can be
given a stationary initial distribution. Now, ỹ∗

t can also be given a stationary initial
distribution as it is a linear function of y∗

i+1, y
∗
t .

Part (b, ii). Rearrange the homogenous model equation (3.1) as by subtracting the
intermediate differences β′∆x∗

t−j from β′x∗
t−k and defining Γ†

j = Γj +αβ
′ to get

∆x∗
t =

k−1∑
j=1

Γ†
j∆x

∗
t−j +αβ

′x∗
t−k +Aεt. (B.1)

This matches the formulation in Johansen (1988). In the same vein, let

y†
t =


∆x∗

t
...

∆x∗
t−k+2

β′x∗
t−k+1

 , Y † =



Γ†
1 · · · · · · · · · Γ†

k−1 α
Ip 0 · · · · · · 0 0

0
. . . . . .

...
...

. . . . . . . . .
...

...
0 · · · 0 Ip 0 0
0 · · · 0 0 β′ Ip


, ep =


Ip
0
...
0

 ,

21



such that there is linear, bijective mapping between y∗
t and y†

t and

y†
t = Y

†y†
t−1 + epAεt. (B.2)

Apply the autoregressive equation k times to get

y†
t =


Ip ∗ · · · ∗
0

. . . . . .
...

...
. . . Ip ∗

0 · · · 0 β′




Aεt
...
...

Aεt−k+1

+ Y †ky†
t−k, (B.3)

where ∗ represents quantities that are not of importance. As β′ has full row rank by
Assumption 3.1, so does the first matrix in (B.3). The vector of errors in (B.3) has
an invertible covariance matrix whenever t − k + 1 > t. It is also independent of the
σ-algebra Gt−k generated by y†

t−k+1, . . . ,y
†
t−k, while y

†
t−k is Gt−k measurable. Therefore,

Var(y†
t | Gt−k) is constant and invertible for t ≥ t+ k.

We now concatenate y†
t with ∆x∗t+1. By the model equation (B.1), we have

∆x∗
t+1 = Aεt+1 +

k−1∑
j=1

Γ†
j∆x

∗
t−j+1 +αβ

′x∗
t−k+1 = Aεt+1 + ν

′
†y

†
t ,

for a suitably defined ν†. Thus, we have

ỹ†
t =

(
∆x∗

t+1

y†
t

)
=

(
Ip ν ′

†
0 Idimy∗

)(
Aεt+1

y†
t

)
.

As Aεt+1 and y†
t are independent and each has invertible, constant covariance, we get

that Var(ỹ†
t | Gt−k) is constant and invertible for t ≥ t+ k.

Finally, the σ-algebra Gt−k generated by y†
s for t− k < s ≤ t− k can equivalently be

generated by ỹ†
s for t − k < s ≤ t − k − 1 due to the concatenation with ∆x∗t+1, or by

ỹ∗
s for t− k < s < t− k by a linear, bijective transformation.

B.2 The normalized regressor vector

Assumption A.1 uses a normalized regressor vector xtT , which we define here. The ADL
equation (2.1) with a constant has regressors

∆zt,xt−1,∆xt−1, . . . ,∆xt−k+1, 1, (B.4)

where xt = (yt, zt)
′. The unobserved components formulation (3.1) has xt = x

∗
t + τc so

that ∆xt = ∆x∗
t and where x∗

t satisfies the VAR in (3.2). Thus, the regressors in (B.4)
form a bijective, linear function of

∆zt,x
∗
t−1,∆x

∗
t−1, . . .∆x

∗
t−k+1, 1.

Now, x∗
t−1 is a linear combination of β′x∗

t−1 and β
′
⊥x

∗
t−1. Concatenate β

′x∗
t−1,∆x

∗
t−1, . . . ,

∆x∗
t−k+1 as y∗

t−1, see (3.6). The Granger-Johansen representation Theorem 3.1 writes
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β′
⊥x

∗
t−1 as a linear combination of a random walk, y∗

t−1 and initial values. Normalize

the random walk by
√
T . Then the regressors in (B.4) are a linear function of

xtT =
(
∆zt , y

∗′
t−1 , T

−1/2

t−1∑
s=1

ε′s , 1
)′
, (B.5)

which has dimension p− 1 + p+ r + (k − 1)p+ 1 = (k + 1)p+ r.
When checking parts (iv, v) of Assumption A.1, we extend the vector xtT with ∆yt,

t/T . Since ∆yt,∆zt,∆y
∗
t−1 concatenate as ỹ∗

t−1 we get that xtT is a subvector of

x̃tT =
(
ỹ∗′
t−1 , T

−1/2

t−1∑
s=1

ε′s , t/T , 1
)′
, (B.6)

which has dimension (k + 1)p+ r + 2. We remove ∆yt in martingale arguments:

xtT =
{
0, I(k+1)p+r+1

}
x̃tT . (B.7)

B.3 Conditions for boundedness

We check the boundedness Assumption A.1(iv) for xtT defined in (B.5). This is a
subvector of x̃tT in (B.6). We link the FTh(a) functions for xtT and x̃tT .

Lemma B.1. If xtT is a subvector of x̃tT then

F x
Th(a) = max

ζ:#ζ=h
sup

δ:|δ|=1

1

h

∑
i∈ζ

1(|δ′xtT |≤a) ≤ max
ζ:#ζ=h

sup
δ̃:|δ̃|=1

1

h

∑
i∈ζ

1(|δ̃′x̃tT |≤a) = F x̃
Th(a).

Proof of Lemma B.1. Write xtT = s′x̃tT for a selection matrix s of dimension dim x̃ ×
dimx with zero coeffients apart from one unit coefficient in each column. If δ is a unit
vector of length dimx, then δ̃ = Sδ is a unit vector of length dim x̃. Therefore,

sup
δ:|δ|=1

∑
i∈ζ

1(|δ′xtT |≤a) = sup
δ̃=Sδ:|δ|=1

∑
i∈ζ

1(|δ̃′x̃tT |≤a) ≤ sup
δ̃:|δ̃|=1

∑
i∈ζ

1(|δ̃′x̃tT |≤a).

Divide by h and take maximum over h-sets ζ to get that F x
Th(a) ≤ F x̃

Th(a).

Lemma B.2. If x, y ∈ R, a > 0 then |1(|x|≤a) − 1(|y|≤a)| ≤ 1(|x−a|≤|y−x|) + 1(|x+a|≤|y−x|).

Proof of Lemma B.2. Let d = |x− y|. Rewrite the difference of indicators as

1(|x|≤a) − 1(|y|≤a) = 1(−a≤x≤a) − 1(−a+x−y≤x≤a+x−y).

This difference is zero outside the sets −a− d ≤ x ≤ −a+ d and a− d ≤ x ≤ a+ d. On
those sets, their difference may be −1, 0 or 1. Hence, the bound applies.

We give conditions ensuring that the F x̃
tT function for x̃tT vanishes within a good

episode indexed by t = 1, . . . , T . We combine the separate arguments for stationary
processes, random walks and linear trends in Johansen and Nielsen (2019).
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Lemma B.3. Let ztT = (u′t, v
′
t/
√
T , t/T, 1)′ where ut ∈ Rdimu, vt ∈ Rdim v. Let F z

Tδ(a) =
T−1

∑T
t=1 1(|z′tT δ|≤a). Suppose that, for some qT ≥ 1 such that qT/T → 0,

(i) I(0) component.
(a) ∀ϵ > 0, ∃C > 0: maxqT<t≤T P(|ut| > C) ≤ ϵ.
(b) ∃C > 0: maxqT<t≤T supδu:|δu|=1 supν∈R P(|u′tδu + ν| < α) ≤ αC,

(ii) I(1) component.
(a) ∀ϵ > 0, ∃C > 0: P(maxqT<t≤T |vt/

√
T | > C) ≤ ϵ.

(b) ∃C > 0: maxqT<t≤T supδv :|δv |=1 supν∈R P(|v′tδv/
√
t+ ν| < α) ≤ αC.

Then supδ:|δ|=1 F
z
Tδ(a) = oP(1) as (a, T ) → (0,∞).

Proof of Lemma B.3. Truncation. Write F z
Tδ(a) = NTδ(a) + QTδ(a) + RTδ(a, 0) where

NTδ(a) = T−1
∑

t≤qT
1(|z′tT δ|≤a) ≤ qT/T → 0 by assumption, while

QTδ(a) =
1

T

∑
t>qT

1(|z′tT δ|≤a,|ztT |>A), RTδ(α, µ) =
1

T

∑
t>qT

1(|z′tT δ−µ|≤α,|ztT |≤A),

for an A > 0 to be chosen. We show that QTδ and RTδ vanish uniformly in δ.
The term Q vanishes. The process ztT = (u′t, v

′
t/
√
T , t/T, 1)′ satisfies

|ztT | ≤ |ut|+ |vt|/
√
T + |t/T |+ 1 ≤ |ut|+ max

qT<t≤T
|vt|/

√
T + 2

by the triangle inequality. Thus, we get the set inclusions, for A ≥ 4,(∣∣z′tT δ∣∣ ≤ a,
∣∣ztT ∣∣ > A

)
⊂

(∣∣ztT ∣∣ > A
)
⊂

(∣∣ut∣∣ > A/4
)
∪
(

max
qT<t≤T

∣∣vt/√T ∣∣ > A/4
)
,

uniformly in δ, a. Thus, we can bound, uniformly in δ, a and for A ≥ 4,

QTδ(a) ≤ Q̃T =
1

T

∑
t>qT

1(|ut|>A/4) + 1(maxqT <t≤T |vt/
√
T |>A/4).

Take supremum and then expectation to bound

E sup
δ
QTδ(a) ≤ EQ̃T = max

qT<t≤T
P
(∣∣ut∣∣ > A/4

)
+ P

(
max

qT<t≤T

∣∣vt/√T ∣∣ > A/4
)
.

This is small for large A since ut = OP(1) uniformly in t while maxt≤T

∣∣vt/√T ∣∣ = OP(1)
by conditions (i, a; ii, a). Thus, ∀ϵ > 0, ∃A > 0 such that E supδ:|δ|=1QTδ(a) < ϵ.

The term R. We parametrize the unit vector δ as

δ =
(
δ′u cosψ cosϕ cos θ , δ′v sinψ cosϕ cos θ , sinϕ cos θ , − sin θ

)′
, (B.8)

where δu ∈ Rdimu, δv ∈ Rdim v such that |δu| = |δv| = 1 while 0 ≤ ψ ≤ π/2 and
|ϕ|, |θ| ≤ π/2. Initially, we distinquish between cos θ = 0 and cos θ > 0.

The case cos θ = 0. If cos θ = 0 then |z′tT δ| = 1 so that RTδ(a) = 0 for all a < 1.
The case cos θ > 0. We bound 1/ cos θ; we chain over δ and analyze the oscillation

term; we remove the truncation; and, finally, we consider three subcases.
Bounding 1/ cos θ. Write z′tT δ = z′tT δθ=0 cos θ − sin θ where δθ=0 has the form (B.8)

with θ = 0, so that cos θ = 1 and sin θ = 0. As |δθ=0| = 1 then |z′tT δθ=0| ≤ |ztT | ≤ A.
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By Johansen and Nielsen (2019, Lemma 3.1), we find for a ≤ 1/2 and |θ| ≤ π/2 that
| − sin θ + z′tT δθ=0 cos θ| ≤ a implies 1/ cos θ ≤ 2(1 + |z′tT δθ=0|) ≤ 2(1 + A).

Chaining. The set |δ| = 1 is compact. For ϵ > 0 we make a finite cover with L balls
with centers δℓ and radius ϵ. Linear chaining gives

sup
δ
RTδ(a, 0) ≤ max

ℓ≤L

{
RTδℓ(a, 0) + sup

δ:|δ−δℓ|≤ϵ

∣∣RTδ(a, 0)−RTδℓ(a, 0)
∣∣}. (B.9)

Oscillation term in (B.9). By the triangle inequality,∣∣RTδ(a, 0)−RTδℓ(a, 0)
∣∣ ≤ 1

T

∑
t>qT

∣∣1(|z′tT δ|≤a,|ztT |≤A) − 1(|z′tT δℓ|≤a,|ztT |≤A)

∣∣.
Apply the inequality |1(|x|≤a) − 1(|y|≤a)| ≤ 1(|x−a|≤|y−x|) + 1(|x+a|≤|y−x|) from Lemma B.2
with x = z′tT δℓ and y = z′tT δ so that |y − x| ≤ |ztT ||δℓ − δ| ≤ Aϵ. Thus, uniformly in δ,∣∣RTδ(a, 0)−RTδℓ(a, 0)

∣∣ ≤ 1

T

∑
t>qT

{
1(|z′tT δℓ−a|≤ϵA,|ztT |≤A) + 1(|z′tT δℓ+a|≤ϵA,|ztT |≤A)

}
= RTδℓ(ϵA, a) +RTδℓ(ϵA,−a). (B.10)

Remove truncation. We can now remove the truncation, so that

RTδ(α, µ) ≤
1

T

∑
t>qT

1(|z′tT δℓ−µ|≤α) = STδ(α, µ). (B.11)

Return to the chaining inequality (B.9), apply the bounds (B.10), (B.11) to bound

sup
δ
RTδ(a, 0) ≤ max

ℓ≤L
STδℓ(a, 0) + max

ℓ≤L
STδℓ(ϵA, a) + max

ℓ≤L
STδℓ(ϵA,−a).

We show that these terms vanish. For variables Sℓ ≥ 0, the Boole and Markov inequali-
ties give P(maxℓ Sℓ > η) = P ∪ℓ (Sℓ > η) ≤

∑
ℓ P(Sℓ > η) ≤ (L/η)maxℓ ESℓ. Apply this

to STδℓ as defined in (B.11) noting T − qT ≤ T to get, for any α ≥ 0, µ ∈ R,

P
{
max
ℓ≤L

STδℓ(α, µ) > η
}
≤ L

Tη
max
ℓ≤L

∑
t>qT

P
(∣∣z′tT δℓ − µ

∣∣ ≤ α
)

≤ L

η
max
ℓ≤L

max
t>qT

P
(∣∣z′tT δℓ − µ

∣∣ ≤ α
)
. (B.12)

We must bound P(|z′tT δ − µ| ≤ α). We distinguish between the cases sin2 ϕ ≥ 1/2 and
cos2 ϕ ≥ 1/2, cos2 ψ ≥ 1/2 and cos2 ϕ ≥ 1/2, sin2 ψ ≥ 1/2.

The case sin2 ϕ ≥ 1/2 and the linear trend term. Since sinϕ ̸= 0, cos θ > 0, we find

z′tT δ − µ

sinϕ cos θ
=

t

T
+ ν1 with ν1 =

(
u′tδu cosψ +

1√
T
v′tδv sinψ

)
tanϕ− sin θ + µ

sinψ cos θ
.

Noting that 1/ cos θ ≤ 2(1 + A) as found above while sin2 ϕ ≥ 1/2 is assumed, we can
bound α/(| sinϕ cos θ|) ≤ α2(1 + A)

√
2 = α̃1. Taken together, we get(∣∣z′tT δ − µ

∣∣ ≤ α
)
⊂

(∣∣∣ z′tT δ − µ

sinϕ cos θ

∣∣∣ ≤ α̃1

)
=

(∣∣∣ t
T

+ ν1

∣∣∣ ≤ α̃1

)
.
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This describes an interval for t of length 2T α̃1. Thus, the indicator for (|z′tT δ − µ| ≤ α)
is unity for at most 2T α̃1 + 1 values of t. It follows that, as (α, T ) → (0,∞),

STδ(a) ≤ T−1
(
2T α̃1 + 1

)
≤ α4(1 + A)

√
2 + T−1 → 0.

The case cos2 ψ, cos2 ϕ ≥ 1/2 and the I(0) term. As cosψ, cosϕ, cos θ > 0, we find

z′tT δ − µ

cosψ cosϕ cos θ
= u′tδu + ν2 with ν2 =

1√
T
v′tδv tanψ +

t tanϕ

T cosψ
− sin θ + µ

cosψ cosϕ cos θ
.

Noting that 1/ cos θ ≤ 2(1 + A) as found above while cos2 ψ, cos2 ϕ ≥ 1/2 are assumed,
we can bound α

/
(| cosψ cosϕ cos θ|) ≤ α4(1 + A) = α̃2. Taken together, we get

(∣∣z′tT δ − µ
∣∣ ≤ α

)
⊂

(∣∣∣ z′tT δ − µ

cosψ cosϕ cos θ

∣∣∣ ≤ α̃2

)
=

(∣∣u′tδu + ν2
∣∣ ≤ α̃2

)
.

Taking probability and applying condition (i, b), we find a C > 0 exists such that

P
(∣∣z′tT δ − µ

∣∣ ≤ α
)
≤ max

qT<t≤T
sup

δu:|δu|=1

sup
ν2∈R

P
(∣∣u′tδu + ν2

∣∣ ≤ α̃2

)
≤ α̃2C. (B.13)

Combine the inequalities (B.12), (B.13) with the definition of α̃2 to get

P
{
max
ℓ≤L

STδℓ(α, µ) > η
}
≤ L

η
α̃2C =

L

η
α4

(
1 + A

)
C → 0, (B.14)

as (α, T ) → (0,∞) since η, L,A,C are fixed.
The case sin2 ψ, cos2 ϕ ≥ 1/2 and the I(1) term. As sinψ, cosϕ, cos θ > 0, we find

z′tT δ − µ

sinψ cosϕ cos θ
=

1√
T
v′tδv + ν3 with ν3 = u′tδu cotψ +

t tanϕ

T sinψ
− sin θ + µ

sinψ cosϕ cos θ
,

Noting that 1/ cos θ ≤ 2(1 + A) as found above while sin2 ψ, cos2 ϕ ≥ 1/2 is assumed,
we get α/(| sinψ cosϕ cos θ|) ≤ α4(1 + A) = α̃3. Taken together, we get(∣∣z′tT δ − µ

∣∣ ≤ α
)
⊂

(∣∣∣ z′tT δ − µ

sinψ cosϕ cos θ

∣∣∣ ≤ α̃3

)
=

(∣∣v′tδv/√T + ν3
∣∣ ≤ α̃3

)
.

Taking probability, normalizing by
√
T/t and applying condition (ii, b), we find a C > 0

exists such that, uniformly in qT < t ≤ T , δv : |δv| = 1, ν3 ∈ R

P
(∣∣z′tT δ−µ∣∣ ≤ α

)
≤ P

(∣∣∣v′tδv√
T
+ν3

∣∣∣ ≤ α̃3

)
= P

(∣∣∣v′tδv√
t
+ν3

∣∣∣ ≤ α̃3

√
T√
t

)
≤ α̃3C

√
T√
t
. (B.15)

Combine the inequalities (B.12), (B.15) and
∑T

t=2 t
−1/2 ≤

∫ T

1
t−1/2dt < T 1/2/2 with the

definition of α̃3 to get

P
{
max
ℓ≤L

STδℓ(α, µ) > η
}
≤ L

Tη
max
ℓ≤L

∑
t>qT

α̃3C

√
T√
t
≤ L

η
α2(1 + A)C → 0,

as (α, T ) → (0,∞) since η, L,A,C are fixed.
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We bound the FTh function for the ADL model with finitely many good episodes.

Lemma B.4. Consider the setup in Section 4. Then

FTh(a) = max
ζ:#ζ=h

sup
δ:|δ|=1

1

h

∑
t∈ζ

1(|x′
tT δ|≤a) ≤

T − hV AR

h
+ oP(1).

Proof of Lemma B.4. Objective. First, we bound FTh(a) ≤ Fhh(a) + (T − h)/h where
Fhh(a) = supδ:|δ|=1 h

−1
∑

t∈ζT 1(|δ′xtT |≤a) by Berenguer-Rico and Nielsen (2024, eq. 4.2).
As FTh sums over ζ, bound ζ ⊂ ζT ∪ ζcT and then bound the indicators on ζcT by unity.

Second, in a similar fashion, bound Fhh(a) ≤ (hV AR/h)FV AR(a) + (h − hV AR)/h,
where FV AR(a) = supδ:|δ|=1 h

−1
V AR

∑
t∈ζV AR,T

1(|δ′xtT |≤a). Note that hV AR/h ≤ 1.
Third, the number G of periods with good ADL and VAR errors is finite by assump-

tion. The indices for the good periods are, tg < t ≤ tg for some g ≤ G where G is

finite, see (4.4). We bound FV AR(a) ≤
∑G

g=1(hg/hV AR)Fg(a) where hg = tg − tg noting

hg ≤ hV AR and where Fg(a) = supδ:|δ|=1 h
−1
g

∑t
t=tg+1 1(|δ′xtT |≤a).

Fourth, we have that hg is non-decreasing. Suppose hg/h → 0 as h → ∞ and note
that Fg(a) ≤ 1 by construction. Then (hg/h)Fg(a) → 0. For groups g where hg/

√
T

diverges, we will bound hg/h ≤ 1. Combine all the bounds as

FTh(a) ≤
h− hV AR

h
+

G∑
g=1

1(hg/
√
T diverges)Fg(a) + o(1). (B.16)

Each good episode. Consider Fg(a) for some g such that hg/
√
T diverges. By as-

sumption, the ADL and VAR errors are normal. We apply Lemma B.3.
Condition (i, a). The I(0) component of x̃tT is the process ỹ∗

t−1. We show that a qT
exists such that qT/T → 0 and ∀ϵ > 0, ∃C > 0 such that maxtg+qT<t≤tg P(|ỹ∗

t | > C) ≤ ϵ.

Now, ỹ∗
t satisfies the VARMA equation (3.9). The Granger-Johansen representation

Theorem 3.1(b, i) shows that VARMA equation has a stationary solution, ỹ∗
STAT,t say,

such that ỹ∗
t = ỹ∗

STAT,t + Ỹ
t−tg(ỹ∗

tg
− ỹ∗

STAT,tg
). By stationarity (and normality), the

components ỹ∗
STAT,t and Ỹ t−tg ỹ∗

STAT,tg
are bounded in probability for tg < t ≤ tg.

Further, by the VARMA equation, ỹ∗
tg

= OP(1 + maxt̸∈ζV AR,T
|εt|). This is OP(T

c) by

(4.6). Further, ρ = max |eigen(Ỹ )| < 1 by Assumption 3.1. Now, let qT = T 1/4 so that

qT/hg ≤ qT/T → 0, but log(∥Ỹ ∥qT ỹ∗
tg
) = T 1/4 log ∥Ỹ ∥ + cOP(log T ) → −∞, so that

Ỹ qT ỹ∗
tg
= oP(1). It follows that ỹ

∗
t = OP(1) uniformly in tg + qT < t ≤ tg and the run-in

period qT is vanishing. Thus, condition (i, a) is satisfied.
Condition (i, b). The Granger-Johansen representation Theorem 3.1(b, ii) shows that

min
t+k<t≤t

min eigenVar
(
ỹ∗
t | ỹ∗

s , t− k < s ≤ t− k
)
> 0.

In particular, the variance bounded applies for t > t+ qT . Under normality, this implies
the densities are bounded and in turn condition (i, b) follows.

Condition (ii, a). For each episode we have vt =
∑t

t=tg+1 εt. Let Tg = tg − tg and

u ∈ [0, 1]. The normalized time series v⌊uTg⌋/T
1/2
g converges to a Brownian motion
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on D[0, 1] with the Skorokhod metric. The supremum is a continuous mapping. The
Continuous Mapping Theorem gives the desired bounded (Billingsley, 1968).

Condition (ii, b). For any unit vector, we get that v′t−tg
δv/(t − tg)

1/2 is standard

normal. Therefore, a C > 0 exists such that P(|v′t−tg
δv/(t − tg)

1/2| + ν < α) ≤ αC

uniformly in t > tg and ν ∈ R. The condition follows.
Lemma B.3 now shows that Fg(a) = oP(1) as (a, T ) → (0,∞) for each g as hg

diverges. Insert in (B.16) to finish the proof.

Proof of Theorem 5.1. We check the Assumption A.1 (i, ii, iv) used in Theorem A.1.
Assumption A.1 (i, ii) are satisfied by assumption, see Section 4.1.
Assumption A.1 (iv). We find a ξ such that 0 < ξ < 2−λ−1 and P{FTh(a) > ξ} → 0

as (a, T ) → (0,∞). First, 2 − λ−1 > 1/2 if and only if λ > 2/3, which is required in
(4.8). Second, applying Lemma B.4 with the present assumptions gives

FTh(a) ≤
T − hV AR

h
+ oP(1).

We have T − hV AR < T/3 by (4.8) and h ≥ hV AR > 2T/3, see Section 4.3. As
(1/3)/(2/3) = 1/2, then FTh(a) < 1/2 + oP(1). Thus, a ξ can be found as desired.

Remark B.1. The bound λ > 2/3 in (4.8) is necessary to meet Assumption A.1(iv).
Indeed, for a first order autogression where p = k = 1, the model equation (2.1) is

∆yt = α(yt−1 − νc) + σεt for t = 1, . . . , T.

Let data be generated by α = −1, νc = 0, σ = 1 so that yt = εt. Let h = #ζT = ⌊λn⌋
and ζT = ζV AR,T = (1, . . . , h) with outliers εt =

√
2 log h for t ∈ ζcT so that t > h. Then

xtT =

(
εt−1

1

)
for any t, xtT =

(√
2 log h
1

)
for t > h.

We lower bound FtT . Since the vector δ∗ = (−1,
√
2 log h)′ is orthogonal to xtT for t ∈ ζcT

so that x′tT δ∗ = 0 and we get for any a ≥ 0 that

FtT (a) = max
ζ:#ζ=h

sup
δ:|δ|=1

h−1
∑
t∈ζ

1(|x′
tT δ|≤a) ≥ h−1

∑
t∈ζcT

1(|x′
tT δ∗|≤a) =

T − h

h
→ 1− λ

λ
.

Assumption A.1(iv) requires (1− λ)/λ < 2− 1/λ, which is equivalent to λ > 2/3.

B.4 Conditions for consistent selection and expansions

Lemma B.5. Consider the setup in Section 4. Then
(a) max1≤t≤T |x̃tT |2 ≤ max1≤t≤T |ỹ∗

t |2 +max1≤t≤T |T−1/2
∑T

s=1 εs|2 + 2.
(b) max1≤t≤T |ỹ∗

t | = OP(
√
log T ).

(c) max1≤t≤T |T−1/2
∑T

s=1 εs| = OP(1) + (#ζV AR,T )OP{
√
(log T )/T}.
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Proof of Lemma B.5. (a) The vector x̃tT has components ỹ∗
t−1 and T

−1/2
∑t−1

s=1 εs as well
as t/T and 1. The latter two are bounded by unity.

(b) The I(0) component. For any t, we use the triangle inequality to bound |ỹ∗
t | =

|
∑t

s=0 Ỹ
sε̃∗t−s| by

∑∞
s=0 ∥Ỹ ∥s max1≤t≤T |ε̃∗t |. The geometric sum is convergent and the

VAR errors are OP(
√
log T ) due to (3.10), (4.10). Thus, max1≤t≤T |ỹ∗

t | = OP(
√
log T ).

(c) The I(1) component. Expand this as

1√
T

t−1∑
s=1

εs =
1√
T

t−1∑
s=1

εs1(s∈ζV AR,T ) +
1√
T

t−1∑
s=1

εs1(s ̸∈ζV AR,T ). (B.17)

The first term in (B.17) is a standard, normal random walk and converges to a Brow-
nian motion when embedded in C[0, 1] with the uniform metric (Billingsley, 1968). In
particular, the maximum of its absolute value is OP(1). We bound the second term in
(B.17). It has at most #ζcV AR,T elements, which have order maxt≤T |εt| = OP(

√
log T )

by (4.10). Overall, the I(1) component is (#ζcV AR,T )OP{
√
(log T )/T}.

Lemma B.6. Consider the sequence of data generating process of Section 4. Then x̃tT ,
xtT = (0, Iq)x̃tT defined in (B.6), (B.7) satisfy

(a)
1

T

T∑
t=1

x̃tT x̃
′
tT =

1

T

∑
t∈ζT

x̃tT x̃
′
tT + o(1) =

1

T

∑
t∈ζV AR,T

x̃tT x̃
′
tT + o(1).

(b)
1√
T

T∑
t=1

x̃tT εt =
1√
T

∑
t∈ζT

x̃tT εt + oP(1) =
1√
T

∑
t∈ζV AR,T

x̃tT εt + oP(1).

Proof of Lemma B.6. (a) We have ζV AR,T ⊂ ζT by assumption so that ζcT ⊂ ζcV AR,T

and T−1
∑

t∈ζcT
|x̃tT |2 ≤ T−1

∑
t∈ζcV AR,T

|x̃tT |2 = ST . Lemma B.5 shows maxt≤T |x̃tT |2 =

OP(log T ){1+(#ζcV AR,T )
2/T}. Thus, ST ≤ T−1(#ζcV AR,T )OP(log T ){1+(#ζcV AR,T )

2/T}.
This vanishes when #ζcV AR,T = o{T 2/3/(log T )1/3}, which is implied by (4.12).

(b) As before, it suffices to bound TT = T−1/2
∑

t∈ζcV AR,T
|x̃tT εt|, which we can bound

by TT ≤ T−1/2(#ζcV AR,T )(maxt≤T |x̃tT |)(maxt≤T |εt|). As, the maxima are OP(
√
log T )

by Lemma B.5 and by (4.10), we get TT ≤ OP(log T/
√
T )#ζcV AR,T = oP(1) as #ζ

c
V AR,T =

o(
√
T/ log T ) by condition (4.12).

Lemma B.7. Consider the sequence of data generating process of Section 4. Let ỹ†
g

denote stationary solution of the normal VARMA equation (3.9) for tg < t ≤ tg. Let

x̃†tT =


∑t−tg−1

s=0 Ỹ sε̃∗t−s + Ỹ
t−tg ỹ†

g
1√
T

∑t−1
s=1 εs1(s∈ζV AR,T )

t/T
1

 , x†tT =
(
0, Iq+p+2

)
x̃†tT .

Then x̃tT , xtT = (0, Iq)x̃tT defined in (B.6), (B.7) satisfy

(a)
1

T

∑
t∈ζV AR,T

∣∣x̃tT − x̃†tT
∣∣2 = oP(1).
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(b)
1

T

∑
t∈ζV AR,T

x̃tT x̃
′
tT =

1

T

∑
t∈ζV AR,T

x̃†tT x̃
†′
tT + oP(1) + o

{( 1

T

∑
t∈ζV AR,T

∣∣x̃†tT ∣∣2)1/2}
.

(c)
1√
T

∑
t∈ζV AR,T

xtT εt =
1√
T

∑
t∈ζV AR,T

x†tT εt + oP(1).

Proof of Lemma B.7. (a) Write x̃tT = x̃†tT + (x̃tT − x̃†tT ). Recalling the definition of x̃tT
and ỹ∗

t from (B.6), (3.9) we find for tg < t ≤ tg that x̃tT − x̃†tT = (z′1t, z
′
2t, 0, 0)

′ where

z1t = Ỹ
t−tg(ỹ∗

tg
− ỹ†

g) and z2t = T−1/2
∑t−1

s=1 εs1(s∈ζcV AR,T ). By the triangle inequality and

the submultiplicativity of the spectral norm, we then get that∥∥∥ 1

T

∑
t∈ζV AR,T

(
x̃tT − x̃†tT

)(
x̃tT − x̃†tT

)′∥∥∥ ≤ 1

T

∑
t∈ζV AR,T

∣∣x̃tT − x̃†tT
∣∣2 = Z1T + Z2T , (B.18)

where ZjT = T−1
∑

t∈ζV AR,T

∣∣zjt∣∣2.
For Z1T , bound |z1T |2 ≤ ∥Ỹ ∥2(t−tg)(|ỹ∗

tg
|+ |ỹ†

g|). Here, g takes finitely many values,

max1≤t≤T |ỹ∗
t | = OP(

√
log T ) by Lemma B.5(b), |ỹ†

g| = OP(1), while the geometric series∑
t∈ζV AR,T

∥Ỹ ∥2(t−tg) =
∑G

g=1

∑tg
t=tg+1 ∥Ỹ ∥2(t−tg) is bounded by G

∑∞
t=0 ∥Ỹ ∥2t < ∞.

Combine and normalize by T to get Z1T = OP(
√
log T/T ) = oP(1).

For Z2T , which is an average we bound Z2T ≤ T−1(#ζV AR,T )max1≤t≤T |z2t|2. Bound
#ζV AR,T ≤ T , so that Z2T ≤ max1≤t≤T |z2t|2. Now, |z2t| ≤ T−1/2(#ζcV AR,T )maxt≤T |εt|
uniformly in t. Here, we have maxt≤T |εt| = OP(

√
log T ) by (4.10). Combine these

bounds to get Z2T = OP{(#ζcV AR,T )
2 log T/T}. This term vanishes when vanishes when

#ζcV AR,T = oP(
√
T/ log T ) which is implied by (4.12).

(b) Write x̃tT = x̃†tT + (x̃tT − x̃†tT ) = vt +wt say. For vectors vi, wi and ∥ · ∥ denoting
the spectral norm, the triangle, sub-multiplicative and Cauchy-Schwarz inequalities give∥∥∥ n∑

i=1

viw
′
i

∥∥∥ ≤
n∑

i=1

∥∥viw′
i

∥∥ ≤
n∑

i=1

∣∣vi∣∣∣∣wi

∣∣ ≤ ( n∑
i=1

∣∣vi∣∣2 n∑
i=1

∣∣wi

∣∣2)1/2

.

With this and the triangle inequality, we can bound

n∑
i=1

(
vi + wi

)(
vi + wi

)′ ≤ n∑
i=1

viv
′
i +

n∑
i=1

wiw
′
i + 2

( n∑
i=1

∣∣vi∣∣2 n∑
i=1

∣∣wi

∣∣2)1/2

.

We apply this bound with vt = x̃†tT , wt = x̃tT − x̃†tT and sum over t ∈ ζV AR,T . Thus, it
suffices that T−1

∑
t∈ζV AR,T

|wt|2 = oP(1), which was shown in part (a).

(c) We must argue that T−1/2
∑

t∈ζV AR,T
(xtT − x†tT )εt = oP(1). This is a sum of

martingale differences since εt is standard normal and independent of ∆zt and xt−s for
s > 0. By Lai and Wei (1982, Lemma 2) we get, for any δ > 0 that∑

t∈ζV AR,T

(
xtT − x†tT

)
εt

a.s.
= O(1) + o

{
(logM)1+δ

}
where M =

∑
t∈ζV AR,T

∣∣xtT − x†tT
∣∣2.

Here, M vanishes by part (a). Normalize by
√
T to get the desired result.
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Lemma B.8. Consider the sequence of data generating process of Section 4. Let ỹ†
g

denote stationary solution of the normal VARMA equation (3.9) for tg < t ≤ tg. Let W
be standard p-dimensional Brownian motion so that B = σ−1(1,−ω)AW is a standard
univariate Brownian motion. Concatenate Wu, u, 1 as Fu. Let ỹ†

g denote stationary
solution of the normal VARMA equation (3.9) for tg < t ≤ tg. Let Σyy be the variance
of (0, Ir+kp−1)ỹ

†
g. Suppose hV AR = #ζV AR,T → ∞ as T → ∞. Then

( 1

hV AR

∑
t∈ζV AR,T

x†tTx
†′
tT ,

1√
hV AR

∑
t∈ζV AR,T

x†tT εt

)
D→

[(Σyy 0

0
∫ 1

0
FuF

′
udu

)
,

(
N∫ 1

0
FudBu

)]
,

(B.19)

where N is N(0,Σyy) and independent of W and hence also of F,B.

Proof of Lemma B.8. Chan and Wei (1988) prove this for a univariate autoregression
without deterministic terms. Chan (1989) extends this to include deterministic terms.
Johansen (1995, Appendix B) extends this to VARs.

Proof of Theorem 5.2. We apply Theorem A.1 and must check Assumption A.1. Parts
(i, ii, iv) were checked for Theorem 5.1.

Assumption A.1(iii) is satisfied by (4.2) in Section 4.
Assumption A.1(v). We show that T−1

∑T
t=1 xtTx

′
tT = OP(1). As xtT is a subvector

of x̃tT in (B.6), it suffices that T−1
∑T

t=1 x̃tT x̃
′
tT = OP(1). Lemma B.6(a) using that

T − hV AR = o{T 2/3/(log T )1/3} show that this sum equals T−1
∑

t∈ζV AR,T
x̃tT x̃

′
tT , which

is OP(1) by Lemma B.7(b) as T−1
∑

t∈ζV AR,T
x̃†tT x̃

†′
tT = OP(1) by Lemma B.8.

Assumption A.1(vi, b), first part. We have maxt≤T |xtT |2 is bounded by OP(log T ) +
max1≤t≤T |T−1/2

∑T
s=1 εt|2 by Lemma B.5(a, b). The random walk term is OP(log T ) by

Lemma B.5(c) as #ζV AR,T = T − hV AR = O(
√
T ) by condition (4.12).

Assumption A.1(vi, b), second part concerns the intermediate order statistics of xtT .
These relate to the intermediate order statistics of y∗

t , since the random walk part, the
linear trend and the constant of xtT are OP(1) by Lemma B.5 using that #ζcV AR,T =

T − hV AR = O(
√
T ) by condition (4.12). Thus, the intermediate order statistics of xtT

relate to those of y∗
t . Again, this can be split in a normal, stationary VARMA part

and the outlier part. For the normal, stationary VARMA part the intermediate extreme
decline as required (Watts et al., 1982). For the outlier part, the desired behaviour of
the intermediate extremes of the outliers must be assumed as done in (4.11).

Assumption A.1(vii). Let β̂ζT ,T denote the LTS estimator for regression on xtT .

Write SζT = (β̂ζT ,T − β)′(
∑

i∈ζT xtTx
′
tT )(β̂ζT ,T − β) as

SζT =
( 1√

h

∑
i∈ζT

εtx
′
tT

)(1
h

∑
i∈ζT

xtTx
′
tT

)−1( 1√
h

∑
i∈ζT

xtT εt

)
, (B.20)

where h = #ζT . We show SζT = OP(1). As xtT is a subset of xtT , which is a subset
of x̃tT , the desired result follows by replacing ζT by ζV AR,T using Lemma B.6 requiring

T −hV AR = o(
√
T/ log T ), replacing xtT , x̃tT with x†tT , x̃

†
tT using Lemma B.7, and using

the convergence in Lemma B.8.
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We can now apply Theorem A.1 to get

max
ζ∈MT

∣∣∣(∑
i∈ζ

xtTx
′
tT

)1/2(
β̂ζ,T − β

)
−
(∑

i∈ζT

xtTx
′
tT

)1/2(
β̂ζT ,T − β

)∣∣∣ = oP(1).

Finally, xtT = BTxt for some invertible matrix BT . The above expression is invariant to
rotations as explained in Remark B.2. Thus, we can replace xtT with xt as desired. We
can also replace ζT by ζV AR,T by use of Lemma B.6.

Remark B.2. In Theorem 5.2, the square roots of the matrices M =
∑

t∈ζ xtx
′
t and

N =
∑

t∈ζT xtx
′
t must be found through joint diagonalization. As M , N are symmetric

and positive semi-definite, there exists an invertible matrix S and a diagonal matrix
Λ such that N = SS ′ and M = S(Idimx + Λ)S ′ (Johansen, 1995, Lemma A.5). The
elements λ of Λ solve the equation det{(1 + λ)N − M} = 0 where 1 + λ > 0 with
corresponding eigenvectors v, such that (1 + λ)Nv = Mv and where the v’s are the
columns of V = (S ′)−1. We define the right square roots N1/2 = S ′ and M1/2 =
(Idimx + Λ)1/2S ′. In particular, we can write

Dζ =
(∑

i∈ζ

xtx
′
t

)1/2(
β̂ζ − β

)
−

(∑
i∈ζT

xtx
′
t

)1/2(
β̂ζT − β

)
=

(∑
i∈ζ

xtx
′
t

)1/2(∑
i∈ζ

xtx
′
t

)−1∑
i∈ζ

xtεt −
(∑

i∈ζT

xtx
′
t

)1/2(∑
i∈ζT

xtx
′
t

)−1 ∑
i∈ζT

xtεt

= S ′(SS ′)−1
∑
t∈ζ

xtεt −
(
Idimx + Λ

)1/2
S ′{S(Idimx + Λ

)
S ′}−1

∑
t∈ζT

xtεt

and then eliminate terms to get

Dζ = S−1
∑
t∈ζ

xtεt −
(
Idimx + Λ

)−1/2
S−1

∑
t∈ζT

xtεt.

In the proof of Theorem 5.2 a rotated, normalized version of the regressors is used as
in xtT = BTxt. We then get that

∑
t∈ζ xtTx

′
tT = BTMB′

T = BTS(Idimx + Λ)S ′B′
T and∑

t∈ζT xtTx
′
tT = BTNB

′
T = BTSS

′B′
T . Argueing as above, we find

Dζ,T =
(∑

i∈ζ

xtTx
′
tT

)−1/2∑
i∈ζ

xtT εt −
(∑

i∈ζT

xtTx
′
tT

)−1/2 ∑
i∈ζT

xtT εt = Dζ .
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